SOC Design

HW Accelerators

Cop and . Processor B A9‘lc’ |t a8
B T ECortex A9 | Cortex
O-Frocessors S B
Mark McDermott Processor,

Fall 2023 HDual

. Display

Motivation for HW Acceleration

= OPs/S or OPs/Joule

— Exploit problem specific parallelism, Rgorthm
at thread and instructions level EE‘E;ZF

— Custom operational units or / \
“instructions” match the set of " s o F
operations needed for the algorithm Pt E|

. . . . sub ») E

(replace multiple instructions with sors D \’
one), custom word width arithmetic, oad ¥ G
etc. ::aggE 2 dodk oyoes

— Remove overhead of instruction & G

storage and fetch, ALU multiplexing

SW-Solution
12 clock cycles

XAPPS29.01_101503

9/21/2023

Co-Processors

Tightly Coupled Coprocessors

= |Integrated with processor control logic
— Task typically completes in a few cycles
— Small amounts of data
— Processor stalls waiting for the coprocessor
— Communication with coprocessor typically via registers and dedicated

control signals

‘ @ nsucon: @ Dacode @ Exocutn @ Weieback

'
7] s2xs2regeer L ‘
Instrocton- -
Fetch

Instruction-
Fetch

Interface

Instruction-
Fetch ‘customized
user-IP

Critical Path!

9/21/2023

Loosely-Coupled Coprocessors

= Loosely-Coupled Coprocessors
— Used for larger tasks than is the case for tightly-coupled coprocessors
— Task runs in parallel with main processor
— May take many cycles per task
— Large amounts of data that coprocessor may access independent of main
processor
— May or may not use the standard coprocessor interface

Processing System Programmable Logic

core

5 ARM CPU GPO < AXI-Lite > Timer
§ and L1-

£ Caches

O

(@]

z % > I

o AXI-Full

g ACP \J l/ DMA HLS IP
=

L2-Cache

https://www.xilinx.com/support/documentation/application _notes/xapp1170-zyng-hls.pdf

9/21/2023

Accelerator Coherency Port (ACP)

= Accelerator coherency port (ACP) is a 64-bit AXI slave interface
on the SCU that provides an asynchronous cache-coherent access
point directly from the PL to the Cortex-A9 MP-Core processor
subsystem.

= A range of system PL masters can use this interface to access the
caches and the memory subsystem exactly the way the APU
processors do to simplify software, increase overall system
performance, or improve power consumption.

9/21/2023

ACP Usage

= The ACP provides a low latency path between the PS and the
accelerators implemented in the PL when compared with a legacy
cache flushing and loading scheme. Steps that must take place in

an example of a PL-based accelerator are as follows:

1. The CPU prepares input data for the accelerator within its local cache
space.

2. The CPU sends a message to the accelerator using one of the general
purpose AXI master interfaces to the PL.

3. The accelerator fetches the data through the ACP, processes the data, and
returns the result through the ACP.

4. The accelerator sets a flag by writing to a known location to indicate that
the data processing is complete. Status of this flag can be polled by the
processor

9/21/2023

ACP Caveats

= NOTE: When compared to a tightly-coupled coprocessor, ACP
access latencies are relatively long. Therefore, ACP is not
recommended for fine-grained instruction level acceleration.

= For coarse-grain acceleration such as video frame-level
processing, ACP does not have a clear advantage over traditional
memory-mapped PL acceleration because the transaction
overhead is small relative to the transaction time and might
potentially cause undesirable cache thrashing.

= ACP is therefore optimal for medium-grain acceleration, such as
block-level crypto accelerator and video macro-block level
processing.

9/21/2023

Hardware Acceleration

Common HW Acceleration Applications

= Graphics

= Data Compression/Decompression

= Data Streaming: Audio/Video Encoding/Decoding, Network, I/0
= Image sensing and processing

= Logic Simulation

= Data Encryption: RSA, DES, AES

= FFT, DCT, EXP, LOG, ...

= Neuronal Networks

= Neuromorphic

9/21/2023

10

Decision Tree: When do you use a hardware accelerator?

