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Abstract—Analyzing a distributed computation is a hard
problem in general due to the combinatorial explosion in the size
of the state-space with the number of processes in the system. By
abstracting the computation, unnecessary state explorations can
be avoided. Computation slicing is an approach for abstracting
distributed computations with respect to a given predicate. We
focus on regular predicates, a family of predicates that covers
many commonly used predicates for runtime verification. The ex-
isting algorithms for computation slicing are centralized – a single
process is responsible for computing the slice in either offline or
online manner. In this paper, we present first distributed online
algorithm for computing the slice of a distributed computation
with respect to a regular predicate. Our algorithm distributes the
work and storage requirements across the system, thus reducing
the space and computation complexity per process.

I. INTRODUCTION

Global predicate detection [1] for runtime verification is
an important technique for detecting violations of invariants
for debugging and fault-tolerance in distributed systems. It is
a challenging task on a large system with a large number of
processes due to the combinatorial explosion of the state space.
The predicate detection problem is not only applicable to con-
ventional distributed systems, but also to multicore computing.
With growing popularity of large number of CPU-cores on
processing chips [2], some manufacturers are exploring the
distributed computing model on chip with no shared memory
between the cores, and information exchange between the
cores only using message passing [3]. Recent research efforts
[4] have shown that with sufficiently fast on-chip networking
support, such a message passing based model can provide
significantly fast performance for some specific computational
tasks. With emergence of these trends, techniques in predicate
detection for distributed systems can also be useful for systems
with large number of cores.

Multiple algorithms have been proposed in literature for
detection of global predicates in both offline and online manner
(e.g. [1], [5], [6]). Online predicate detection is important
for many system models: continuous services (such as web-
servers), collection of continuous observations (such as sensor-
networks), and parallel search operations on large clusters.
However, performing predicate detection in a manner that is
oblivious to the structure of the predicate can lead to large
runtime, and high memory overhead. The approach of using
mathematical abstractions for designing and analyzing com-
putational tasks has proved to be significantly advantageous
in modern computing. In the context of predicate detection,

and runtime verification, the problem of abstraction can be
viewed as the problem of taking a distributed computation
as input and outputting a smaller distributed computation that
abstracts out parts that are not relevant to the predicate under
consideration. The abstract computation may be exponentially
smaller than the original computation resulting in significant
savings in predicate detection time.

Computation slicing is an abstraction technique for effi-
ciently finding all global states, of a distributed computation,
that satisfy a given global predicate, without explicitly enu-
merating all such global states [5]. The slice of a computation
with respect to a predicate is a sub-computation that satisfies
the following properties: (a) it contains all global states of the
computation for which the predicate evaluates to true, and (b)
of all the sub-computations that satisfy condition (a), it has the
least number of global states. As an illustration, consider the
computation shown in Fig. 1(a). The computation consists of
three processes P1, P2, and P3 hosting integer variables x1,
x2, and x3, respectively. An event, represented by a circle is
labeled with the value of the variable immediately after the
event is executed.

Suppose we want to determine whether the property (or
the predicate) (x1 ∗x2+x3 < 5) ∧ (x1 ≥ 1) ∧ (x3 ≤ 3) ever
holds in the computation. In other words, does there exist a
global state of the computation that satisfies the predicate?
The predicate could represent the violation of an invariant.
Without computation slicing, we are forced to examine all
global states of the computation, twenty-eight in total, to
ascertain whether some global state satisfies the predicate.
Alternatively, we can compute a slice of the computation
automatically with respect to the predicate (x1 ≥ 1)∧(x3 ≤ 3)
as shown in Fig. 1(b). We can now restrict our search to
the global states of the slice, which are only six in number,
namely:
{a, e, f, u, v}, {a, e, f, u, v, b}, {a, e, f, u, v, w},
{a, e, f, u, v, b, w}, {a, e, f, u, v, w, g}, and
{a, e, f, u, v, b, w, g}. The slice has much fewer global
states than the computation itself—exponentially smaller in
many cases—resulting in substantial savings.

In this paper, we focus on abstracting distributed computa-
tions with respect to regular predicates (defined in Sec. II). The
family of regular predicates contains many useful predicates
that are often used for runtime verification in distributed
systems. Some such predicates are:
Conjunctive Predicates: Global predicates which are conjunc-
tions of local predicates. For example, predicates of the form,
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Fig. 1: A Computation, and its slice with respect to predicate
(x1 ≥ 1) ∧ (x3 ≤ 3)

B = (l1 ≥ x1 ≥ u1)∧ (l2 ≥ x2 ≥ u2)∧ . . .∧ (ln ≥ xn ≥ un),
where xi is the local variable on process Pi, and li, ui are
constants, are conjunctive predicates. Some useful verification
predicates that are in conjunctive form are: detecting mu-
tual exclusion violation in pairwise manner, pairwise data-
race detection, detecting if each process has executed some
instruction, etc.
Monotonic Channel Predicates [7]: Some examples are: all
messages have been delivered (or all channels are empty), at
least k messages have been sent/received, there are at most k
messages in transit between two processes, the leader has sent
all “prepare to commit” messages, etc.

Centralized offline [8] and online [9] algorithms for slicing
based predicate detection have been presented previously.
In this paper, we present the first distributed online slicing
algorithm for regular predicates in distributed systems.

A. Challenges and Contributions

Computing the slice of a computation with respect to a
general predicate is a NP-Hard problem in general [8]. Many
classes of predicates have been identified for which the slice
can be computed efficiently in polynomial time (e.g., regular
predicates, co-regular predicates, linear predicates, relational
predicates, stable predicates) [8], [5], [9], [10]. However, the
existing slicing algorithms are centralized in nature. The slice
is computed by a single slicer process that examines every
relevant event in the computation. The centralized algorithms
may be offline, where all events are known a priori, or online,
where the slice is updated incrementally with the arrival of
every new relevant event. For systems with large number of
processes, such centralized algorithms require a single process
to perform high number of computations, and to store very
large data. In comparison, a distributed online algorithm signif-
icantly reduces the per process costs for both computation and
storage. Additionally, for predicate detection, the centralized
online algorithm requires at least one message to the slicer
process for every relevant event in the computation, resulting
in a bottleneck at the slicer process.

