
EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

1

This image cannot currently be displayed.

Problem: System Analysis (20 Points)

This is a simple single microprocessor core platform with a
video coprocessor, which is configured to process 32 bytes of
video data and produce a 1 byte result. Each display frame
contains 30 X 10 words of data. The CPU or the DMA is used to
transfer data between the memory, display or coprocessor.
The bus cycle count for each transaction is:

• CPU CORE can access data from any module.
o Requires 3 bus cycles of overhead for each

bus cycle. Remember it requires a load and
store to move any word.

• DMA is Direct Memory Access module which can be
used to transfer data between the memory block, the
display module or co-processor module.

o 15 bus cycles for CPU to configure the DMA
controller.

o 2 cycles per data word transfer (one read, one write).
• Access times (read and write):

o Memory: 1 bus cycle in addition to any overhead.
o Co-processor: 4 bus cycles in addition to any overhead
o Display: 165 bus cycles for each word in addition to any overhead cycles

• Interrupt
o The coprocessor and display module will generate interrupt after completing their tasks
o Interrupt subroutine takes 100 bus cycles.

• Co-processor cycle times:
o CPU CORE or DMA will write 32 data words to the coprocessor. The coprocessor will start

processing the data after the CPU CORE or DMA writes a one word command. It will
take 170 cycles for the co-processor to process the data and the result is 1 word, i.e.,
the coprocessor compresses 32 words down to one word. The CPU CORE or DMA will
read the word in the coprocessor and transfer it.

• All ports and buses width are 1 word wide (32 bits)
• You cannot do more than one transfer on the bus at one time.

Question: What is the minimum number of bus cycles that it will take to process one frame of
data (each frame is 30 X 10 words)? Use back of this page to show your work and any
assumptions that you make.

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

2

Problem: Design Methodology (25 Points)

Explain in detail what decisions are being made in
this flow chart? Hint: there are 4 decision points.
Use the back of the sheet if you need more room to
write.

Answer:

MRD

PRD

Map, Model &
Simulate in

SPW or Matlab or C
or C++

Mapping to
Platform or

Components
Complete?

Start

Modify
Model?

Analyze results

Metrics
Met?

Freeze
Architecture

MRD
Met?

Done

No

No

No

Yes

Yes

No

Yes

Yes

2

1

3

4

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

3

Problem: Software Analysis and Profiling (20 Points)

Given the inner loop of the BCH encoding algorithm in C below, identify the number of XOR and AND
operations performed in the loop as a function of k. Assume that length = 1024, and that in any bit
position, a 0 and a 1 are equally likely.

encode_bch()
/*
 * Compute redundancy bb[], the coefficients of b(x). The redundancy
 * polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
 * by the generator polynomial g(x).
 * k = dimension (no. of information bits/codeword) of the code
 */
{
 register int i, j;
 register int feedback;

 for (i = 0; i < length - k; i++)
 bb[i] = 0;
 for (i = k - 1; i >= 0; i--) {
 feedback = data[i] ^ bb[length - k - 1];
 if (feedback != 0) {
 for (j = length - k - 1; j > 0; j--)
 if (g[j] != 0)
 bb[j] = bb[j - 1] ^ feedback;
 else
 bb[j] = bb[j - 1];
 bb[0] = g[0] && feedback;
 } else {
 for (j = length - k - 1; j > 0; j--)
 bb[j] = bb[j - 1];
 bb[0] = 0;
 }
 }
}

Answer:

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

4

Problem: Software Analysis and Profiling (20 Points)

Given the following simplified code of the Viterbi Decode method:

CViterbiDecider:Decode(CVector<CFDistance>& vecNewDistance,
 CVector<_DCSN>& vecOutBits)
{
 for (i = 0; i < iNumBitsWithMemory; i++) /* Main loop over all bits */
 {
 const int iPos0 = iDistCnt;

 if (veciTablePuncPat[i] == PP_TYPE_0001)
 {
 /* Pattern 0001 */
 METRICSET(i)[0] = vecNewDistance[iPos0].rTow0;
 METRICSET(i)[2] = vecNewDistance[iPos0].rTow0;
 METRICSET(i)[4] = vecNewDistance[iPos0].rTow0;
 METRICSET(i)[6] = vecNewDistance[iPos0].rTow0;
 METRICSET(i)[9] = vecNewDistance[iPos0].rTow1;
 METRICSET(i)[11] = vecNewDistance[iPos0].rTow1;
 METRICSET(i)[13] = vecNewDistance[iPos0].rTow1;
 METRICSET(i)[15] = vecNewDistance[iPos0].rTow1;
 }

