
ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 2 – Electronic System-Level (ESL) Design

with sources from:
Christian Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 2

SoC Design Challenges

Applications

Programming
Model?

• Complexity

• High degree of parallelism at
various levels

• Heterogeneity

• Of components

• Of tools

• Low-level communication
mechanisms

• Programming model

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 2

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 3

Multi-Processor System-on-Chip (MPSoC)

Controller Bus

System
Memory

Local Bus

Local RAM

Bridge

Shared
RAM

DSP Bus

DSP RAM

Memory
Controller ASIP

DSP

Hardware
Accelerator

Micro-
Controller

Hardware
Accelerator

Video
Front End

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 4

Lecture 2: Outline

 Introduction

• SoC design methodology

• Electronic system-level design (ESL/SLD)

• System-level design process

• Synthesis

• Modeling

• Summary and conclusions

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 3

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 5

Electronic System-Level (ESL) Design

System-level design

Hardware
development

Software
development

Integration &
Verification

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 6

system design

hardware
development

software
development

integration &
verification

Classical System Design Flow

(semi)automaticmanual

System requirement specification

System architecture design

Modeling

Hardware design

Software development

System

Integration & Verification

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 4

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 7

Hardware-Centric Design Cycle

Time

Task

Specification Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 8

Hardware-Centric Design Cycle

Time

Task

Specification Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification
✘

known if project is successful

✘

but you want to know here

✘

… and here

✘

… and here

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 5

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 9

system design

hardware
development

software
development

integration &
verification

Electronic System-Level (ESL) Design Flow

(semi)automaticmanual

System requirement specification

High-level model

Hardware design Software development

System implementation

Integration & Verification

System-level design

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 10

New ESL Design Cycle

Time

Task

Specification
(high-level & arch. models) Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification

Find good design options here

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 6

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 11

Design Methodologies

• Top down design
• Starts with functional system

specification
– Application behavior
– Models of Computation (MoC)

• Successive refinement
• Connect the hardware and

software design teams earlier in
the design cycle.

• Allows hardware and software to
be developed concurrently

• Goes through architectural
mapping

• The hardware and software parts
are either manually coded or
obtained by refinement from
higher model

• Ends with HW-SW co-verification
and System Integration

• Platform based design
• Starts with architecting a

processing platform for a given
vertical application space

– Semiconductor, ASSP vendors

• Enables rapid creation and
verification of sophisticated SoC
designs variants

• PBD uses predictable and pre-
verified firm and hard blocks

• PBD reduces overall time-to-
market

– Shorten verification time

• Provides higher productivity
through design reuse

• PBD allows derivative designs
with added functionality

• Allows the user to focus on the
part that differentiate his design

Source: Coware, Inc., 2005

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 12

Top-Down ESL Design Environment

SL
Design

Function
Design

System
Def.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODING

INTEG.
& TEST

PROTOTYPING ENVIRONMENT
Primarily
Virtual

Primarily
Physical

HW & SW
CODESIGN

Cost Models

Copyright © 1995-1999 SCRA Used with Permission

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 7

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 13

Flow To Implementation

Platform-Based Design (PBD)

System
Behavior

System
Platform

Mapping

Refinement

Behavior
Verification

Architecture

Models of
Computation

Performance models:
Emb. SW, Comm. and

Comp. resources

HW/SW Partitioning,
Scheduling & Estimation

Synthesis
& Coding

Performance
Analysis

and Simulation

Source: UC Berkeley, EECS249

Model Checking

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 14

Lecture 2: Outline

 Introduction

 SoC design methodology

• System-level design

• Synthesis

• Modeling

• Summary and conclusions

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 8

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 15

Platform-Based System Synthesis

Application

Optimal Mapping ?

Platform

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 16

Resource Allocation

• Resource allocation, i.e., select resources from a
platform for implementing the application

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 9

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 17

Process Binding

• Process mapping, i.e., bind processes onto allocated
computational resources

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 18

Channel Routing

• Channel mapping, i.e., assign channels to paths over
busses and address spaces

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 19

Design Space Exploration

• Design Space Exploration is an iterative process:

• How can a single design point be evaluated?

• How can the design space be covered during the
exploration process?

Covering the
design space

Evaluating
design points

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 20

Lecture 2: Outline

 Introduction

 SoC design methodology

• System-level design

Synthesis

• Modeling

• Summary and conclusions

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 11

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 21

System Modeling

• Design models are the basis for any design flow
• Design models as abstraction of a design instance

• Representation for validation and analysis
• Specification for further implementation
 Documentation & specification

 System-level design models
• Support HW/SW co-design
• Support early SoC architecture design
• Support design space exploration

 System-level design languages
• Capture system-level design and SoC models
• Hardware and software

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 22

Modeling Concerns

Managing
Complexity

Orthogonalizing
concerns

across
multiple levels

of
abstraction

Behavior
Vs.

Structure

Computation
Vs.

