
1

SOC Design

HW Accelerators
and

Co-Processors

Mark McDermott

Fall 2023

Motivation for HW Acceleration

 OPs/$ or OPs/Joule
– Exploit problem specific parallelism,

at thread and instructions level
– Custom operational units or

“instructions” match the set of
operations needed for the algorithm
(replace multiple instructions with
one), custom word width arithmetic,
etc.

– Remove overhead of instruction
storage and fetch, ALU multiplexing

29/21/2023

2

Co-Processors

Tightly Coupled Coprocessors

 Integrated with processor control logic
– Task typically completes in a few cycles
– Small amounts of data
– Processor stalls waiting for the coprocessor
– Communication with coprocessor typically via registers and dedicated

control signals

9/21/2023 4

3

Loosely-Coupled Coprocessors

 Loosely-Coupled Coprocessors
– Used for larger tasks than is the case for tightly-coupled coprocessors
– Task runs in parallel with main processor
– May take many cycles per task
– Large amounts of data that coprocessor may access independent of main

processor
– May or may not use the standard coprocessor interface

9/21/2023 5

https://www.xilinx.com/support/documentation/application_notes/xapp1170-zynq-hls.pdf

Accelerator Coherency Port (ACP)

 Accelerator coherency port (ACP) is a 64-bit AXI slave interface
on the SCU that provides an asynchronous cache-coherent access
point directly from the PL to the Cortex-A9 MP-Core processor
subsystem.

 A range of system PL masters can use this interface to access the
caches and the memory subsystem exactly the way the APU
processors do to simplify software, increase overall system
performance, or improve power consumption.

69/21/2023

4

ACP Usage

 The ACP provides a low latency path between the PS and the
accelerators implemented in the PL when compared with a legacy
cache flushing and loading scheme. Steps that must take place in
an example of a PL-based accelerator are as follows:
1. The CPU prepares input data for the accelerator within its local cache

space.
2. The CPU sends a message to the accelerator using one of the general

purpose AXI master interfaces to the PL.
3. The accelerator fetches the data through the ACP, processes the data, and

returns the result through the ACP.
4. The accelerator sets a flag by writing to a known location to indicate that

the data processing is complete. Status of this flag can be polled by the
processor

79/21/2023

ACP Caveats

 NOTE: When compared to a tightly-coupled coprocessor, ACP
access latencies are relatively long. Therefore, ACP is not
recommended for fine-grained instruction level acceleration.

 For coarse-grain acceleration such as video frame-level
processing, ACP does not have a clear advantage over traditional
memory-mapped PL acceleration because the transaction
overhead is small relative to the transaction time and might
potentially cause undesirable cache thrashing.

 ACP is therefore optimal for medium-grain acceleration, such as
block-level crypto accelerator and video macro-block level
processing.

89/21/2023

5

Hardware Acceleration

Common HW Acceleration Applications

 Graphics
 Data Compression/Decompression
 Data Streaming: Audio/Video Encoding/Decoding, Network, I/O
 Image sensing and processing
 Logic Simulation
 Data Encryption: RSA, DES, AES
 FFT, DCT, EXP, LOG, …
 Neuronal Networks
 Neuromorphic

9/21/2023 10

6

Decision Tree: When do you use a hardware accelerator?

119/21/2023

Can an existing algorithm be implemented using existing ISA?

Can a new algorithm be devised to solve problem using existing ISA?

Can API be modified to expose necessary functionality or make it easier to exploit?

Can the datapath be modified to better support algorithm, without breaking others?

Can ISA be modified to better support algorithm?

Can HW accelerator be added as a co-processor instruction

Easy

Hard

Hardware Acceleration

 Ad hoc interface to controlling processor
– Accelerator registers are memory-mapped
– Bus-based, FIFO, or register data interfaces
– Uses DMA for high-speed transfers

 Typically, the processor transfers data to the accelerator, issues a
“go” command, and then collects result data later.
– Polled or interrupt-based interface

 Accelerator may have its own path to/from memory
 Often fixed function but can be microcoded for programmability

9/21/2023 12

7

Hardware Accelerator Topologies

Accelerator appears as a device on a bus

Accelerator is tightly coupled into the processor memory system

139/21/2023

Hardware Accelerator Interface: Interrupts or Polling?