else {
 const int iPos1 = iDistCnt1;
 /* Calculate "subsets" of bit-combinations. "rIRxx00" means that
 the fist two bits are used, others are x-ed in an intermediate result (IR) */
 const _REAL rIRxx00 =
 vecNewDistance[iPos1].rTow0 + vecNewDistance[iPos0].rTow0;
 const _REAL rIRxx10 =
 vecNewDistance[iPos1].rTow1 + vecNewDistance[iPos0].rTow0;
 const _REAL rIRxx01 =
 vecNewDistance[iPos1].rTow0 + vecNewDistance[iPos0].rTow1;
 const _REAL rIRxx11 =
 vecNewDistance[iPos1].rTow1 + vecNewDistance[iPos0].rTow1;

 if (veciTablePuncPat[i] == PP_TYPE_0101)
 { /* Pattern 0101 */
 METRICSET(i)[0] = rIRxx00;
 METRICSET(i)[2] = rIRxx00;
 METRICSET(i)[4] = rIRxx10;
 METRICSET(i)[6] = rIRxx10;
 METRICSET(i)[9] = rIRxx01;
 METRICSET(i)[11] = rIRxx01;
 METRICSET(i)[13] = rIRxx11;
 METRICSET(i)[15] = rIRxx11;
 }
 else if (veciTablePuncPat[i] == PP_TYPE_0011)
 { /* Pattern 0011 */
 METRICSET(i)[0] = rIRxx00;
 METRICSET(i)[2] = rIRxx10;
 METRICSET(i)[4] = rIRxx00;
 METRICSET(i)[6] = rIRxx10;
 METRICSET(i)[9] = rIRxx01;
 METRICSET(i)[11] = rIRxx11;
 METRICSET(i)[13] = rIRxx01;
 METRICSET(i)[15] = rIRxx11;
 }

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

5

 else { /* The following patterns need one more bit */
 const int iPos2 = iDistCnt2;

 if (veciTablePuncPat[i] == PP_TYPE_0111) {
 /* Pattern 0111 */
 METRICSET(i)[0] = vecNewDistance[iPos2].rTow0 + rIRxx00;
 METRICSET(i)[2] = vecNewDistance[iPos2].rTow0 + rIRxx10;
 METRICSET(i)[4] = vecNewDistance[iPos2].rTow1 + rIRxx00;
 METRICSET(i)[6] = vecNewDistance[iPos2].rTow1 + rIRxx10;
 METRICSET(i)[9] = vecNewDistance[iPos2].rTow0 + rIRxx01;
 METRICSET(i)[11] = vecNewDistance[iPos2].rTow0 + rIRxx11;
 METRICSET(i)[13] = vecNewDistance[iPos2].rTow1 + rIRxx01;
 METRICSET(i)[15] = vecNewDistance[iPos2].rTow1 + rIRxx11;
 } else {/* Pattern 1111 */
 /* This pattern needs all four bits */
 const int iPos3 = iDistCnt3;

 /* Calculate "subsets" of bit-combinations. "rIRxx00" means
 that the last two bits are used, others are x-ed.
 "IR" stands for "intermediate result" */
 const _REAL rIR00xx = vecNewDistance[iPos3].rTow0 +
 vecNewDistance[iPos2].rTow0;
 const _REAL rIR10xx = vecNewDistance[iPos3].rTow1 +
 vecNewDistance[iPos2].rTow0;
 const _REAL rIR01xx = vecNewDistance[iPos3].rTow0 +
 vecNewDistance[iPos2].rTow1;
 const _REAL rIR11xx = vecNewDistance[iPos3].rTow1 +
 vecNewDistance[iPos2].rTow1;

 METRICSET(i)[0] = rIR00xx + rIRxx00; /* 0 */
 METRICSET(i)[2] = rIR00xx + rIRxx10; /* 2 */
 METRICSET(i)[4] = rIR01xx + rIRxx00; /* 4 */
 METRICSET(i)[6] = rIR01xx + rIRxx10; /* 6 */
 METRICSET(i)[9] = rIR10xx + rIRxx01; /* 9 */
 METRICSET(i)[11] = rIR10xx + rIRxx11; /* 11 */
 METRICSET(i)[13] = rIR11xx + rIRxx01; /* 13 */
 METRICSET(i)[15] = rIR11xx + rIRxx11; /* 15 */
 }

