

Democratic Elections in Faulty Distributed Systems

Himanshu Chauhan and Vijay K. Garg

Parallel and Distributed Systems Lab, Department of Electrical and Computer Engineering,

Outline

Social Choice and Social Welfare

- Social Choice and Social Welfare
- Social Choice with Byzantine Faults

- Social Choice and Social Welfare
- Social Choice with Byzantine Faults
- Social Welfare with Byzantine Faults
 - Pruned-Kemeny-Young Scheme for Byzantine Social Welfare

- Social Choice and Social Welfare
- Social Choice with Byzantine Faults
- Social Welfare with Byzantine Faults
 Pruned-Kemeny-Young Scheme for Byzantine Social Welfare
- Simulation Results

- Social Choice and Social Welfare
- Social Choice with Byzantine Faults
- Social Welfare with Byzantine Faults
 Pruned-Kemeny-Young Scheme for Byzantine Social Welfare
- Simulation Results
- Conclusion

Conventional Problem

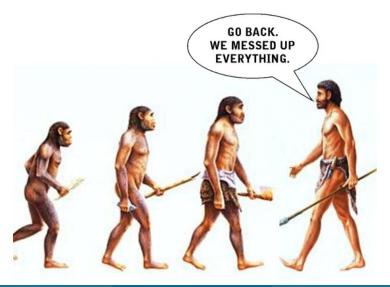
Node with the highest id should be the leader. All the nodes in the system should agree on the leader.

Conventional Problem

Node with the highest id should be the leader. All the nodes in the system should agree on the leader.

Philosophers of Ancient Athens would protest!

Motivation – Leader Election



Democratic Leader Election

Elect a leader

- Each node has individual preferences
- Conduct an election where every node votes

Democratic Leader Election

- Elect a leader
 - Each node has individual preferences
 - Conduct an election where every node votes
- Use Case:
 - Job processing system
 - Leader distributes work in the system

Democratic Leader Election

- Elect a leader
 - Each node has individual preferences
 - Conduct an election where every node votes
- Use Case:
 - Job processing system
 - Leader distributes work in the system
 - Worker nodes vote, based upon:
 - Latency of communication with *prospective* leader
 - Individual work load

- *Elect* a leader
 - Each node has individual preferences
 - Conduct an election where every node votes

Use Case:

- Job processing system
- Leader distributes work in the system
- Worker nodes vote, based upon:
 - Latency of communication with *prospective* leader
 - Individual work load
- Enter 'Byzantine' Voters!

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k-set Consensus', Prisco et al. 1999

- Every voter sends her *top* choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k-set Consensus', Prisco et al. 1999

- Every voter sends her *top* choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇
1 st choice	b	b	b	с	с	с	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	с

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	с	с	С	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	с

Elect choice with most votes (at top) : c or b

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇
1 st choice	b	b	b	с	с	с	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	с

Elect choice with most votes (at top) : c or b But ...

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b				а
2 nd choice	а	а	а	а	а	а	b
3 rd choice				b	b	b	

Elect choice with most votes (at top) : c or b But ...

 $\#(a > b) = 4, \quad \#(b > a) = 3$

'Multivalued Byzantine Agreement', Turpin and Coan 1984, 'k-set Consensus', Prisco et al. 1999

- Every voter sends her top choice
- Run Byzantine Agreement
 - Agree on the choice with most votes

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice				С	С	С	а
2 nd choice	а	а	а	а	а	а	
3 rd choice	С	С	С				С

Elect choice with most votes (at top) : c or b But ...

$$\#(a > b) = 4$$
, $\#(b > a) = 3$ and $\#(a > c) = 4$, $\#(c > a) = 3$

System

- *n* processes (voters)
- f Byzantine processes (voters) : bad
- Non-faulty processes (voters) : good
- *f* < *n*/3

System

- *n* processes (voters)
- f Byzantine processes (voters) : bad
- Non-faulty processes (voters) : good
- *f* < *n*/3

Jargon

A: Set of candidates
Ranking: Total order over the set of candidates.
Vote: A voter's preference ranking over candidates.
Ballot : Collection of all votes.
Scheme : Mechanism that takes a ballot as input and outputs a winner.