A method of devising a distributed algorithm from a
centralized algorithm is to decompose the centralized execution
steps into multiple steps to be executed by each process
independently. However, for performing online abstraction
using computation slicing, such an incremental modification
is inefficient as direct decomposition of the steps of the

centralized online algorithm requires that each process sends
its local state information to all the other processes whenever
the local state (or state interval) is updated. In addition, a
simple decomposition leads to a distributed algorithm that
wastes significant computational time as multiple processes
may end up visiting (and enumerating) the same global state.
Thus, the task of devising an efficient distributed algorithm for
slicing is non-trivial. In this paper, we propose a distributed
algorithm that exploits not only the nature of the predicates,
but also the collective knowledge across processes. The opti-
mized version of our algorithm reduces the required storage
per slicing process, and computational workload per slicing
process by O(n). An experimental evaluation that compares
the distribuetd approach of this paper with the centralized
approach can be found in the extended technical report [11].

B. Applications

Our algorithm is useful for global predicate detection.
Suppose the predicate B is of the form B1 ∧ B2, where B1

is regular but B2 is not. We can use our algorithm to slice
with respect to B1 to reduce the time and space complexity
of the global predicate detection. Instead of searching for the
global state that satisfies B in the original computation, with
the distributed algorithm we can search the global states in
the slice for B1. For example, the Cooper-Marzullo algorithm
traverses the lattice of global states in an online manner
[1], which can be quite expensive. By running our algorithm
together with Cooper-Marzullo algorithm, the space and time
complexity of predicate detection is reduced significantly
(possibly exponentially) for predicates in the above mentioned
form.

Our algorithm is also useful for recovery of distributed
programs based on checkpointing. For fault-tolerance, we may
want to restore a distributed computation to a checkpoint
which satisfies the required properties such as “all channels are
empty”, and “all processes are in some states that have been
saved on storage”. If we compute the slice of the computation
in an online fashion, then on a fault, processes can restore
the global state that corresponds to the maximum of the last
vector of the slice at each surviving process. This global state
is consistent as well as recoverable from the storage.

II. BACKGROUND: REGULAR PREDICATES AND SLICING

A. Model

We assume a loosely coupled asynchronous message pass-
ing system, consisting of n reliable processes (that do not fail),
denoted by {P1, P2, . . . , Pn}, without any shared memory or
global clock. Channels are assumed to be FIFO, and loss-
less. In our model, each local state change is considered an
event; and every message activity (send or receive) is also
represented by a new event. We assume that the computation
being analyzed does not deadlock.

A distributed computation is modeled as a partial order
on a set of events [12], given by Lamport’s happened-before
(→) relation [12]. We use (E,→) to denote the distributed
computation on a set of events E. Mattern [13] and Fidge
[14] proposed vector clocks, an approach for time-stamping
events in a computation such that the happened-before relation
can be tracked. If V denotes the vector clock for an event
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Fig. 2: A Computation, Vector Clock Representation, and Slice with respect to predicate B =“all channels are empty”

e in a distributed computation, then for any event f in the
computation: e → f ⇔ e.V < f.V . For any pair of events
e and f such that e 6→ f ∧ f 6→ e, e and f are said to
be concurrent, and this relation is denoted by e||f . Fig. 2(a)
shows a sample distributed computation, and its corresponding
vector clock representation is presented in Fig. 2(b).

We now present some required concepts:

Definition 1 (Consistent Cut). Given a distributed computation
(E,→), a subset of events C ⊆ E is said to form a consistent
cut if C contains an event e only if it contains all events that
happened-before e. Formally, e ∈ C ∧ f → e =⇒ f ∈ C.

The concept of a consistent cut (or, a consistent global
state) is identical to that of a down-set (or order-ideal) used
in lattice theory [15]. Intuitively, a consistent cut captures the
notion of a global state of the system at some point during its
execution [16].

Consider the computation shown in Fig 2(a). The subset
of events {a, b, e} forms a consistent cut, whereas the subset
{a, e, f} does not; because b → f (b happened-before f ) but
b is not included in the subset. A consistent cut can also be
represented with a vector clock notation. For any consistent
cut C, its vector clock C.V can be computed as C.V =
component-wise-max{e.V | event e ∈ C}, where e.V denotes
the vector clock of event e. For this paper, we use a shortened
notation for a cut of the computation. A cut C is denoted by
the latest events on each process. Thus, {a, b, e} is denoted by
[b, e] and {a, e, f} is represented as [a, f ].

Table I shows all the consistent global states/cuts and
their corresponding vector clock values for the computation in
Fig. 2. A visual representation of the lattice of consistent cuts
for Fig. 2 can be found in Fig. 3. We now present additional
notions from lattice theory that are key to our approach.

Definition 2 (Join). A join of a pair of global states is defined
as the set-union of the set of events in the states.

Definition 3 (Meet). A meet of a pair of global states is defined
as the set-intersection of the set of events in the states.

For two global states C1 and C2, their join is denoted with
C1 ⊔ C2, whereas C1 ⊓ C2 denotes their meet.

Theorem 1. [15], [13] Let C(E) denote the set of all con-
sistent cuts of a computation (E,→). C(E) forms a lattice
under the relation ⊆.

A global predicate (or simply a predicate) is a boolean-
valued function on variables of processes. Given a consistent

cut, a predicate is evaluated on the state resulting after
executing all events in the cut. A global predicate is local if it
depends only on variables of a single process. If a predicate
B evaluates to true for a consistent cut C, we say that “C
satisfies B” and denote it by CB .

Definition 4 (Linearity Property of Predicates). A predicate B
is said to have the linearity property, if for any consistent cut
C, which does not satisfy predicate B, there exists a process
Pi such that a cut that satisfies B can never be reached from
C without advancing along Pi.
Predicates that have the linearity property are called linear
predicates.