}
}

 BUTTERFLY(0, 1, 0, 32, 0, 15); BUTTERFLY(2, 3, 1, 33, 6, 9);
 BUTTERFLY(4, 5, 2, 34, 11, 4); BUTTERFLY(6, 7, 3, 35, 13, 2);
 BUTTERFLY(8, 9, 4, 36, 11, 4); BUTTERFLY(10, 11, 5, 37, 13, 2);
 BUTTERFLY(12, 13, 6, 38, 0, 15); BUTTERFLY(14, 15, 7, 39, 6, 9);
 BUTTERFLY(16, 17, 8, 40, 4, 11); BUTTERFLY(18, 19, 9, 41, 2, 13);
 BUTTERFLY(20, 21, 10, 42, 15, 0); BUTTERFLY(22, 23, 11, 43, 9, 6);
 BUTTERFLY(24, 25, 12, 44, 15, 0); BUTTERFLY(26, 27, 13, 45, 9, 6);
 BUTTERFLY(28, 29, 14, 46, 4, 11); BUTTERFLY(30, 31, 15, 47, 2, 13);
 BUTTERFLY(32, 33, 16, 48, 9, 6); BUTTERFLY(34, 35, 17, 49, 15, 0);
 BUTTERFLY(36, 37, 18, 50, 2, 13); BUTTERFLY(38, 39, 19, 51, 4, 11);
 BUTTERFLY(40, 41, 20, 52, 2, 13); BUTTERFLY(42, 43, 21, 53, 4, 11);
 BUTTERFLY(44, 45, 22, 54, 9, 6); BUTTERFLY(46, 47, 23, 55, 15, 0);
 BUTTERFLY(48, 49, 24, 56, 13, 2); BUTTERFLY(50, 51, 25, 57, 11, 4);
 BUTTERFLY(52, 53, 26, 58, 6, 9); BUTTERFLY(54, 55, 27, 59, 0, 15);
 BUTTERFLY(56, 57, 28, 60, 6, 9); BUTTERFLY(58, 59, 29, 61, 0, 15);
 BUTTERFLY(60, 61, 30, 62, 13, 2); BUTTERFLY(62, 63, 31, 63, 11, 4);
 }
}

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

6

Assume that that the puncturing patterns are equally likely to occur, i.e. for every 5 iterations the
puncturing patterns (0001,0101,0011,0111,1111) will on average occur one times each.

Furthermore, assume that iNumBitsWithMemory = 100 and that each BUTTERFLY() call contains four
additions and two comparisons.

(a) For each ‘if’ statement, what is the probability of it being true when it is executed?

(b) Compute the average number of ALU (arithmetic and comparison) operations performed by a call
to the Viterbi Decode() method.

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

7

Problem: Software Optimizations (25 points)

Given below is the (simplified, e.g. non-punctured and rearranged) code for the Viterbi decoder in the
DRM, where a Viterbi decoder generally consists of three stages:

void ViterbiDecode(char rcvdSymbls[17], bool msgBits[15])
{

FXP metrics[17*4]; // Branch metrics per step
unsigned decisions[17*4]; // Trellis path decisions

CalculateMetrics(rcvdSymbls, metrics); // Compute branch metrics
TrellisUpdate(metrics, decisions); // Compute forward path

metrics
 Traceback(decisions, msgBits); // Backward decoding
}

Shown below is furthermore the code for the forward path metric computation stage, which iteratively
computes accumulated error metrics along all possible Trellis paths. Following the possible state
transitions, two so-called butterfly computations consisting of two add-compare-select (ACS) operations
are performed in each iteration/step:

void AddCompareSelect(unsigned decision[4], FXP nextAcc[4], int
state,
 FXP curAcc[4], int prev0, int prev1,
 FXP metric[4], int met0, int met1)
{

// compute accumulated metric along each path
FXP acc0 = curAcc[prev0] + metric[met0];
FXP acc1 = curAcc[prev1] + metric[met1];

// compare and select the smaller one
if(acc0 < acc1) {
 nextAcc[state] = acc0; decision[state] = prev0;
} else {
 nextAcc[state] = acc1; decision[state] = prev1;
}

