
ECE382M.20: System-on-Chip (SoC) Design Lecture 9

© 2021 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 9 – SoC Communication Architectures
Source:

Sudeep Pasricha (Colorado State), Nikil Dutt (UC Irvine)
“On-Chip Communication Architectures”, Morgan Kaufmann, 2008  

ECE382M.20: SoC Design, Lecture 9 © 2021 A. Gerstlauer 2

Lecture 9: Outline

• Introduction

• Communication-centric design

• Bus-based architectures

• Topologies and structures

• Decoding, arbitration, transfer modes

• On-chip communication standards

• AMBA and AXI

• Networks-on-Chip (NoCs)

• Topologies, switching, routing
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Technology Scaling Trends (1)

• Total Interconnect Length on a Chip

 Highlights importance of interconnect design in future 
technologies
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Technology Scaling Trends (2)

• Relative delay comparison of wires vs. process technology

 Increasing wire delay limits achievable performance
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Core 1 SoCs

Circa 2002

SoCs Today

Critical Decision Was uP Choice

Critical Decision Is Interconnect Choice

Communication Architecture Design and Verification becoming 
Highest Priority in Contemporary SoC Design!

DRAMC

Exploding core counts requiring 
more advanced Interconnects

EDA cannot solve this 
architectural problem easily

Complexity too high to hand 
craft (and verify!)

Communication Trumps Computation
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Source: SONICS Inc.
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On-Chip Communication Trends

• Evolution of on-chip communication architectures
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Bus-Based Architectures

• Buses are the simplest and most widely used SoC
interconnection networks

• Bus: a collection of signals (wires) to which one or more IP 
components (which need to communicate data with each 
other) are connected

• Only one component can transfer data on the shared bus 
at any given time

Micro-
controller

Digital
Signal
Processor

Input/
Output
Device

Memory

Bus
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Bus Terminology
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• Master (or Initiator)
• IP component that initiates a read or write data transfer

• Slave (or Target)
• IP component that does not initiate transfers and only 

responds to incoming transfer requests 
• Arbiter

• Controls access to the shared bus
• Uses arbitration scheme to select master to grant access 

to bus
• Decoder

• Determines which component a transfer is intended for 
• Bridge

• Connects two busses
• Acts as slave on one side and master on the other

Bus Terminology
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Bus Signal Lines

• A bus typically consists of three types of signal lines

• Address
– Carry address of destination for which transfer is initiated

– Can be shared or separate for read, write data

• Data
– Carry information between source and destination components

– Can be shared or separate for read, write data

– Choice of data width critical for application performance

• Control
– Requests and acknowledgements

– Specify more information about type of data transfer

– Byte enable,  burst size, cacheable/bufferable, write-back/through, …

address lines

data lines

control lines
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Bus Physical Structure (1)

• Tri-state buffer based bidirectional signals

• Commonly used in off-chip/backplane buses
• + take up fewer wires, smaller area footprint

• - higher power consumption, higher delay, hard to debug
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Bus Physical Structure (2)

• AND-OR based signals
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Bus Physical Structure (3)

• MUX based signals

• Separate read, write channels
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Bus Clocking

• Synchronous Bus
• Includes a clock in control lines

• Fixed protocol for communication that is relative to clock

• Involves very little logic and can run very fast

• Require frequency converters across frequency domains
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Bus Clocking

• Asynchronous Bus
• Not clocked

• Requires a handshaking protocol

– performance not as good as that of synchronous bus

– No need for frequency converters, but does need extra lines

• Does not suffer from clock skew like the synchronous bus
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Decoding and Arbitration

• Decoding

• Determines the target for any transfer initiated by a master

• Arbitration

• Decides which master can use the shared bus if more than 
one master request bus access simultaneously

 Decoding and Arbitration can either be

• Centralized

• Distributed
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Centralized Decoding and Arbitration

• Minimal change is required if new components are 
added to the system
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Distributed Decoding and Arbitration

© 2021 A. Gerstlauer

• + requires fewer signals compared to the centralized 
approach

• - more hardware duplication, more logic/area,  less 
scalable

ECE382M.20: SoC Design, Lecture 9 18
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Arbitration Schemes (1)

• Random

• Randomly select master to grant bus access to

• Static priority

• Masters assigned static priorities

• Higher priority master request always serviced first

• Can be pre-emptive (AMBA2) or non-preemptive (AMBA3)