 Polling interfaces usually require the processor to read a
memory-mapped register to determine the state of the
accelerator.
– Can the accelerator accept new input data?
– Is the accelerator done with its current task?
– Has the accelerator generated an error condition?

 Polling interfaces offer minimal latency between the setting of a
condition on the accelerator and its
discovery by the controlling processor.
– But processor isn’t doing useful work while it polls…

9/21/2023 14

8

Hardware Accelerator Interface: Interrupts or Polling?

 Interrupt-based interfaces allow the accelerator to signal
conditions to the controlling processor.
– Interrupt latency is longer than is achievable via the polling method.
– But the processor can more easily proceed with other work while the

accelerator is busy with a task.

 Interrupts are more efficient for coarse grained parallelism (i.e.,
larger tasks with looser and less frequent synchronization
requirements)

 Interrupts may not work for real-time control tasks with tight
schedules

9/21/2023 15

Linux Interrupt latency measurement results

169/21/2023

1

10

100

1000

10000

100000

0 500 1000 1500 2000 2500 3000

La
te

cy
 (m

ic
ro

-s
ec

s)

Number of Samples (NOTE: each sample is 10,000 interrupts)

MAX

MIN

MAX: 43333 μsecsNote: heavy CPU load

30 Million Samples

9

AXI

Typical CPU  Accelerator Transaction

179/21/2023

Application
Operating System

Hardware

T
im

e
 open(/dev/accel); /* only once*/

…
/* construct macroblocks */
macroblock = …
syscall(¯oblock,

num_blocks)
…

…
/* macroblock now has
transformed data */
…

Data copy

Flush Cache Range

Setup DMA Transfer

Poll

DMA
Controller

Setup DMA Transfer

Invalidate Cache Range

MemoryMemory

AXI

Accelerator
(Executing)
Accelerator
(Executing)

AXI

Data Copy

MemoryMemory

AXI

DMA
Controller

AXI

MemoryMemory

AXI

MemoryMemory

AXI

Enable Accelerator
Access for
Application

ARM

ARM

ARM

ARM

ARM

ARM

ARM

Device Driver Access Cost

189/21/2023

10

Accelerator Speedup

 Assume loop is executed n times.
Speedup = n(tCPU - taccel)

= n(tCPU - (tin + texec + tout))

 Compare accelerated system to non-accelerated system:

Page: 19

Logic Simulation Accelerator

 2 hours to compile 64K gate design
– No incremental compile

 75 I/O pins
 500+ observation points
 30 minutes to download compiled

descriptors to accelerator
 11 seconds to simulate 2000 µSec of

sim-time
 3-4 hours to unload accelerator data
– Pins & observation points

 Only marginally faster than SW
simulation
– Amdahl’s Law at work….

209/21/2023

11

Single-threaded vs Multi-threading

 One critical factor is the available parallelism in the application:
– Single-threaded/blocking: CPU waits for accelerator;
– Multithreaded/non-blocking: CPU continues to execute along with

accelerator.

 For multithread, CPU must have some useful work to do while
accelerators perform some tasks.
– Software environment must also support multi- threading.

Page: 21G. Khan

Caching Issues with Accelerators

 Main memory provides the primary data transfer mechanism to
the accelerator.

 Programs must ensure that caching does not invalidate main
memory data.
– CPU reads location S.
– Accelerator writes location S.
– CPU writes location S.
• Program will not see proper value of S stored in the cache

 Many CPU buses implement test-and-set atomic operations that
the accelerator can use to implement a semaphore. This can
serve as a highly efficient means of synchronizing inter-process
Communications (IPC)

9/21/2023 22

12

Configuring an Accelerator in the Ultra96 FPGA

PS-PL Interconnect

249/21/2023

13

Detailed PS Bussing Block Diagram

259/21/2023

PS-PL Interconnect

269/21/2023

14

AMBA

AMBA

APB AHB AXI

AXI-4
Memory Map

AXI-4
Stream

AXI-4
Lite

ATB AMBA 3.0
(2003)