}

void TrellisUpdate(FXP metrics[17*4], unsigned decisions[17*4])
{

FXP accMetric1[4]; // Accumulated error metrics per state
 FXP accMetric2[4]; // … for current and next decision step,

FXP *cur = accMetric1; // … assumed to be initialized to all
zeros

FXP *nxt = accMetric2;
FXP *m = metrics; // current set of per-state metrics
unsigned *d = decisions; // … and decisions

// Loop over all time steps/symbols
for(int i = 0; i < 17; i++, m += 4, d += 4) {

// 1st butterfly for states 0 and 2
AddCompareSelect(d, nxt, 0, cur, 0, 1, m, 0, 3);
AddCompareSelect(d, nxt, 2, cur, 0, 1, m, 3, 0);

// 2nd butterfly for states 1 and 3
AddCompareSelect(d, nxt, 1, cur, 2, 3, m, 2, 1);
AddCompareSelect(d, nxt, 3, cur, 2, 3, m, 1, 2);

FXP *t = cur; cur = nxt; nxt = t; // move to nxt
}

}

BF1

BF2

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

8

(a) Given an operator library that supports 2-input, 1-output operations LD (Indexed Load a[b] from
memory given base address a and offset b), + (Signed Addition, a+b), < (Less Than, producing a bit
pattern of all ‘1’ if a<b, all ‘0’ otherwise), AND (Logical And, a˄b), BIC (Bit Clear, logical and-not,
a˄ ̅b), OR (Logical Or, a˅b) as well as a 3-input STR (Indexed Store to memory given base address a
and offset b). Show the dataflow graph (DFG) for one butterfly computation. Assume that metrics
and decisions are in memory, all other variables in registers or register files. Hint: a compare-select
can be performed as a <, AND+BIC, OR combination.

(b) Assuming a processor with a SIMD datapath and instruction set (e.g. ARM NEON) that can perform
up to four independent LD, +, <, AND, BIC, OR or STR operations per cycle, how many cycles are
needed to compute the complete Trellis update? You can ignore operations for loop management and
register reshuffling. Can the update be performed any faster in custom synthesized hardware
(assuming 1 cycle latency per operation)?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

9

Problem: Partitioning (30 points)

Consider the following task graph and initial partitioning:

D

A

E B

C

10

45
0

19

30

6

17

22

FPGAARM

110

(a) Apply a modified Kernighan-Lin algorithm that iteratively moves a single node leading to the
highest decrease in communication cost across the partition until no more gain can be achieved
(or until only single node is left in a partition). Show the moves, partitions and communication
costs in each step of the algorithm.

(b) Apply instead a hierarchical clustering solution to the task graph and show the final HW/SW

partition and its communication cost. For computing the closeness values of the newly inserted
edges, use the average value of the closeness values before clustering.

DA EB C

S
te

p
1

S
te

p
2

S
te

p
3

S
te

p
4

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

10

(c) Perform a hierarchical clustering, but use the minimum of the closeness values before clustering
as the closeness of newly inserted edges.

DA EB C

S
te

p
1

S
te

p
2

S
te

p
3

S
te

p
4

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

11

Problem: Partitioning (30 points)

Consider the following task graph and initial partitioning:

D

A

F

E

B C

G

H

10

12
9

18

16

5

2

20

FPGAARM

(a) Apply a modified Kernighan-Lin algorithm that iteratively moves a single node leading to highest
decrease in communication cost across the partition until no more gain can be achieved (or until
only single node is left in a partition). Show the moves, partitions and communication costs in
each step of the algorithm.

(b) Apply instead a hierarchical clustering solution to the task graph and show the final HW/SW
partition and its communication cost.

(c) How would you extend the Kernighan-Lin algorithm in (a) to not only optimize for communication
cost but also take processing times into account?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

12

Problem: Partitioning (30 points)

In class and the homework we only looked at a simplified version of the Kernighan-Lin algorithm. The full
Kernighan-Lin algorithm looks at complete sequences of node swaps. In each iteration of the algorithm, a
set of possible partition candidates is constructed by consecutively swapping nodes that have not been
swapped before and that result either in the largest gain or least loss in inter-partition communication cost
per swap (i.e. considering intermediate swaps that may increase cost). The set of candidates is complete
when all nodes have been considered for swapping, i.e. the graph is mirrored. Out of this set of candidate
partitions, the algorithm selects the partition with the least cost, i.e. it actually only executes the partial
subsequence of swaps that leads to the largest overall reduction in cost. This process (of constructing
candidates and selecting the best) is repeated until no more gains can be achieved (there is no candidate
that leads to any reduced cost).