• May lead to starvation of low priority masters

• Round-robin

• Masters allowed to access bus in a round-robin manner

• No starvation – every master guaranteed bus access

• Inefficient if masters have vastly different data injection rates

• High latency for critical data streams
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Arbitration Schemes (2)

• TDMA

• Time division multiple access

• Assign slots to masters based on BW requirements

• If  a master does not have anything to read/write during 
its time slots, leads to low performance

• Choice of time slot length and number critical 

• Real-time worst-case latency guarantees (CAN bus)

• TDMA/RR

• Two-level scheme
– If master does not need to utilize its time slot, second level RR scheme 

grants access to another waiting master

• Better bus utilization

• Higher implementation cost for scheme (more logic, area)
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Arbitration Schemes (3)

• Dynamic priority

• Dynamically vary priority of master during application 
execution

• Gives masters with higher injection rates a higher priority

• Requires additional logic to analyze traffic at runtime

• Adapts to changing data traffic profiles

• High implementation cost (several registers to track 
priorities and traffic profiles)

• Programmable priority

• Simpler variant of dynamic priority scheme

• Programmable register in arbiter allows software to 
change priority
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Bus Data Transfer Modes (1)

• Single non-pipelined transfer
• Simplest transfer mode

– first request for access to bus from arbiter
– on being granted access, set address and control signals
– Send/receive data in subsequent cycles
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Bus Data Transfer Modes (2)

• Pipelined transfer
• Overlap address and data phases 

– Only works if separate address and data busses are present
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Bus Data Transfer Modes (3)

• Non-pipelined burst transfer
• Send multiple data items, with only a single arbitration for entire 

transaction
– master must indicate to arbiter it intends to perform burst 

transfer
– Saves time spent requesting for arbitration
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Bus Data Transfer Modes (4)

• Pipelined burst transfer
• Useful when separate address and data buses available
• Reduces data transfer latency
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Bus Data Transfer Modes (5)

• Split transfer
• If slaves take a long time to read/write data, it can prevent 

other masters from using the bus
• Split transfers improve performance by ‘splitting’ a 

transaction
– Master sends read request to slave
– Slave relinquishes control of bus as it prepares data

» Arbiter can grant bus access to another waiting 
master

» Allows utilizing otherwise idle cycles on the bus
– When slave is ready, it requests bus access from 

arbiter
– On being granted access, it sends data to master

• Explicit support for split transfers required from slaves and 
arbiters (additional signals, logic)
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Bus Data Transfer Modes (6)

• Out-of-Order transfer
• Allows multiple transfers from different masters, or even 

from the same master, to be SPLIT by a slave and be in 
progress simultaneously on a single bus

• Masters can initiate data transfers without waiting for 
earlier data transfers to complete

• Allows better parallelism, performance in buses
• Additional signals are needed to transmit IDs for every 

data transfer in the system
• Master interfaces need to be extended to handle data 

transfer IDs and be able to reorder received data
• Slave interfaces have out-of-order buffers for reads, writes, 

to keep track of pending transactions, plus logic for 
processing IDs

– Any application typically has a limited buffer size beyond which 
performance doesn’t increase 
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Bus Data Transfer Modes (7)

• Broadcast Transfer
• Every time a data item is transmitted over a bus, it is 

physically broadcast to every component on the bus

• Useful for snooping and cache coherence protocols

• Example:  when several components on bus have a 
private cache fed from a single memory, a problem arises 
when the memory is updated 

– when a cache line is written to memory by a component

• It is essential that private caches of the components on 
the bus invalidate (or update) their cache entries 

– to prevent reading incorrect values

• Broadcasting allows address of the memory location (or 
cache line) being updated to be transmitted to all the 
components on the bus, so they can invalidate (or update) 
their local copies
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Bus Topologies (1)

• Shared bus
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Bus Topologies (2)

• Hierarchical shared bus

 Improves system throughput
• Multiple ongoing transfers on different buses
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Bus Topologies (3)

• Full crossbar/matrix bus (point to point)
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Bus Topologies (4)

• Partial crossbar/matrix bus
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Bus Topologies (5)

• Ring bus
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Lecture 9: Outline