- Use Interactive Consistency
 - Agree on everyone's vote¹
 - Agree on the ballot
- Use a scheme to decide the winner

¹We use Gradecast based Byzantine Agreement by Ben-Or et al.

Social Choice

Given a ballot, declare a candidate as the winner of the election.

Arrow 1950-51, Buchanan 1954, Graaff 1957

Byzantine Social Choice

Given a set of *n* processes of which at most *f* are faulty, and a set A of *k* choices, design a protocol elects one candidate as the social choice, while meeting the 'protocol requirements'.

Social Welfare

Given a ballot, produce a total order over the set of candidate.

Arrow 1950-51, Buchanan 1954, Graaff 1957, Farquharson 1969

Byzantine Social Welfare

Given a set of *n* processes of which at most *f* are faulty, and a set A of *k* choices, design a protocol that produces a *total order* over A, while meeting the 'protocol requirements'.

1 Agreement: All good processes decide on the same choice/ranking.

1 Agreement: All good processes decide on the same choice/ranking.

2 *Termination*: The protocol terminates in a finite number of rounds.

Validity: Requirement on the choice/ranking decided, based upon the votes of good processes.

Validity: Requirement on the choice/ranking decided, based upon the votes of good processes.

- *S*: If *v* is the top choice of all good voters, then *v* must be the winner.
- *S*': If *v* is the last choice of all good voters, then *v* must **not** be the winner.
- *M*′: If *v* is last choice of majority of good voters, then *v* must **not** be the winner.

Validity Conditions

	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇
1 st choice	b	b	b	с	с	С	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	С

Table: Ballot of 7 votes (P_6 , P_7 Byzantine)

Validity Conditions

	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇
1 st choice	b	b	b	с	с	С	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	С

Table: Ballot of 7 votes (P_6 , P_7 Byzantine)

M (Elect majority of good voters) : elect b

	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇
1 st choice	b	b	b	с	с	С	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	С

Table: Ballot of 7 votes (P_6 , P_7 Byzantine)

M (Elect majority of good voters) : elect b

P (Do not elect a candidate that is not the *top* choice of any *good* voters) : *do not* elect *a*

BSC(k, V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2, M):

BSC(k, V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2, *M*):

■ *M*: elect top choice of majority of *good* votes

BSC(k, V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2, *M*):

- *M*: elect top choice of majority of good votes
- Impossible to solve for $f \ge n/4$

BSC(k, V)

Byzantine Social Choice problem with k candidates, and validity condition/requirement V.

BSC(2, *M*):

- *M*: elect top choice of majority of *good* votes
- Impossible to solve for $f \ge n/4$

Reason:

 $f \ge n/4 \Rightarrow$ can not differentiate b/w good and bad votes

BSC(2, M'):

■ *M*': **do not** elect the last choice of majority of *good* votes

```
• Impossible to solve for f \ge n/4
```

 $BSC(k, S \wedge M')$:

- S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, **do not** elect v'

$BSC(k, S \wedge M')$:

- S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, **do not** elect v'
- Solvable for $k \ge 3$

 $BSC(k, S \wedge M')$:

- S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, **do not** elect v'
- Solvable for $k \ge 3$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	с	с	С	а
2 nd choice	а	а	а	а	а	а	b
3" choice	С	С	С	b	b	b	С

Approach:

Round 1 : Agree on *last* choices of all voters

 $BSC(k, S \wedge M')$:

- S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, **do not** elect v'
- Solvable for $k \ge 3$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	с	с	с	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	С	С	С	b	b	b	С

Approach:

- Round 1 : Agree on *last* choices of all voters
- Remove any candidates that appears $\lfloor (n-f)/2 + 1 \rfloor$ times or more

 $BSC(k, S \land M')$:

- S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, **do not** elect v'
- Solvable for $k \ge 3$

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	с	С	С	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	С	С	С	b	b	b	С

Approach:

n = 7, f = 2, $\lfloor (n - f)/2 + 1 \rfloor = 3$

- Round 1 : Agree on *last* choices of all voters
- Remove any candidates that appears $\lfloor (n-f)/2 + 1 \rfloor$ times or more
- $f < n/3 \land k \ge 3 \Rightarrow$ at least one candidate that would not be removed

 $BSC(k, S \wedge M')$:

- S: if v is first choice of all good voters, elect v
- M': if v' is last choice of majority of good voters, **do not** elect v'
- Solvable for $k \ge 3$