Consider the following task graph with uniform communication costs per edge and initial partitioning:

C

A

F

B

D

PE1PE0

E

(a) Apply the full Kernighan-Lin algorithm to the task graph. Show the swap sequences, actually
selected partitions and communication costs in each iteration of the algorithm.

(b) Can this algorithm still get stuck in a local minimum? Why or why not?

(c) How could this algorithm be extended to take computation costs and scheduling into account.
Assume that tasks are periodic and that communication costs do not represent actual tasks
dependencies (precedence constraints), but rather generally the fact whether two tasks ever
exchange data or not (required connections).

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

13

Problem: Partitioning (25 points)

Consider the following task graph where communication costs indicate the number of kBytes transferred
between tasks:

C

A

F

B

D E

25

20
15

8210

5

(a) Apply a hierarchical clustering algorithm where the communication cost of a clustered node is the

sum of the bytes exchanged with other nodes. Show the graphs with communication costs after each
clustering step. What is the final HW/SW partition on a system with one CPU and one hardware
accelerator? What is the partition on a three-processor system (one CPU, one DSP and one
accelerator)?

(b) Apply the (full) Kernighan-Lin algorithm to partition the graph into two groups with an equal number
of nodes, starting from an initial A,B,C and D,E,F binning.

(c) Which algorithm gives the better solution for a 2-processor system? What are the tradeoffs between
the two solutions? Is there a better 2-processor solution that minimizes communication costs?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

14

Problem: Task Scheduling (25 Points)

Consider a system comprised of three processes with the following execution times and periods:

Give a rate-monotonic-schedule (RMS) for the processes, and indicate the corresponding processor
utilization. Could an early-deadline-first (EDF) scheduler also generate this schedule? Justify your answer
(hint: give the EDF dynamic priorities at each relevant time step).

Answer:

Execution time Period
T1= 1 τ1 = 10

T2= 1 τ2 = 2

T3= 2 τ3 = 5

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

15

Problem: Task Scheduling (25 Points)

Consider the problem of scheduling the following sets of tasks (assume that all tasks arrive at time 0).

Task Period Execution Time

A 20 5
B 60 10
C 40 10
D 30 5

(a) From an implementation perspective, what are the advantages/disadvantages of an RMS vs. an
EDF scheduler?

(b) What is the utilization of a single processor running the tasks?

(c) Find an RMS schedule for the tasks.

(d) If the execution time of task C is increased to 15, find an RMS schedule for the new task set.
What is the maximum execution time of C and corresponding processor utilization under which
the task set is still schedulable?

(e) Perform EDF scheduling of the new task with an execution time for C of 15 time units (if there are
two tasks with the same deadline break the tie in favor of the task with the shorter period). What
is the maximum execution time of C and processor utilization under which the task set is still
schedulable with an EDF strategy?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

16

Problem: Task Scheduling (35 Points)

Consider the problem of scheduling the following sets of tasks.

Task Period Execution Time
A 80 20
B 120 30
C 40 10
D 60 10

(a) What is the utilization of a single processor running the tasks?

(b) Find and draw an RMS schedule for the tasks.

(c) Assume that Task B and C share a resource that is protected by a critical section/mutex, i.e. if
the one of the tasks acquires the resource, the other task has to wait until the resource is
relinquished. Assuming that both tasks hold the resource during all of their execution time in
each period, find and draw an RMS schedule for the tasks.

(d) Briefly explain the concept of priority inversion and mark the priority inversion intervals on the
schedule graph in (c).

(e) Briefly explain the priority ceiling protocol. Find and draw the RMS schedule with a priority ceiling
implementation of the critical section.

(f) Briefly explain the priority inheritance protocol. Will the RMS schedule in (e) change for a priority
inheritance instead of a priority ceiling implementation? If so, draw the modified schedule.