 Introduction

Communication-centric design

 Bus-based architectures

Topologies and structures

Decoding, arbitration, transfer modes

• On-chip communication standards

• AMBA and AXI

• Networks-on-Chip (NoCs)

• Topologies, switching, routing
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Standard Bus Architectures

• AMBA 2.0, 3.0 (ARM)
• CoreConnect (IBM)
• Sonics Smart Interconnect (Sonics)
• STBus (STMicroelectronics)
• Wishbone (Opencores)
• Avalon (Altera)
• PI Bus (OMI)
• MARBLE (Univ. of Manchester)
• CoreFrame (PalmChip)
• …

widely used
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AMBA 2.0
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 Split ownership of Address and Data bus

AHB Basic Transfer (1)
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 Data transfer with slave wait states

AHB Basic Transfer (2)
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 Transaction pipelining increases bus bandwidth

AHB Pipelining
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centralized arbitration / decode

• 1 unidirectional address bus 

(HADDR)

• 2 unidirectional data buses 

(HWDATA, HRDATA)

• At any time only 1 active data 

bus

AHB Mux-Based Architecture

ECE382M.20: SoC Design, Lecture 9 © 2021 A. Gerstlauer 40© 2008 Sudeep Pasricha & Nikil Dutt
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HBREQ_M1

HBREQ_M2

HBREQ_M3

Arbiter

• Arbitration protocol is specified, but not the policy

AHB Arbitration
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AHB Arbitration Timing

Time for arbitration

Time for handshaking
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AHB Pipelined Burst Transfers

• Bursts cut down on arbitration, handshaking time 
• Improving performance
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AHB Burst Types
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• Incremental bursts access sequential locations
• e.g. 0x64, 0x68, 0x6C, 0x70 for INCR4, transferring 4 byte data

• Wrapping bursts “wrap around” address if starting 
address is not aligned to total no. of bytes in transfer
• e.g.  0x64, 0x68, 0x6C, 0x60 for WRAP4, transferring 4 byte data

ECE382M.20: SoC Design, Lecture 9 © 2021 A. Gerstlauer 44© 2008 Sudeep Pasricha & Nikil Dutt
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AHB Control Signals (1)

• Transfer direction

• HWRITE – write transfer when high, read transfer when low

• Transfer size

• HSIZE[2:0] indicates the size of the transfer
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AHB Control Signals (2)

• Protection control

• HPROT[3:0] - additional information about a bus access

ECE382M.20: SoC Design, Lecture 9 © 2021 A. Gerstlauer 46© 2008 Sudeep Pasricha & Nikil Dutt
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AHB Split Transfers

• Improves bus utilization
• May cause deadlocks if not carefully implemented
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AHB Bus Matrix Topology

• In addition to shared bus and hierarchical bus, AHB can 
be implemented as a bus matrix

ECE382M.20: SoC Design, Lecture 9 © 2021 A. Gerstlauer 48© 2008 Sudeep Pasricha & Nikil Dutt
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AHB-APB Bridge
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High performance Low power 
(and performance)
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APB State Diagram

When AHB wants
to drive a transfer

One cycle penalty for
APB peripheral address
decoding

Transfer occurs here

• No (multi-cycle) bursts, pipelined transfers
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AMBA 3.0

• Introduces AXI high performance protocol

• Support for separate read address, write address, read 
data, write data, write response channels

• Out of order (OO) transaction completion

• Fixed mode burst support
– Useful for I/O peripherals

• Advanced system cache support
– Specify if transaction is cacheable/bufferable

– Specify attributes such as write-back/write-through

• Enhanced protection support
– Secure/non-secure transaction specification

• Exclusive access (for semaphore operations)

• Register slice support for high frequency operation
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AHB vs. AXI Burst (1)

• AHB Burst
• Address and Data are locked together (single pipeline stage) 

• HREADY controls intervals of address and data

• AXI Burst
• One Address for entire burst

ECE382M.20: SoC Design, Lecture 9 © 2021 A. Gerstlauer 52© 2008 Sudeep Pasricha & Nikil Dutt
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AHB vs. AXI Burst (2)

• AXI Burst

• Simultaneous read, write transactions

• Better bus utilization
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AXI Out of Order Completion

• With AHB
• If one slave is very slow, all data is held up
• SPLIT transactions provide very limited improvement

• With AXI Burst
• Multiple outstanding addresses

– Out of order (OO) completion allowed

• Fast slaves may return data ahead of slow slaves
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Summary: AHB vs. AXI
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JPEG Decoder Case Study

Source: CoWare, Inc.
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Operation: JPEG Application on ARM

Source: CoWare, Inc.
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Source: CoWare, Inc.
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Source: CoWare, Inc.
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Bus Contention?