For example, consider the cut [b, e] of the computation
shown in Fig. 2(a). The cut does not satisfy the predicate “all
channels are empty”, and for the given cut, progress must be
made on P2 to reach the cut [b, f ] which satisfies the predicate.

The process Pi in the above definition is called a forbidden
process. For a computation involving n processes, given a
consistent cut that does not satisfy the predicate, Pi can be
found in O(n) time for most linear predicates used in practice.
To find a forbidden process given a consistent cut, a process
first checks if the cut needs to be advanced on itself; if not it
checks the states in the total order defined using process ids,
and picks the first process whose state makes the predicate
false on the cut. The set of linear predicates has a subset, the
set of regular predicates, that exhibits a stronger property.

Definition 5 (Regular Predicates). A predicate is called regular
if for any two consistent cuts C and D that satisfy the
predicate, the consistent cuts given by (C ⊓ D) (the meet
of C and D) and (C ⊔ D) (the join of C and D) also satisfy
the predicate.

TABLE I: Consistent Global States of Fig. 2 and Predicate
Evaluation for B=“all channels empty”

# State Cut Vec. Clock Pred. Eval.

1 [] [0, 0] True

2 [a] [1, 0] True

3 [b] [2, 0] False

4 [c] [3, 0] False

5 [e] [0, 1] True

6 [a,e] [1, 1] True

7 [b,e] [2, 1] False

8 [b,f] [2, 2] True

9 [b,g] [2, 3] True

10 [c,e] [3, 1] False

11 [c,f] [3, 2] True

12 [c,g] [3, 3] True



Examples of regular predicates include local predicates
(e.g., x ≤ 4), conjunction of local predicates (e.g., (x ≤
4) ∧ (y ≥ 2) where x and y are variables on different
processes) and monotonic channel predicates (e.g., there are
at most k messages in transit from Pi to Pj) [8]. Table I
indicates whether or not the predicate “all channels empty”
is satisfied by each of the consistent global cuts of the
computation in Fig. 2. To use computation slicing for detecting
regular predicates, we first need to capture the notion of join-
irreducible elements for the lattice of consistent cuts.

Definition 6 (Join-Irreducible Element). Let L be a lattice. An
element x ∈ L is join-irreducible if

1) x is not the smallest element of L

2) ∀a, b ∈ L : (x = a ⊔ b) =⇒ (x = a) ∨ (x = b).

Intuitively, a join-irreducible element of a lattice is one that
cannot be represented as the join of two distinct elements of the
lattice, both different from itself. For the lattice of consistent
cuts of a distributed computation, the join-irreducible elements
correspond to consistent cuts that can not be reached by
joins (set-union) of two or more consistent cuts. For the
computation of Fig. 2, the join-irreducible consistent cuts are:
[a], [b], [c], [e], [b, f ], [b, g]. Fig. 3 shows the join-irreducible
consistent cuts of the sub-lattice induced by predicate “all
channels empty” for computation of Fig. 2.

{}

{a} {e}

{b} {a, e}

{c} {b, e}

{c, e} {b, f}

{c, f} {b, g}

{c, g}

consistent cut not satisfying the predicate

cut satisfying the predicate but not join-irreducible

join-irreducible in the predicate sub-lattice

Fig. 3: Lattice of Consistent Cuts for Fig.2(a)

B. Computation Slice

A computation slice of a computation with respect to a
predicate B is a concise representation of all the consistent
cuts of the computation that satisfy the predicate B. When the
predicate B is regular, the set of consistent cuts satisfying B,
LB , forms a sublattice of L, that is the lattice of all consistent
cuts of the computation (E,→). LB can equivalently be
represented using its join-irreducible elements [15]. Intuitively,
join-irreducible elements form the basis of the lattice. The
lattice can be generated by taking joins of its basis elements.
Let JB be the set of all join-irreducible elements of LB . Let
JB(e) denote the least consistent cut that includes an event e
and satisfies predicate B. Then, it can be shown [17] that

JB = {JB(e)|e ∈ E}

The JB(event) values, in vector clock notation, for each event
of the computation in Fig. 2 are:

JB(a) = [1, 0], JB(b) = [2, 2], JB(c) = [3, 2], JB(e) = [0, 1],
JB(f) = [2, 2], JB(g) = [2, 3]. We can now define a
computation slice formally.

Definition 7. Let (E,→) be a computation and B be a regular
predicate. The slice of the computation with respect to B is
defined as (JB,⊆).

Note: It is important to observe that JB(e) does not
necessarily exist because there may not be any consistent cut
that includes e and satisfies B. Also, multiple events may have
the same JB(e).

For the computation shown in Fig. 2(a), Fig. 2(c) presents
a visual representation of the slice.

A centralized online algorithm to compute JB was pro-
posed in [5]. In the online version of this centralized algorithm,
a pre-identified process, called slicer process, plays the role of
the slice computing process. All the processes in the system
send their event and local state values whenever their local
states change. The slicer process maintains a queue of events
for each process in the system, and on receiving the data from
a process adds the event to the relevant queue. In addition, the
slicer process also keeps a map of events and corresponding
local states for each process in the system. For each received
event, the slicer appends the event and local state mapping to
the respective map. For every event e it receives, the slicer
computes JB(e) using the linearity property.

The centralized approach suffers from the drawback of
causing a heavy load of messages as well as computation on
just one process, namely the slicer process. Thus, for any large
distributed computation, this approach would not scale well.
To address this issue, we propose a distributed algorithm that
significantly reduces the computational, as well as the message
load on any process.