	P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇
1 st choice	b	b	b	С	С	С	а
2 nd choice	a	а	а	а	а	а	b
3 rd choice	С	С	С	b	b	b	С

Approach:

n = 7, f = 2, $\lfloor (n - f)/2 + 1 \rfloor = 3$

- Round 1 : Agree on *last* choices of all voters
- Remove any candidates that appears $\lfloor (n-f)/2 + 1 \rfloor$ times or more
- $f < n/3 \land k \ge 3 \Rightarrow$ at least one candidate that would not be removed
- Round 2 : Use top choices from remaining candidates, agree and decide

Requirement	Unsolvable	Solvable
S	-	$k \ge 2$
<i>S'</i>	-	$k \ge 2$
М	$f \ge n/4 \wedge k \ge 2$	-
M'	$f \ge n/4 \wedge k = 2$	$k \ge 3$
P	$f \ge 1 \land k \ge n$	f < min(n/k, n/3)
		$\wedge 2 \leq k < n$

Table: Impossibilities & Possibilities for BSC(k, V)

Given a ballot, produce a total order over the set of candidates

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for $1 \le i \le k$ $c_i = \text{candidate with most votes at position } i \text{ in ballot}$ $result[i] = c_i$

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for $1 \le i \le k$ $c_i = \text{candidate with most votes at position } i \text{ in ballot}$ $result[i] = c_i$

		P_1	P_2	P_3	P_4	P_5	P_6	P_7]
C	1 st choice	b	b	b	с	с	с	а	
	2 nd choice	а	а	а	а	а	а	b	Γ
	3 rd choice	с	с	с	b	b	b	С	

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for $1 \le i \le k$ $c_i = \text{candidate with most votes at position } i \text{ in ballot}$ $result[i] = c_i$

		P_1	P_2	P_3	P_4	P_5	P_6	P_7]
	1 st choice	b	b	b	С	с	с	а	
$\left(\right)$	2 nd choice	а	а	а	а	а	а	b	Γ
	3" choice	С	С	С	b	b	b	С	Γ

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for $1 \le i \le k$ $c_i = \text{candidate with most votes at position } i \text{ in ballot}$ $result[i] = c_i$

		P_1	P_2	P_3	P_4	P_5	P_6	P_7
	1 st choice	b	b	b	с	с	С	а
	2 nd choice	а	а	а	а	а	а	b
Ω	3 rd choice	С	С	С	b	b	b	С

Given a ballot, produce a total order over the set of candidates

Place-Plurality Scheme:

k candidates

for $1 \le i \le k$ $c_i = \text{candidate with most votes at position } i \text{ in ballot}$ $result[i] = c_i$

done

		P_1	P_2	P_3	P_4	P_5	P_6	P_7
	1 st choice	b	b	b	С	с	с	а
	2nd choice	а	а	а	а	а	а	b
Π	3 rd choice	С	С	С	b	b	b	С

Result : $b \succ a \succ c$

Pairwise Comparison, Condorcet, circa 1785

Pairwise Comparison, Condorcet, circa 1785

r	r'	d
а	b	1
Ь	а	– differ on
С	с	(a, b)

Pairwise Comparison, Condorcet, circa 1785

Pairwise Comparison, Condorcet, circa 1785

Median (m) of ballot: Ranking that has least distance from overall pair-wise comparisons in the ballot

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let P_r := ordered pairs from r.

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let P_r := ordered pairs from r. Example: $r = a \succ b \succ c$ then, $P_r = \{(a, b) \ (b, c) \ (a, c)\}$

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let $P_r :=$ ordered pairs from r. Example: $r = a \succ b \succ c$ then, $P_r = \{(a, b) \ (b, c) \ (a, c)\}$

For a given ballot B:

$$score(r, B) = \sum_{p \in P_r} (frequency of p in B)$$

 S_k : set of all permutations of k candidates (k! permutations)

foreach ranking $r \in S_k$ do compute $score_r = score(r, B)$

(1) J. Kemeny, 1959, (2) H. Young, 1995

Goal: Get as close to the median as possible.