Source: CoWare, Inc.
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Architecture 1
• Contention and utilization problems due to

• ARM core and dual DMA activity

Source: CoWare, Inc.
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Architecture 2
• Multi-layer architecture

• Multiple AHB busses

Source: CoWare, Inc.
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Architecture 3
• Dual multi-layer architecture

• Single AHB bus

Source: CoWare, Inc.
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Configuration 1

Configuration 2

Minimal Bus Contention?

Source: CoWare, Inc.

Configuration 3
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Configuration 1

Configuration 2

Configuration 3

3 AHB with 
1 Multi-layer

Less DMA 
Contention

Single AHB 
with 2 Multi-

layers

Single AHB

CPU to Memory 
Contention 

DMA 
Contention

No Bus 
Contention

No CPU to Memory 
Contention 

TLM Simulation Results

Source: CoWare, Inc.
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Lecture 9: Outline

 Introduction

Communication-centric design

 Bus-based architectures

Topologies and structures

Decoding, arbitration, transfer modes

 On-chip communication standards

AMBA and AXI

• Networks-on-Chip (NoCs)

• Topologies, switching, routing
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Networks-on-Chip (NoCs)

• A Network-on-chip (NoC) is a packet switched on-chip 
communication network designed using a layered 
methodology
• “routes packets, not wires”

• NoCs use packets to route data from the source to the 
destination PE via a network fabric that consists of 

– switches (routers)

– interconnection links (wires)
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Networks-on-Chip (NoCs)

• NoCs are an attempt to scale down the concepts of 
largescale networks, and apply them to the embedded 
system-on-chip (SoC) domain

• NoC Properties
• Regular geometry that is scalable
• Flexible QoS guarantees
• Higher bandwidth
• Reusable components

– Buffers, arbiters, routers, protocol stack

• No long global wires (or global clock tree)
– No problematic global synchronization
– GALS: Globally asynchronous, locally synchronous design

• Reliable and predictable electrical and physical properties
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NoC Topology (1)

• Direct Topologies
• Each node has direct point-to-point link to a subset of other 

nodes in the system called neighboring nodes
– E.g. Nostrum, SOCBUS, Proteo, Octagon

• Nodes consist of computational blocks and/or memories, as well 
as a NI block that acts as a router

• As the number of nodes in the system increases, the total 
available communication bandwidth also increases

• Fundamental trade-off is between connectivity and cost
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NoC Topology (2)

• Most direct network topologies have an orthogonal 
implementation, where nodes can be arranged in an n-
dimensional orthogonal space
• Routing for such networks is fairly simple

– E.g. n-dimensional mesh, torus, folded torus, hypercube, and octagon

• 2D mesh is most popular topology
• All links have the same length

– Eases physical design

• Area grows linearly with the number 
of nodes

• Must be designed in such a way as to 
avoid traffic accumulating in the 
center of the mesh
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NoC Topology (3)

• Torus topology, also called a k-ary n-cube, is an n-
dimensional grid with k nodes in each dimension
• k-ary 1-cube (1-D torus) is essentially a ring network with k nodes

– Limited scalability as performance decreases when more nodes

• k-ary 2-cube (i.e., 2-D torus) topology is 
similar to a regular mesh 

– Except that nodes at the edges are 
connected to switches at the opposite 
edge via wrap-around channels

– Long end-around connections can, 
however, lead to excessive delays
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NoC Topology (4)

• Folding torus topology overcomes the long link limitation 
of a 2-D torus
• Links have the same size

• Meshes and tori can be extended by adding bypass links 
to increase performance at the cost of higher area
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Other NoC Topologies

• Tree (indirect)

• Butterfly (indirect)

• Octagon (direct)

• Irregular, …
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Switching & Routing

• Determine how data flows through routers in the network

• Define granularity of data transfer and applied switching 
technique
• Phit (physical control digit) is a unit of data that is transferred 

on a link in a single cycle

• Flit (flow control digit) is unit of switching

• Typically, phit size = flit size
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Switching Strategies (1)