III. A DISTRIBUTED ONLINE ALGORITHM FOR SLICING

In this section, we present the key ideas and routines
for distributed online algorithm for computing the slice. The
required optimizations that tackle the challenges listed in
Section I-A are discussed later. In our algorithm, we have
n slicer processes, S1, S2, ..., Sn, one for every application
process. All slicer processes cooperate to compute the task of
slicing (E,→). Let E be partitioned into n sets Ei such that
Ei is the set of events that occurred in Pi. In our algorithm,
Si computes

Ji(B) = {JB(e)|e ∈ Ei}

Observe that by the definition of join-irreducible consistent cut,
e → f implies JB(e) ⊆ JB(f). Since all events in a process
are totally ordered, the set of consistent cuts generated by any
Si are also totally ordered.
Note: In this paper, the symbol→ indicates a happened-before
relation; whereas the symbol ← in the pseudo-code denotes
assignment operation.

Algorithm 1 presents the distributed algorithm for online
slicing with respect to a regular predicate B. Each slicer pro-
cess has a token assigned to it that goes around in the system.
Other slicer processes cooperate in maintaining and processing
the token. The goal of the token for the slicer process Si is
to compute JB(e) for all events e ∈ Ei. Whenever the token



has computed JB(e) it returns to its original process, reports
JB(e) and starts computing JB(succ(e)), succ(e) being the
immediate successor of event e. The token Ti carries with it
the following data:

• pid: Process id of the slicer process to which it belongs.
• event: Details of event e, specifically the event id and

event’s vector clock, at Pi for which this token is com-
puting JB(e). The identifier for event e is the tuple
<pid, eid> that identifies each event in the computation
uniquely.
• gcut: The vector clock corresponding to the cut which is

under consideration (a candidate for JB(e)).
• depend: Dependency vector for events in gcut. The

dependency vector is updated each time the information
of an event is added to the token (steps explained later),
and is used to decide whether or not some cut being
considered is consistent. On any token, its vector gcut is
a consistent global state iff for all i, depend[i] ≤ gcut[i].
• gstate: Vector representation of global state correspond-

ing to vector gcut. It is sufficient to keep only the states
relevant to the predicate B.
• eval: Evaluation of B on gstate. The evaluation is

either true or false; in our notation we use the values:
{predtrue, predfalse}.
• target: A pointer to the unique event in the computation

for which a token has to wait. The event need not belong
to the local process.

A token waits at a slicer process Pi under three specific
conditions:

(C1) The token is for process Si and it has computed
JB(pred(e)), pred(e) being the immediate predecessor
event of e, and is waiting for the arrival of e.

(C2) The token is for process Si and it is computing JB(f),
where f is an event on Pi prior to e. The computation of
JB(f) requires the token to advance along process Pi.

(C3) The token is for process Sj such that j 6= i, and it is
computing JB(f) which requires the token to advance
along process Pi.

On occurrence of each relevant event e ∈ Ei, the computation
process Pi performs a local enqueue to slicer Si, with the
details of this event. Note that Pi and its slicer Si are modeled
as two threads on the same process, and therefore the local
enqueue is simply an insertion into the queue (that is shared
between the threads on the same process) of the slicer. The
message contains the details of event e, i.e. the event identifier
<pid, eid> , the corresponding vector clock e.V , and Pi’s
local state localstatee corresponding to e. The steps of the
presented routines are explained below:

ReceiveEvent (Lines 1-8): On receiving the details
of event e from Pi, Si adds them in the mapping of Pi’s local
states procstates (line 2). It then iterates over all the waiting
tokens, and checks their target. For each token that has e as
the target (required event to make progress), Si updates the
state of the token, and then processes it.

AddEventToToken (Lines 9-15): To update the state
of some token t on Si, we advance the candidate cut to
include the new event by setting t.gcut[i] to the id of event

Algorithm 1: Algorithm at Si

1 ReceiveEvent (Event e, State localstatee)
2 save <e.eid, localstatee> in local state map <procstates>
3 foreach waiting token t at Si do

4 if (t.target = e) then //t waiting for event e
5 AddEventToToken (t,e)
6 ProcessToken (t)
7

8 end

9 AddEventToToken (Token t, Event e)
10 t.gstate[e.pid]← procState[e.eid]
11 t.gcut[e.pid]← e.eid
12 if (t.pid = i) then //my token: update token’s event pointer
13 t.event← e
14 end
15 t.depend← max(t.depend, e.V ) // set causal dependency

16 ProcessToken (Token t)
17 if (t.gcut is inconsistent) then

/* find k : t.gcut[k] < t.depend[k] */
18 t.target← t.gcut[k] + 1 // set desired event
19 send t to Sk

20 else // t.gcut is consistent
21 EvaluateToken (t)
22 end

23 EvaluateToken(Token t)
24 if B(t.gstate) then //B is true on cut given by t.gcut
25 t.eval← predtrue
26 send t to process St.pid

27 else // B is false on t.gstate
28 t.eval← predfalse

/* Pk : forbidden process in t.gstate for B */
29 t.target← t.gcut[k] + 1
30 send t to Sk

31 end

32 ReceiveToken (Token t)
33 if (t.eval = predtrue) ∧ (t.pid = i) then //my token, B true
34 output(t.pid, t.eid, t.gcut)

/* token waits for the next event */
35 t.target← t.gcut[i] + 1
36 t.waiting ← true
37 else //either incosistent cut, or predicate false
38 newid← t.target // id of event t requires
39 if (∃f ∈ localEvents : f.id = newid) then

40 //required event has happened
41 AddEventToToken (t,f )
42 EvaluateToken (t)
43 end

44 //else, the token remains in waiting state
45 end

46 ReceiveStopSignal

47 foreach token t : t.pid 6= i do

48 //not my token, send back to parent
49 send t to St.pid

50 end

e. If Si is the parent process of the token (Ti), then the
t.event pointer is updated to indicate the event id for which
token is computing the join-irreducible cut that satisfies the
predicate. The causal-dependency is updated at line 15, which
is required for checking whether or not the cut is consistent.