For ranking r, let $P_r :=$ ordered pairs from r. Example: $r = a \succ b \succ c$ then, $P_r = \{(a, b) \ (b, c) \ (a, c)\}$

For a given ballot B:

$$score(r, B) = \sum_{p \in P_r} (frequency of p in B)$$

 S_k : set of all permutations of k candidates (k! permutations)

foreach ranking $r \in S_k$ do

compute
$$score_r = score(r, B)$$

done

select ranking with maximum score, value as the outcome

Candidates: $\{a, b, c\}$

ſ		P_1	P_2	P_3	P_4	P_5	P_6	P_7
	1 st choice	b	b	b	с	С	с	а
	2 nd choice	а	а	а	а	а	а	b
	3 rd choice	с	С	С	b	b	b	С
	$(a \succ b) = 4,$ $(c \succ a) = 3,$		#(b> #(b>					c) = c b) = c

Candidates: $\{a, b, c\}$

a b c

		P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇	
	1 st choice	b	b	b	с	с	с	а	
	2 nd choice	а	а	а	а	а	а	b	
	3 rd choice	с	С	с	b	b	b	с	
ŧ	\neq $(a \succ b) = 4,$		#(b≻	- a) =	= 3,	#	(a ≻	c) = 4	4,
7	$\#(c \succ a) = 3,$		#(b>	- c) =	= 4,	#	(c ≻	b) =	3
			Perm	utatic	ons:				
1	а		Ь		Ь		с		с
)	С	à	а		с		а		b
•	Ь	(С		а		b		а

Candidates: $\{a, b, c\}$

а

b c

	P_1	P_2	P_3	P_4	P_5	P_6	P_7		
1 st choice	b	b	b	с	с	с	а		
2 nd choice	а	а	а	а	а	а	b		
3 rd choice	с	С	С	b	b	b	с		
$\#(a \succ b) = 4,$ $\#(c \succ a) = 3,$		#(b > #(b >					c) = b) =		
Permutations:									
а	I	Ь		b		С		С	
С	ć	а		С		а		b	
Ь	(С		а		b		а	

pairs: $\{(a, b) (b, c) (a, c)\}$

Candidates: $\{a, b, c\}$

		P_1	P_2	P_3	P_4	P_5	P_6	<i>P</i> ₇		
	1 st choice	b	b	b	с	с	С	а		
	2 nd choice	a	а	а	а	а	а	b		
	3 rd choice	с	с	С	b	b	b	с		
	$\#(a \succ b) = 4,$		#(b>	- a) =	= 3,	#	(a≻	c) = 4	4,	
	$\#(c \succ a) = 3,$		#(b >	∽ c) =	= 4,	#	±(c ≻	b) =	3	
Permutations:										
а	а	I	Ь		b		С		С	
Ь	С	ć	а		С		а		b	
С	b	(С		а		b		а	
12										

pairs: $\{(a, b) (b, c) (a, c)\}$

Candidates: $\{a, b, c\}$

		P_1	P_2	P_3	P_4	P_5	P_6	P_7		
	1 st choice	b	b	b	с	С	С	а		
	2 nd choice	a	а	а	а	а	а	b		
	3 rd choice	с	С	С	b	b	b	с		
	$\#(a \succ b) = 4$,									
	$\#(c \succ a) = 3,$		#(b >	≻ c) =	= 4,	#	±(c ≻	b) = b	3	
Permutations:										
а	а	1	6		Ь		С		С	
b	С	ć	а		С		а		b	
С	b	(C		а		b		а	
12	11		11		10		10		9	

Candidates: $\{a, b, c\}$

		P_1	P_2	P_3	P_4	P_5	P_6	P_7		
	1 st choice	b	b	b	с	С	с	а		
	2 nd choice		а			а	а	b		
	3 rd choice	с	С	С	b	b	b	С		
	$\#(a \succ b) = 4,$		#(b>	- a) =	= 3,	#	(a ≻	c) =	4,	
	$\#(c \succ a) = 3,$		#(b >	≻ c) =	= 4,	#	±(c ≻	<i>b</i>) =	3	
Permutations:										
а	а	1	6		b		С		С	
Ь	С	ć	а		С		а		Ь	
С	b	(C		а		b		а	
12	11		11		10		10		9	

Kemeny-Young Scheme Result: $a \succ b \succ c$

Objective: Minimize the influence of *bad* voters on the outcome

Objective: Minimize the influence of *bad* voters on the outcome

- f bad voters (f < n/3)
- B: Agreed upon ballot; S_k : set of all permutations of k candidates