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

17

Problem: Task Scheduling (35 points)

Consider a system that periodically executes the following graph of tasks with dependencies, (precedence
constraints). Due to the dependencies, all tasks need to run at the same rate with a common period of 15
while all precedence relationships are maintained within each period. In addition, however, tasks may
individually have stricter deadlines (relative to the start of the graph’s period). Task execution times Ti and
relative deadlines Di are as indicated in the graph. Assume that tasks A and B are ready to execute at the
beginning of each period.

C

B

E

D
G

F

TB = 2
DB = 10

TD = 2
DD = 14

TC = 2
DC = 12 TE = 2

DE = 15

TF = 4
DF = 10

TG = 2
DG = 14

A

TA = 1
DA = 5

(a) What is the utilization of a single processor running the tasks?

(b) Apply an EDF algorithm and show the schedule for one period (relative to the start of the period),
i.e. for one execution of the graph.

(c) In the presence of dependencies, EDF is no longer optimal in guaranteeing to find a schedule if it
exists. However, a modified EDF* strategy becomes optimal by adjusting the deadlines of
individual tasks to take their successors into account. This is done by starting with the sinks of
the graph (nodes with no successors) and successively propagating deadlines that are adjusted
for execution times upwards through the graph. Every time a deadline is propagated to a
predecessor, the execution time of the current node is subtracted (such that it is guaranteed that
the node will have enough time to execute once the predecessor has finished). At each node, a
new deadline is then computed to be the smaller of its original deadline and of the minimum over
adjusted deadlines propagated upwards from all its successors. Indicate the dependency-
adjusted deadlines in the original task graph above and show the resulting EDF* schedule.

(d) Show the EDF* schedule for the task graph with adjusted deadlines executed on two processors.
Assume that tasks can migrate between processors freely, i.e. strictly follow a strategy in which
at any point in time the two tasks with the highest priority are running.

(e) Does any uni-processor, priority-based scheduling of tasks with dependencies ever require
preemption? If so, under what conditions? If not, why not? How about in priority-based multi-
processor scheduling?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

18

Problem: Task Scheduling (25 points)

Consider the problem of scheduling the following sets of tasks.

Task Period Execution Time
A 3 1
B 6 1
C 4 e

(a) What is the maximum execution time e for task C such that an RMS schedule remains feasible? Draw
the RMS schedule for that case. What is the processor utilization?

(b) What is the maximum execution time for task C under an EDF schedule? Draw the EDF schedule for
that case. What is the processor utilization?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

19

Problem: Tree Height Reduction and Operation Scheduling (20 Points)

A system requires the computation of the equation, x^3 + A.x^2 + B.x + C.

(a) If only two operations (multiplications or additions) can be done in one cycle, schedule the operations
in order to complete the computation in the minimum number of cycles.

 Use these symbols to represent the multiplication and addition.

(b) In order to reduce power, only one operation (multiplication or addition) can be done in one cycle.
Find the schedule which obeys this constraint and takes the minimum number of cycles.

This image cannot currently be displayed.

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

20

Problem: High-Level Synthesis (25 points)

Consider the following code fragment:

x = a + b + c;
x = x + c * d;
y = c * d * e;
z = x – y;

(a) Assuming one clock cycle per operation, derive minimum-latency ASAP and ALAP schedules for this
code and determine the mobility for each operation.

(b) Assume a functional unit library that contains an ALU (adder/subtractor) with a delay of 25ns and a
multiplier with a delay of 50ns. Furthermore, assume a resource constraint of allocating at most one
multiplier. Schedule the code to minimize latency. Determine the final clock period.

(c) For your implementation in (b), determine the variable lifetimes and assign variables to a minimum
number of registers. Assume that primary input variables are preloaded into their assigned registers
before the beginning of the computation.

(d) Sketch a multiplexer-based realization of your final datapath.

(e) Show the state machine of the controller driving the datapath computation.

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

21

Problem: High-Level Synthesis (30 points)

A system requires the computation of the function: y = a2b + de2 + cf + df + abc + def

For the following questions, assume an adder has a delay of 1 cycle and the delay of a multiplier is 2
cycles.

(a) Assuming unlimited resources, schedule the operations to compute the function in a minimum
number of cycles.

(b) Assuming a resource constraint of a maximum of 2 multipliers and 1 adder. Schedule the
operations into a minimum number of cycles using a list scheduling algorithm with the longest
weighted path to the sink (i.e. the start time in an ALAP schedule) as priority.

(c) Is the schedule in (b) optimal or can you come up with a schedule with a shorter latency?