ProcessToken (Lines 16-22): To process any token,
Si first checks that the global state in the token is consistent
(line 17) and at least beyond the global states that were earlier
evaluated to be false. For t’s evaluation of a global cut t.gcut
to be consistent, t.gcut must be at least t.depend. This is
verified by checking the component-wise values in both these



vectors. If some index k is found where t.depend > t.gcut,
the token’s cut is inconsistent, and t.gcut must be advanced
by at least one event on Pk, by sending the token to slicer
of Pk. If the cut is consistent, the predicate is evaluated
on the variables stored as part of t.gstate by calling the
EvaluateToken routine.

EvaluateToken (Lines 22-31): The cut represented
by t.gstate is evaluated; if the predicate is true, then the
token has computed JB(e) for the event e =<t.pid, t.eid>.
The token is then sent to its parent slicer. If the evaluation of
the predicate on the cut is false, the target pointer is updated,
at line 29, and the token is sent to the forbidden process on
which the token must make progress.

ReceiveToken (Lines 32-45): On receiving a token,
the slicer checks if the predicate evaluation on the token is
true, and the token is owned by the slicer. In such a case,
the slicer outputs the cut information, and now uses the token
to find JB(succ(e)), where succ(e) denotes the event that
locally succeeds e. This is done by setting the new event
id in t.target at line 35, and then setting the waiting flag
(line 36). If the predicate evaluation on the token is false, then
the target pointer of the token points to the event required
by the token to make progress. Si looks for such an event
(line 39), and if it has been reported to Si by Pi, then adds
that event (line 41) to the token and processes it (line 42). In
case the desired event has not been reported yet to the slicer
process, the token is retained at the process Si and is kept in
the waiting state until the required event arrives. Upon arrival
of the required event, its details are added to the token and
the token is processed.
Note: The notation of target ← t.gcut[i] + 1 means that if
the t.gcut[i] holds the event id <pid, eid>, then the target
pointer is set to <pid, eid+ 1>.

ReceiveStopSignal (Lines 46-50): For finite
computations, a single token based termination detection
algorithm is used in tandem. When termination is detected, a
pre-determined slicer sends the ‘stop’ signal to all the slicer
processes, including itself. On receiving the ‘stop’ signal, Si

sends all the slicing tokens that do not belong to it back to
their parent processes.

Note that the routines of Algorithm 1 require atomic
updates and reads on the local queues, as well as on tokens
present at Si. In the interest of space we skip presenting the
lower level implementation details, that involve common local
synchronization techniques.

A. Example of Algorithm Execution

This example illustrates the algorithm execution steps for
one possible run (real time observations) of the computation
shown in Fig. 2, with respect to the predicate B = “all
channels empty”. The algorithm starts with two slicing
processes S1 and S2, each having a token – T1 and T2

respectively. The target pointer for each token Ti is initialized
to the event <i, 1>. When event a is reported, S1 adds its
details to T1, and on its evaluation finds the predicate “all
channels empty” to be true, and outputs this information. It
then updates T1.target pointer and waits for the next event

to arrive. Similar steps are performed by S2 on T2 when e is
reported.

When b is reported to S1, and T1 is evaluated with the
updated information, the predicate is false on the state [b].
Given that b is a message send event, it is obvious that for
the channel to be empty, the message receive event should
also be incorporated. Thus, S1 sends T1 to S2 after setting the
target pointer to the first event on S2. On receiving T1, S2

fetches the information of its first event (e) and updates T1.
The subsequent evaluation still leads to the predicate being
false. Thus S2 retains T1 and waits for the next event.

When f is reported, S2 updates both T1 and T2 with f ’s
details. S2’s evaluation on T1.gstate, represented by [b, f ]
is true, and as per line 25, T1 is sent back to S1 where
the consistent cut [b, f ] is output. T1 now waits for the next
event. However, after being updated with the details of event
f , the resulting cut on T2 is inconsistent, as the message-
receive information is present but the information regarding
the corresponding send event is missing. By using the vector
clock values, T2’s target would be set to the id of message-send
event b. S2 would then send T2 to S1. On receiving T2, S1 finds
the required event (looking at T2.target) and after updating T2

with its details, evaluates the token. The predicate is true on
T2.gstate now, and T2 is sent back to S2. On receiving T2, S2

outputs the consistent cut [b, f ], and waits for the next event.
On receiving details of event c, and adding them to the waiting
token T1, the predicate is found to be true again on T1, and
S1 outputs [c, f ]. Similarly on receiving g, S2 performs similar
steps and outputs [b, g]. Note that the consistent cuts [a, b] and
[c, g], both of which satisfy the predicate are not enumerated
as they are not join-irreducible, and can be constructed by the
unions of [a], [b] and [c, f ], [b, g] respectively.

B. Proof of Correctness

We now prove the correctness and termination of the
distributed algorithm of Algorithm 1 for finite computations.
The correctness argument can be easily extended to infinite
computations.

Lemma 1. The algorithm presented in Algorithm 1 does not
deadlock.

Proof: The algorithm involves n tokens, and none of the
tokens wait for any other token to complete any task. With
non-lossy channels, and no failing processes, the tokens are
never lost. The progress of any token depends on the target
event, and as per lines 4-7, whenever an event is reported to
a slicer, it always updates the tokens with their target being
this event. Thus, the algorithm can not lead to deadlocks.

Lemma 2. If a token Ti is evaluating JB(e) for e ∈ Ei,
assuming JB(e) exists, and if Ti.gcut < JB(e), then Ti.gcut
would be advanced in finite time.

Proof: If during the computation of JB(e), at any instance
Ti.gcut < JB(e), then there are two possibilities for gcut:
(a) gcut is consistent: This means that the evaluation of
predicate B on gcut must be false, as by definition JB(e)
is the least consistent cut that satisfies B and includes e. In
this case, by line 29 and subsequent steps, the token would be



forced to advance on some process.
(b) gcut is inconsistent: The token is advanced on some
process by execution of lines 17-18.

Lemma 3. While evaluating JB(e) for event e ∈ Ei on token
Ti, if Ti.gcut < JB(e) currently and JB(e) exists then the
algorithm eventually outputs JB(e).