AMBA 4.0
(2010)

Same Spec

Enhancements for FPGAs

Interface Features

Memory Map / Full
(AXI4)

Traditional Address/Data Burst (single address, multiple data)

Streaming

(AXI4-Stream)

Data-Only, Burst

Lite

(AXI4-Lite)

Traditional Address/Data—No Burst (single address, single data)

9/21/2023 27

The AXI Interface—AXI4-Stream

 No address channel, no read and
write, always just master to slave

 Effectively an AXI4 “write data”
channel

 Unlimited burst length
– AXI4 max 256
– Note: AXI4-Lite does not burst

 Virtually same signaling as AXI
Data Channels

 Protocol allows merging, packing,
width conversion

 Supports sparse, continuous,
aligned, unaligned streams

9/21/2023

AXI4-Stream Transfer

28

15

DMA Engine Overview

 DMA controller (DMAC) uses a 64-bit AXI provider interface
operating at the CPU_2x clock rate to perform DMA data
transfers to/from system memories and PL peripherals.

 Transfers are controlled by the DMA instruction execution
engine. The DMA engine runs on a small instruction set that
provides a flexible method of specifying DMA transfers.
– This method provides greater flexibility than the capabilities of DMA

controller methods.

 Program code for the DMA engine is written by software into a
region of system memory that is accessed by the controller using
its AXI provider interface.
– DMA engine instruction set includes instructions for DMA transfers and

management instructions to control the system.

299/21/2023

https://www.fpgadeveloper.com/2014/08/using-the-axi-dma-in-vivado.html/

Basic Dual Ported w/CDMA

309/21/2023

16

Multiple BRAM blocks

319/21/2023

FIFOs for buffering

329/21/2023

OCM

Data FIFOs
BRAM

H.264
Encoder

Controller

Raw

32-bit
Intra4x4,
Intra8x8

Encoded

8-bit (1
Byte)

streaming

BRAM0

BRAM1

BRAM2

AXI Full
Master

CDMA

AXI Lite Slave CPU

Control & State
Signals

PL PS

17

Master Connection

339/21/2023

Master connection to DRAM

349/21/2023

18

AXI Master Connection to OCM

Design flow suggestions

 Baseline the software
– Use WC datasets to profile the time spent in each function.
– Do the results make sense? If not, fix your profiling techniques…
– Generate a matrix of candidates that could be accelerated.
• Rank order, based on factors that are critical in your system.

 Determine “Speeds & Feeds” in your system
– I/O, memory, disk, CPU, algorithmic, busses, etc.?
– Which ones can you do anything about?
– Is latency an issue or is it throughput or both?

 Finalize data representations
– Is fixed point sufficient? How many bits?
– What about conversion overhead between Application and Accelerator

 Build a debug “nest” for the accelerator hardware.
– Build test pattern generation and stimulus system for block level debug
– Build controllability and observability hooks into your design.
• Doesn’t come for free.

369/21/2023

19

Design Suggestions

 Crawl before you run.
– Build, test and profile blocks using your new debug nest.
• Don’t try to debug the top level first.

– Use data streams from the software to confirm functionality and
performance (if possible)

 Remember the following debug wisdom:
– Disprove all theories.
– Firmware is not always wrong, but it is mostly wrong
– Hardware is not always perfect either.
• Crosstalk in FPGAs can cause weird problems

– If you must use someone else's IP, then make sure you get the verification IP
too.

 Remember the following about using design tools:
– GIGO – garbage in garbage out.
– Synthesis is a constraint design system.
– Spend time writing good constraints –> spend less time debugging.

379/21/2023

Design Suggestions

 Register bits make great controllability nodes
– ”tie” nodes to high or low when debugging.
– recompiling is not free.

 Register bits make great observability nodes
 Use at least one preprogrammed register as a ”Canary in the coal

mine”.
 There are a number of free widgets in the Xilinx IP Repo that can

help with your design or debugging.
– Test them in a separate nest to prove that they are doing what they

advertise.
• Then integrate the widget into your design.

389/21/2023

20

Questions?

9/21/2023 39