Objective: Minimize the influence of bad voters on the outcome

- f bad voters (f < n/3)
- B: Agreed upon ballot; S_k : set of all permutations of k candidates

```
foreach ranking r \in S_k do

F = f most distant rankings from r in B

define B' = B \setminus F

compute score_r = score(r, B')

done
```

Objective: Minimize the influence of bad voters on the outcome

- f bad voters (f < n/3)
- B: Agreed upon ballot; S_k : set of all permutations of k candidates

```
foreach ranking r \in S_k do

F = f most distant rankings from r in B

define B' = B \setminus F

compute score_r = score(r, B')

done
```

select ranking with maximum score, value as the outcome

Pruned-Kemeny-Young – Example

n = 7, f = 2

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	с	с	с	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	С	С	b	b	b	с

Pruned-Kemeny-Young – Example

n = 7, f = 2

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	С	с	с	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	с

а	а	Ь	b	С	С
b	С	а	С	а	b
С	Ь	С	а	b	а

n = 7, f = 2

	P_1	P_2	P_3	P_4	P_5	P_6	P_7
1 st choice	b	b	b	С	С	с	а
2 nd choice	а	а	а	а	а	а	b
3 rd choice	с	с	с	b	b	b	с

а	а	Ь	b	С	С
b	С	а	С	а	b
С	Ь	С	а	Ь	а

n = 7, f = 2

			P_2	P_3	P_6	P_7	
	1 st ch		b	b	С	а	
	2 nd ch		а	а	а	b	
	3 rd ch	oice c	С	С	b	с	
	а	Ь		b		С	С
	С	а		С		а	b
;	Ь	С		а		b	а
		11					

8

n = 7, f = 2

abc $\overline{9}$

	P_1	P_2	P_3	P_4	P_5	P_6	P ₇	
1 st choice	b	b	b	с	с	С	а	
2 nd choice	а	а	а	а	а	а	b	
3 rd choice	с	с	с	b	b	b	с	
а	L	5		Ь		С		
С	ä	9		С		а		
b	C	-		а		b		

6

10

11

6

n = 7, f = 2

		P_1	P_2	<i>P</i> ₃	P_4	P_5	P_6	<i>P</i> ₇	
	1 st choice	b	b	b	С	С	С	а	
	2 nd choice	а	а	а	а	а	а	b	
	3 rd choice	с	С	С	b	b	b	с	
а	а	l	5		b		С		С
b	С	ä	a		С		а		Ь
С	Ь	C	2		а		Ь		а
9	8	1	1		6		10		6

Pruned-Kemeny Scheme Result: $b \succ a \succ c$

Suppose ω is an *ideal* ranking over k candidates

 $\blacksquare~\omega$ as the election outcome \Rightarrow maximum social welfare

Suppose ω is an *ideal* ranking over k candidates

- $\blacksquare \ \omega$ as the election outcome \Rightarrow maximum social welfare
- \blacksquare All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$

Suppose ω is an *ideal* ranking over k candidates

- $\blacksquare \ \omega$ as the election outcome \Rightarrow maximum social welfare
- \blacksquare All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$
- All bad voters in the system act hostile
 - \blacksquare try to minimize social welfare by voting against ω
 - *badProb*: probability of a *bad* voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$

Suppose ω is an *ideal* ranking over k candidates

- $\blacksquare \ \omega$ as the election outcome \Rightarrow maximum social welfare
- \blacksquare All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$
- All bad voters in the system act hostile
 - \blacksquare try to minimize social welfare by voting against ω
 - **b** badProb: probability of a bad voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$
- Analyze outcomes generated by schemes

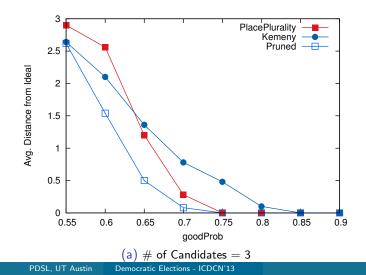
Suppose ω is an *ideal* ranking over k candidates