Proof: By Lemma 2, the global cut of Ti would be
advanced in finite time. Given that JB(e) exists, we know that
by the linearity property, there must exist a process on which Ti

should progress its gcut and gstate vectors in order to reach
the JB(e); lines 29-31 ensure that this forbidden process is
found and Ti sent to this process. By the previous Lemma, the
cut on the Ti would be advanced until it matches JB(e). By
line 33 of the algorithm, whenever JB(e) is reached, it would
be output.

Lemma 4. For any token Ti, the algorithm never advances
Ti.gcut vector beyond JB(e) on any process, when searching
JB(e) for e ∈ Ei.

Proof: The search for JB(e) starts with either an empty
global state vector, or from the global state that is at least
JB(pred(e)), where pred(e) is the immediate predecessor
event of e on Si. Thus, till JB(e) is reached, the global
cut under consideration is always less than JB(e). From the
linearity property of advancing on the forbidden process, and
Lemma 2, the cut would be advanced in finite time. Whenever
the cut reaches JB(e), it would be output as per Lemma 3 and
the token would be sent back to its parent slicer, to either begin
the search for succ(e) or to wait for succ(e) to arrive (succ(e)
being the immediate successor of e). Thus, Ti.gcut would
never advance beyond JB(e) on any process when searching
for JB(e) for any event e.

Lemma 5. If token Ti is currently not at Si, then Ti would
return to Si in finite time.

Proof: Assume Ti is currently at Sj (j 6= i). Sj would
advance Ti.gcut in finite time as per Lemma 2. With no dead-
locks (Lemma 1), and by the results of Lemma 3 and Theorem
4, we are guaranteed that if JB(Ti.event) exists then within a
finite time, Ti.gcut vector would be advanced to JB(Ti.event)
and Ti would be sent back to Si. If JB(Ti.event) does not
exist then at least one slicer process Sk would run out of all
its events while attempting to advance on Ti.gcut . In such
a case, knowing that there are no more events to process, Sk

would send Ti back to Si (lines 46-50).

Theorem 2. (Termination): For a finite computation, the
algorithm terminates in finite time.

Proof: We first prove that for any event e ∈ Ei, com-
putation of finding JB(e) with token Ti takes finite time. By
Lemma 2, Ti always advances in finite time while computing
JB(e). If JB(e) exists, then based on this observation within
a finite time the token Ti would advance its gcut to JB(e),
if it exists. By Lemma 3, the algorithm would output this cut,
thus finishing the JB(e) search and as per Theorem 4 would
not advance any further for JB(e) computation. Thus, if JB(e)
exists then it would be output in finite time. By Lemma 5 the
token would be returned to its parent process and the JB(e)
computation for e ∈ Ei would finish in finite time.

If JB(e) does not exist, then as we argued in Lemma 5
some slicer would run out of events to process in the finite
computation, and thus return the token to Si, which would
result in search for JB(e) computation to terminate. As each
of these steps is also guaranteed to finish in finite time as
per above Lemmas, we conclude that JB(e) computation for
e ∈ Ei finishes in finite time.

Applying this result to all the events in E leads to the
desired result of termination in finite time.

Theorem 3. The algorithm outputs all the elements of JB .

Proof: Whenever any event e ∈ E occurs, it is reported
by some process Pi on which it occurs, to the corresponding
slicer process Si. Thus e can be represented as e ∈ Ei . If at
the time e is reported to Si, Ti is held by Si then by Lemmas 2
and 3, it is guaranteed that the algorithm would output JB(e).
If Si does not hold the token Ti when e is reported to it,
then by Lemma 5, Ti would arrive on Si within finite time.
If Si has any other events in its processing queue before e,
then as per Theorem 2, Si would finish those computations
in finite time too. Thus, within a finite time, the computation
for finding JB(e) with Ti would eventually be started by Si.
Once this computation is started, the results of Lemmas 2 and
3 can be applied again to guarantee that the algorithm would
output JB(e), if it exists.

Repeatedly applying this result to all the events in E,
we are guaranteed that the algorithm would output JB(e) for
every event e ∈ E . Thus the algorithm outputs all the join-
irreducible elements of the computation, which by definition
together form JB .

Theorem 4. The algorithm only outputs join-irreducible
global states that satisfy predicate B.

Proof: By Lemma 4, while performing computations for
e ∈ Ei on token Ti, the algorithm would not advance on
token Ti beyond JB(e). Since only token Ti is responsible for
computing JB(e) for all the events e ∈ Ei , the algorithm
would not advance beyond JB(e) on any token. In order
to output a global state that is not join-irreducible we must
advance the cut of at least one token beyond a least global state
that satisfies B. The result follows from the above assertions.

Theorem 2 guarantees termination, and correctness follows
from Theorems 3, and 4.

IV. OPTIMIZATIONS

The distributed algorithm presented in the previous section
is not optimized to avoid redundant token messages, as well as
duplicate computations. Whenever a slicer process Si needs to
send any token to another process Sk, it should first check if
it currently holds the token Tk, and if the desired information
is present in Tk. If the information is available, the token Ti

can be updated with the information without being sent to
Sk; and only if the details of required event are not available
locally, the token is sent to Sk. These steps are captured in the
procedure SendIfNeeded shown in Algorithm 2.

There are additional optimizations that significantly
reduce the number of token messages. It is easy to observe



Algorithm 2: SendIfNeeded at Si

1 SendIfNeeded (Token t, int k)

/* k: id of the slicer process to which t should be sent */
2 while (k 6= i)∧ (have tokenk) do

/* t should be sent to Sk, and Si has Sk’s token */
3 if (t.target = tokenk.event) then //tokenk has info of t’s

//target event
4 t.gcut[k]← tokenk.gcut[k]
5 t.depend[k]← tokenk.depend[k]
6 t.state[k]← tokenk.state[k]
7 if (t.gcut is inconsistent) then //still inconsistent

/* find j : t.gcut[j] < t.depend[j] */
8 t.target← t.gcut[j] + 1
9 k ← j //set k for while condition

10 else // t.gcut is consistent now, evaluate
11 EvaluateToken (t)
12 end

13 else // desired event details not in tokenk

14 break
15 end

16 end

/* desired token or event info not present */
17 if (t.target.pid 6= i) then

/* target event on some other process */
18 send t to Sk

19 end

that in the proposed form of Algorithm 1, the algorithm
performs many redundant computations. This redundancy
is caused by computations of JB(e) and JB(f) where
e 6= f , and JB(e) = JB(f). In this case, given that both
the join-irreducible cuts are same, it would suffice that the
algorithm only compute either of them. For this purpose, we
first present some additional results:

Lemma 6. f ∈ JB(e)⇒ JB(f) ⊆ JB(e).