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

22

Problem: High-Level Synthesis (35 points)

Consider the following system:

 x = a2 + b2 + 2ab + cd

 y = c2d+cd2

 z = x + y

x

y

z

a

b

c
d

Assuming the area cost of an adder is 1, the area cost of a multiplier is 4, and they both require one clock
cycle per operation.

(a) Assuming one clock cycle per operation, derive minimum-latency ASAP and ALAP schedules for this
system and determine the mobility for each operation.

(b) Assume the area cost of an adder is 1, the area cost of a multiplier is 4, and they both require one
clock cycle per operation. Apply a force-directed scheduling (FDS) algorithm to determine a schedule
that minimizes resource cost while not exceeding the minimum latency. Show the final area score. Is
there a schedule that can achieve a lower cost?

(c) Assume an adder with a delay of 25ns and a multiplier with a delay of 50ns. Furthermore, assume a
resource constraint of allocating at most one multiplier. Use a list scheduling algorithm to minimize
latency. Show the final schedule and latency (in ns). Is there a schedule that can achieve a lower
latency?

(d) For the FDS-generated implementation in (b), determine the variable lifetimes and assign variables to
a minimum number of registers. Assume that primary input variables are preloaded into their
assigned registers before the beginning of the computation.

(e) For your implementation in (d), draw a multiplexer-based realization of your final datapath.

(f) For your diagram in (e), show the state machine of the controller driving the datapath computation.

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

23

Problem: High-Level Synthesis (35 points)

Consider the following system:

void f(int *a, int *b, int c[2], int *y)
{
 int t1, t2, t3;

 while (true) {
// sample inputs
t1 = *a; t2 = *b;
// compute output
t3 = t1 * c[0];

 t2 = t2 * c[1];
*y = t3 + t2 + t1;

 }
}

a
b

c
y

Assume a datapath resource constraint of one adder and one multiplier, where the adder requires one
clock cycle while the multiplier is pipelined with a latency (delay) of two cycles and a throughput of one
operation per cycle (i.e. a data introduction interval of 1).

(a) Derive a minimal-latency schedule for one iteration of the loop body inside f . How many cycles
does it take to compute 100 output values?

(b) Unroll the loop inside f one time and derive a minimal-latency schedule for one iteration of the
new loop (which will contain two iterations of the original loop). How many cycles does it take to
compute 100 output values?

(c) Instead of unrolling, pipeline the loop and derive a minimal-latency schedule for the pipelined
loop body. Show the schedule for at least two overlapping loop iterations. What is the smallest
loop introduction interval (II) that can be achieved? How many cycles does it take to compute
100 output values?

(d) Use the left-edge algorithm to determine a minimal set of registers and a corresponding register
binding for your solution from (a).

EE382M.20 Previous Exam Questions
 System-on-Chip (SoC) Design

24

Problem: High-Level Synthesis (25 points)

Consider the following dataflow graph (DFG) of a computation and an RTL resource library that contains 2-
input adders with one cycle latency consuming E units of energy per addition and non-pipelined 2-input
multipliers that require two cycles and 4E energy per multiplication.

(a) Apply behavioral optimizations to the DFG in order to minimize the tree height in cycles, i.e. the

ASAP schedule length. How many cycles does it take to execute the computation assuming unlimited
resources?

(b) Apply behavioral optimizations in order to minimize the energy consumption without increasing the
minimal latency required for the overall computation. What is the energy required for the original
DFG, your DFG from (a) and the energy-optimized DFG?

(c) Assuming a resource allocation of one adder and one multiplier, apply a list scheduling algorithm
using operation mobility as priority to schedule the graph into a minimum number of cycles. Show
the steps of the algorithm and the final schedule and latency obtained.

*

*

*

*
+ +

*

X

y

y

y A

x

y

B

C

F

y
*

	Problem: Software Optimizations (25 points)
	Problem: Partitioning (30 points)
	Problem: Partitioning (30 points)
	Problem: Partitioning (30 points)
	Problem: Partitioning (25 points)
	Problem: Task Scheduling (35 points)
	Problem: Task Scheduling (25 points)
	Problem: High-Level Synthesis (30 points)
	Problem: High-Level Synthesis (35 points)
	Problem: High-Level Synthesis (35 points)
	Problem: High-Level Synthesis (25 points)