- $\blacksquare \ \omega$ as the election outcome \Rightarrow maximum social welfare
- \blacksquare All good voters in the system favor ω
 - goodProb: probability of a good voter putting $a \succ b$ in her vote if $a \succ_{\omega} b$
- All bad voters in the system act hostile
 - \blacksquare try to minimize social welfare by voting against ω
 - *badProb*: probability of a *bad* voter putting $b \succ a$ in her vote if $a \succ_{\omega} b$

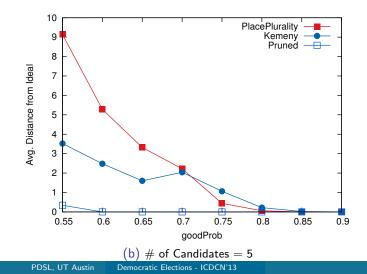
Analyze outcomes generated by schemes

$$\#$$
 of voters = 100, $\#$ of *bad* voters = 33, *badProb* = 0.9

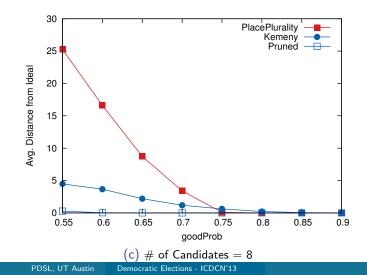
Simulation Results



Simulation Results, contd.



Simulation Results, contd.



Introduction of democratic election problem in distributed systems

Introduction of democratic election problem in distributed systems

Pruned-Kemeny-Young Scheme for Byzantine Social Welfare problem

Pruned-Kemeny-Young (and Kemeny-Young)

NP-Hard

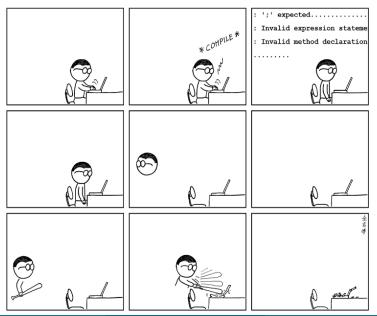
Pruned-Kemeny-Young (and Kemeny-Young)

- NP-Hard
- Yet produce 'better' results

Pruned-Kemeny-Young (and Kemeny-Young)

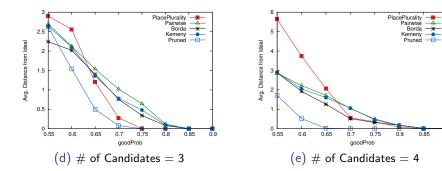
- NP-Hard
- Yet produce 'better' results
- Explore techniques for finding 'better' outcomes in polynomial steps

Thanks!

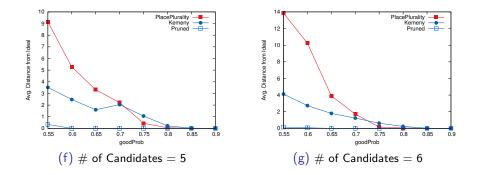


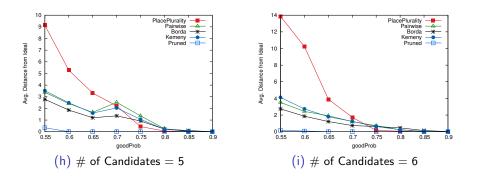
PDSL, UT Austir

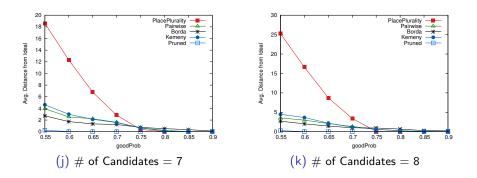
Democratic Elections - ICDCN'13



0.85 0.9







- Arrow's Impossibility Theorem, and his work on Social Choice and Welfare Theory
 - 1950, 1951
- Pairwise Comparison Schemes, Social Welfare Schemes, Theory of Voting, Welfare Economics
 - Condorcet circa 1785, Buchanan 1954, Graaff 1957, Kemeny 1959, Farquharson 1969, Ishikawa et al. 1979, Young 1988
- Multivalued Byzantine Agreement Schemes, Byzantine Leader Election, k-set Consensus
 - Turpin and Coan 1984, Ostrovsky et al. 1994, Russell et al. 1998, Kapron et al. 2008, Prisco et al. 1999