Proof: JB(f) is the least consistent cut of the computation
that satisfies the predicate, and contains f . JB(e) includes f ,
and satisfies the predicate. Therefore JB(f) ⊆ JB(e).

Lemma 7. f ∈ JB(e) ∧ e ∈ JB(f)⇒ JB(e) = JB(f).

Proof: Apply previous Lemma twice.

Lemma 8. e→ f ∧ f ∈ JB(e)⇒ JB(f) = JB(e).

Proof: By Lemma 6, f ∈ JB(e) implies that JB(f) ⊆
JB(e) must hold. Given e→ f , by the consistency requirement
JB(f) must contain e. Thus, JB(e) ⊆ JB(f).

In order to prevent computations that result in identical join-
irreducible states, the proposed distributed algorithm of Al-
gorithm 1 is modified to incorporate Lemmas 7, and 8. The
key motivation for incorporating these Lemmas is to defer the
progress of possibly duplicate computations (on tokens) unless
we are guaranteed that the tokens are not computing identical
least consistent cuts. If the cuts being computed on any two
tokens are identical, then we should only allow progress on one
of them, and keep the other token in a ‘stalled’ state. Some of
the steps discussed below involve a combination of complex
implementation steps. We omit such details (and the pseudo-
code) due to lack of space, and refer the interested reader to
the extended technical report version [11].

In the optimized algorithm an additional variable,
currentE - at each slicer process Si, is used as a local
pointer to keep track of the event e for which Si is currently
computing JB(e). Every token Ti also stores this information
(using pointer token.event), however the token Ti is not
always present on Si, and thus currentE information is
needed. By keeping currentE updated, even in absence of
token Ti, the slicer process Si can delay the progress of other
tokens whenever it suspects that these tokens may undergo
the same JB(e) computation that is being considered by Ti.
For stopping possibly duplicate computations, a flag, called
stalled, is maintained in each token. By setting the stalled
flag on any token, a slicer removes the token from the set of
waiting tokens; and no updates are performed on tokens that
are in the stalled state. The optimized algorithm also makes
use of the type information of events, for identifying if an
event is a send (or a receive) of a message. The modifications
injected in the algorithm routines (we only discuss routines
that change) are briefly explained below:

AddEventToToken: While adding an event e ∈ Ei

to token Ti the slicer Si also updates the currentE pointer
to store the details of e. In addition, Si checks if event e
is a message receipt event. If yes, Si stalls its token Ti,
unless it receives the required information (described shortly
ahead) from the JB(f) computation of the corresponding
sender event f . For ensuring global progress symmetry
breaking (based on process-id i) is used before stalling any
token. This step is to incorporate Lemma 8 in speculative
manner. Whenever the corresponding slicer process of
message send event f finishes computing the JB(f), it
informs Si about the computed cut. Si on receiving this cut,
checks if e belongs to JB(f) and thus JB(e) computation
is not needed; otherwise Si restarts the computation for JB(e).

ReceiveToken: On receiving a token Tk, where k 6= i,
additional checks are performed to incorporate Lemma 7 in
speculative manner. If the currently ongoing computation on
token Ti is causally dependent on the computation on token
Tk, then Tk is processed. However, if Tk.event and currentE
are not causally related, i.e. they are concurrent, then Tk is
stalled if the computation of JB(Tk.event) wants to progress
beyond the current ongoing computation on Ti. To guarantee
deadlock freedom (because of stalling) symmetry breaking
is performed using process-ids in favor of the token/process
with larger process-id. This guarantees that whenever the cuts
of two concurrent events are same, only one of the tokens
(with the smaller process id) finishes computing the cut, and
thus duplicate computations are not performed.

Output: Whenever Si finishes computing the JB(e)
for the event e ∈ Ei, it tries to update each stalled token,
either present locally or at some other slicer process, that was
speculatively stalled to avoid computing the same cut. The
notification to other slicer processes is performed by sending
the details of the cut to them. If the stalled tokens infer, that
their cuts (if computed) and Ti.gcut would be same by the
application of Lemmas 7 and 8, then they copy the received
cut details and move on to the next events on their respective
processes. The forwarding of cuts is performed in a cascading
manner. Thus a slicer forwards a received cut, if and only if
there has been a message activity that will cause other slicer



processes to stall their tokens due to causal dependency.

The details of these steps, including the pseudo-code, as
well as the proof of correctness of the optimized algorithm
can be found in the extended technical report [11].

A. Example of Optimized Algorithm Execution

We revisit the example presented in section III-A for the
distributed algorithm run, in order to show the difference in
execution for the optimized algorithm. When f is reported to
S2, the earlier version of the algorithm has to update the token
T2, and send it to S1 in order to make the cut on T2 consistent.
The optimized algorithm determines that f being a message-
receive event, the JB(f) computation should not be started
until the corresponding message-send event’s computation is
reported to S2. Thus T2 would be kept in stalled state, until
T1 finishes the JB(b) computation. When JB(b) computation
on T1 is finished, with JB(b) = [b, f ], then S1 would send the
information of b’s join-irreducible cut to S2. On receiving the
cut details, S2 would try to update its stalled token T2, and
it would infer (using Lemmas 7 and 8) that JB(f) = JB(b).
Thus, it would just copy the details of the cut as the result for
JB(f), and move on to computing JB(g).