• Two main modes of transporting flits in a NoC are circuit 
switching and packet switching

• Circuit switching
• Physical path between the source and the destination is 

reserved prior to the transmission of data

• Message header flit traverses the network from the source to 
the destination, reserving links along the way

• Advantage: low latency transfers, once path is reserved

• Disadvantage: pure circuit switching does not scale well with 
NoC size

– Several links are occupied for the duration of the transmitted data, 
even when no data is being transmitted

» For instance in the setup and tear down phases
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Switching Strategies (2)

• Virtual circuit switching
• Creates virtual circuits that are multiplexed on links
• Number of virtual links (or virtual channels (VCs)) that can be 

supported by a physical link depends on buffers allocated to link
• Allocating one buffer per virtual link

– Depends on how virtual circuits are spatially distributed in the NoC, 
routers can have a different number of buffers

– Can be expensive due to the large number of shared buffers
– Multiplexing virtual circuits on a single link also requires scheduling at 

each router and link (end-to-end schedule)
– Conflicts between different schedules can make it difficult to achieve 

bandwidth and latency guarantees
• Allocating one buffer per physical link

– Virtual circuits are time multiplexed with a single buffer per link 
– Uses time division multiplexing (TDM) to statically schedule the usage 

of links among virtual circuits
– Flits are typically buffered at the NIs and sent into the NoC according 

to the TDM schedule
– Global scheduling with TDM makes it easier to achieve end-to-end 

bandwidth and latency guarantees
– Less expensive router implementation, with fewer buffers
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Switching Strategies (3)

• Packet Switching
• Packets are transmitted from source and make their way 

independently to receiver
– Possibly along different routes and with different delays

• Zero start up time, followed by a variable delay due to 
contention in routers along packet path

• QoS guarantees are harder to make in packet switching than in 
circuit switching

• Three main packet switching scheme variants

1. Store-and-forward (SAF) packet switching
• Packet is sent from one router to the next only if the receiving 

router has buffer space for entire packet

• Buffer size in the router is at least equal to the size of a packet

• Disadvantage: excessive buffer requirements
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Switching Strategies (4)

2. Virtual cut through (VCT) packet switching
• Reduces router latency over SAF switching by forwarding first flit 

of a packet as soon as space for the entire packet is available in 
the next router

• If no space is available in receiving buffer, no flits are sent, and 
the entire packet is buffered

• Same buffering requirements as SAF switching

3. Wormhole (WH) packet switching
• Flit from a packet is forwarded to receiving router if space exists 

for that flit

• Parts of the packet can be distributed among two or more 
routers

• Buffer requirements are reduced to one flit, instead of an entire 
packet

• More susceptible to deadlocks due to usage dependencies 
between links
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Routing

• Static vs. dynamic routing

• Fixed vs. adaptive source-destination paths

• Distributed vs. source routing

• Packets carry destination only or complete route

• Minimal vs. non-minimal routing

• Always shortest path or deviations allowed

 Deadlocks?

 Cyclic resource dependency

 Livelocks?

 “Hot potato”

 Starvation?

 Low-priority traffic fairness
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• Goal of flow control is to allocate network resources for 
packets traversing a NoC
• Can also be viewed as a problem of resolving contention during 

packet traversal

• At the data link-layer level, when transmission errors 
occur, recovery from the error depends on the support 
provided by the flow control mechanism
• E.g. if a corrupted packet needs to be retransmitted, flow of packets 

from the sender must be stopped, and request signaling must be 
performed to reallocate buffer and bandwidth resources

• Most flow control techniques can manage link congestion

• But not all schemes can (by themselves) reallocate all the 
resources required for retransmission when errors occur
• Either error correction or a scheme to handle reliable transfers 

must be implemented at a higher layer

Flow Control
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Summary

• SoC complexity is increasing rapidly, due to
• Digital convergence

• Process technology shrinking into DSM era

• On-chip communication architectures are critical 
components in SoC designs
• To meet power,  performance,  cost,  reliability constraints

• Also rapidly increasing in complexity with increasing no. of 
cores

• Reviewed basic concepts of (widely used) bus-based 
communication architectures
• Plus advanced networks-on-chip

• Open problems
• Automatically optimizing communication architectures to 

satisfy given application constraints

• Predicting and estimating DSM issues early in a design flow 
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