Communication

Source: UC Berkeley, EECS249

Behavioral vs. structural
modeling

Transaction-level modeling (TLM)

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 12

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 23

Computation vs. Communication

ComputationCommunication

Bus Model Device Model

Behavior can be described
algorithmically, without the burden of
the handshaking and control logic
associated with bus communication.

Communication can be described in a
wide range of fashions, from high-level
messages, to detailed signal level
handshakes without impacting the
behavior description.

c = a * b;
get a;
get b;
send c;

Must be synchronized

• Separation of concerns

• Flexibility in modeling, IP reuse

• Design computation & communication separately

Source: Coware, Inc., 2005

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 24

Communication Models

• Pin-Accurate Model (PAM)
• Redundant RTL complexity

results in slow simulation
• Each device interface must

implement the bus protocol
• Each device on the bus has a

pin-accurate interface

• Transaction-Level Model (TLM)
• Less code, no wires, fewer

events yield faster simulation
• Protocol is modeled as a

single bus model instead of in
each device

• Each device communicates
via transaction-level API

 100x-10,000x faster than
PAMBUS

MEM CPU

Periph

TLM API TLM API

TLM API
HREQ

HADDR

HGRANT

HWDATA

HRESP

HREADY

ReqTrf
Grant

Trf

AddrTrf

WriteDataTrf

EotTrf

Transaction

BUS

MEM CPU

Periph Req

Grnt
Sel

Data
Addr

Clk

Source: Coware, Inc., 2005

Pin/Cycle
Accurate

Transactions
(Function

Calls)

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 13

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 25

Transaction Level Modeling

The transaction level is a higher level of abstraction for
communication

For SoC, communication is often the bottleneck

Communication
channel

TargetInitiator

TLM
API

TLM
API

read(addr)
write(addr, data)

read(addr)
write(addr, data)

Source: Coware, Inc., 2005

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 26

TLM Details
• Abstracted communication

• Detailed signal handshaking is reduced to series of
generic events called “transactions”.

• Blocks are interconnected via a bus model, and
communicate through an API.

• The bus model handles all the timing, and events on the
bus can be used to trigger action in the peripherals.

sendAddress()

Initiator
Bus

Model

Bus Model keeps
track of timing.

Address Data

Initiator and target use
an API to communicate
via transfers.

Target

sendData()

Event timing can
trigger actions.

addressEvent() dataEvent()

Source: Coware, Inc., 2005

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 14

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 27

Virtual Platform Prototyping

Computation refinement

Communication refinement

Untimed TLM (LT/AT) PCAM

Virtual Prototype

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 28

Not Modeled
-Point to point

-Memory-mapped

Abstraction Levels

Functional Validation

System Partitioning and
Assembly

-Exploration and analysis

System Partitioning and
Assembly

-Exploration and analysis

Emb. System Modeling
-Executable spec. capture

-Functional testing

Emb. System Modeling
-Executable spec. capture

-Functional testing

RTL Design & Verification
-Block design and unit test
-Validation in the system

RTL Design & Verification
-Block design and unit test
-Validation in the system

System-level Verification
-Complete design at RTL
-System-level testbench

System-level Verification
-Complete design at RTL
-System-level testbench

Architectural Validation

Hardware Refinement

RTL Verification

RTL RTL

Timed
Bus-Functional

Untimed

Approximately
Timed TLM

Cycle-Accurate
TLM

(Transfer Level)

RTL

Instruction
Accurate

Cycle
Accurate

Processor Interconnect Peripheral
Host-compiled

Loosely Timed
TLM

RTL
(DUT)

TF
(rest)

In
cr

ea
si

ng
 S

co
pe

 fo
r R

el
at

iv
e

Op
tim

iz
at

io
n

In
cr

ea
si

ng
 S

im
ul

at
io

n
Pe

rf
or

m
an

ce

Source: Coware, Inc., 2005

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2021 A. Gerstlauer 15

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 29

UT
IA ISS

TLM Bus

Log A C C U R A C Y

Lo
g

 S
 P

 E
 E

 D

Executable TLM

100Kcps

1MIPS

10MIPS

10Kcps

100cps

1Kcps

Cycle
Accurate

-TLM

Pin-accurate
w/RTL

RTL

Host-based

Re-use for
Early

Software
Development

Re-use for
System-level

Hardware
Verification

ESL
Architectural

Design LT
3 Mcps

CA
150 kps

PAM+RTL
15 kps

Speed vs. Accuracy

ECE382M.20: SoC Design, Lecture 2 © 2021 A. Gerstlauer 30

System Design Flow Summary

Design Export
… after initial platform
configuration through
design refinement and

communication synthesis

Functional
IP

C/C++
SDL
SPW

Simulink

Synthesis / Place & Route etc.

Implementation Level Verification

Software
Assembly

Hardware
Assembly

Communication
Refinement, Integration &

Synthesis

Performance Analysis and
Platform Configuration

System Integration

Platform
Function

Platform
Architecture

Embedded System Requirements

Platform
Configuration

… at the
un-clocked, timing-

aware
system level

Architecture
IP

CPU/DSP
RTOS

Bus, Memory
HW
SW