B. Analysis

Each token Ti processes every event e ∈ Ei once for
computing its JB(e). If there are |E| events in the system, then
in the worst case Ti does O(n|E|) work, because it takes O(n)
to process one event. We are assuming here that evaluation of
B takes O(n) time given a global state. There are n tokens
in the system, hence the total work performed is O(n2|E|).
Since there are n slicing processes and n tokens, the average
work performed is O(n|E|) per process. In comparison, the
centralized algorithm (either online or offline) requires the
slicer process to perform O(n2|E|) work.

Let |S| be the maximum number of bits required to
represent a local state of a process. The actual value of
|S| is subject to the predicate under consideration, as the
resulting number/type of the variables to capture the necessary
information for predicate detection depends on the predicate.
The centralized online algorithm requires O(|E||S|) space in
the worst case; however it is important to notice that all of this
space is required on a single (central slicer) process. For a large
computation, this space requirement can be limiting. The dis-
tributed algorithm proposed above only consumes O(|Ei||S|)
space per slicer. Thus, we have a reduction of O(n) in per
slicer space consumption.

The token can move at most once per event. Hence,
in the worst case the message complexity is O(|E|) per
token. Therefore, the message complexity of the distributed
algorithm presented here is O(n|E|) total for all tokens. The
message complexity of the centralized online slicing algorithm
is O(|E|) because all the event details are sent to one (central)
slicing process. However, for conjunctive predicates, it can
be observed that the message complexity of the optimized
version of the distributed algorithm is also O(|E|). With
speculative stalling of tokens, only unique join-irreducible cuts
are computed. This means that for conjunctive predicates, a
token only leaves (and returns to) Si, O(|Ei|) times. As there
are n tokens, the overall message complexity of the optimized
version for conjunctive predicates is O(|E|).

V. RELATED WORK

The distributed algorithm presented in this paper constructs
the slice of a distributed computation with respect to a regular
state based predicate. The constructed slice can then be used
to determine if some consistent cut of the computation satisfies
the predicate. This is referred to as the problem of detecting
a predicate under possibly modality [1]. In [1], a predicate is
detected by exploring the complete lattice of consistent cuts
in a breadth first manner. Alagar et al. [6] use a depth first
traversal of the computation lattice to reduce space complexity.
The algorithms in [1] and [6] can handle arbitrary predicates,
but in general have exponential time complexity. In contrast,
the slicing algorithm presented in this paper for a regular
predicate has polynomial time complexity.

In this paper we assume a static distributed system. Pred-
icate detection algorithms have been proposed for dynamic
systems (e.g. [18], [19], [20], [21], [22]), where processes
may leave or join. However, these algorithms detect restricted
classes of predicates like stable predicates and conjunctive
local predicates, which are less general than regular predicates.
In computation slicing, we analyze a single trace (or execution)
of a distributed program for any violation of the program’s
specification. Model checking (cf. [23]) is a formal verification
technique that involves determining if (all traces of) a program
meets its specification. Model checking algorithms conduct
reachability analysis on the state space graph, and have a time
complexity that is exponential in number of processes.

Partial order methods (cf. [24]) aim to alleviate the state-
explosion problem by minimizing the state space for predicate
detection. This is done by exploring only a subset of the
interleavings of concurrent events in a computation, instead
of all possible interleavings. However, predicate detection al-
gorithms based on partial order methods still have exponential
time complexity, in the worst case. In this paper, the focus
is on generating the slice with respect to a predicate. Partial
order methods such as [25] can be used in conjunction with
slicing to explore the state space of a slice in a more efficient
manner [26].

The work presented in this paper is related to runtime
verification (cf. [27]), which involves analyzing a run of a
program to detect violations of a given correctness property.
The input program is instrumented and the trace resulting
from its execution is examined by a monitor that verifies its
correctness. Some examples of runtime verification tools are
Temporal Rover [28], Java-MaC [29], JPaX [30], JMPaX [31],
and jPredictor [32]. The Temporal Rover, Java-Mac and JPaX
tools model the execution trace as a total order of of events,
which is then examined for violations. In the JMPaX and
jPredictor tools the trace is also modeled as a partial order
of events. However, these tools generate states not observed in
the current trace, to predict errors that may occur in other runs,
thereby increasing the size of the computation lattice. Chen et
al. [33] note that computation slicing can be used to make tools
like jPredictor more efficient by removing redundant states
from the lattice. All of these tools are centralized in nature,
where the events are collected at a central monitoring process.
Sen et al. [34] present a decentralized algorithm that monitors
a program’s execution, but can only detect a subset of safety
properties. The distributed algorithm presented by Bauer et



al. [35] can handle a wider class of predicates, but requires
the underlying system to be synchronous.

VI. CONCLUSION

In this paper, we presented a distributed online algorithm
for performing computation slicing, a technique to abstract
the computation with respect to a regular predicate. The
resulting abstraction (slice) is usually much smaller, sometimes
exponentially, in size. For regular predicates, by detecting the
predicate only on the abstracted computation, one is guaran-
teed to detect the predicate in the full computation, which leads
to an efficient detection mechanism. By distributing the task of
abstraction among all the processes, our distributed algorithm
reduces the space required, as well as computational load on a
single process by a factor of O(n). We discuss optimizations
that prevent redundant computations, and result in reduced
number of messages.
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[33] F. Chen and G. Roşu, “Parametric and sliced causality,” in Proceedings

of the 19th international conference on Computer aided verification,
ser. CAV’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 240–253.

[34] K. Sen, A. Vardhan, G. Agha, and G. Rosu, “Efficient decentralized
monitoring of safety in distributed systems,” in Proceedings of the

26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 418–427.

[35] A. Bauer and Y. Falcone, “Decentralised ltl monitoring,” in FM 2012:

Formal Methods, ser. Lecture Notes in Computer Science, D. Gian-
nakopoulou and D. Mery, Eds. Springer Berlin Heidelberg, 2012, vol.
7436, pp. 85–100.