Easy
Can an existing algorithm be implemented using existing ISA?
Can a new algorithm be devised to solve problem using existing ISA?
Can API be modified to expose necessary functionality or make it easier to exploit?
Can HW accelerator be added as a co-processor instruction
Can ISA be modified to better support algorithm?

Can the datapath be modified to better support algorithm, without breaking others?

Hard
9/21/2023 11

Hardware Acceleration

= Ad hoc interface to controlling processor
— Accelerator registers are memory-mapped
— Bus-based, FIFO, or register data interfaces
— Uses DMA for high-speed transfers
= Typically, the processor transfers data to the accelerator, issues a
“go” command, and then collects result data later.
— Polled or interrupt-based interface
= Accelerator may have its own path to/from memory

= Often fixed function but can be microcoded for programmability

9/21/2023 12

Hardware Accelerator Topologies

Accelerator appears as a device on a bus

CPU

Memory
block
accelerator Dcache
Dcache

Memory System Peripheral Bus (OPB, PCle) Memory System

Peripheral Bus (OPB, PCle)

Accelerator is tightly coupled into the processor memory system

CPU CPU
— accelerator — accelerator

Dcache

Memory Arbiter Dcache

Memory System Memory System

9/21/2023

13

Hardware Accelerator Interface: Interrupts or Polling?

= Polling interfaces usually require the processor to read a
memory-mapped register to determine the state of the
accelerator.

— Can the accelerator accept new input data?

— Is the accelerator done with its current task?
— Has the accelerator generated an error condition?

Polling interfaces offer minimal latency between the setting of a
condition on the accelerator and its

discovery by the controlling processor.
— But processor isn’t doing useful work while it polis...

9/21/2023

14

Hardware Accelerator Interface: Interrupts or Polling?

= Interrupt-based interfaces allow the accelerator to signal
conditions to the controlling processor.
— Interrupt latency is longer than is achievable via the polling method.

— But the processor can more easily proceed with other work while the
accelerator is busy with a task.

= Interrupts are more efficient for coarse grained parallelism (i.e.,
larger tasks with looser and less frequent synchronization
requirements)

= Interrupts may not work for real-time control tasks with tight
schedules

9/21/2023 15

Linux Interrupt latency measurement results

Note: heavy CPU load MAX: 43333 psecs
100000

10000
Y J
*

a *

o

Q

9 1000

<] * MAX

2

£ EMIN

T 100

7]

2

S |

-

10
1 - - - - -)
0 500 1000 1500 2000 2500 3000
Number of Samples (NOTE: each sample is 10,000 interrupts)
30 Million Samples

9/21/2023 16

Typical CPU - Accelerator Transaction

Application

open(/dev/accel); /* only once*

I* construct macroblocks */

macroblock = ...

syscall(¯oblock,
num_blocks)

[*'macroblock now has
transformed data */

Operating System

Enable Accelerator
Access for
Application

Data copy

| Flush Cache Range

Hardware

awn

AXI

B -

| Setup DMA Transfer

] I I

2 gy

AXI DMA

| Poll

| Setup DMA Transfer

——ll ARM II

id Controller

AXI

Accelerator
(Executing)

AXI1
> DMA

| Invalidate Cache Range

Data Copy

[ARM |
ﬁlARMI

i Controller

AXI

—]

[Arw =y

9/21/2023 17
Device Driver Access Cost
System Call Execution Breakdown
100%
90% Data Crossing Userkemel Boundary
80%
Coherence Actions
70% m Copy (User-to-Kernel)
Accelerator Execution O Copy (Kernel-to-User)
60% [Cache Invalidate
[Cache Writeback
50%
DMA Transfers [Accelerator Execution
40% @ DMA Transfer (A2M)
O DMA Transfer (M2A)
30%
[DMA Setup (A2M)
20% System Call overhead B DMA Sefup (M2A)
@ Call overhead
10%
0%
Execution Cycles
9/21/2023 18

Accelerator Speedup

= Assume loop is executed n times.
speedup =n (tCPU - taccel)
= n'(tCl?U - (tin + texec + tout))

= Compare accelerated system to non-accelerated system:

DCT+Quant Execution Time Comparison

3.2Ghz P4

1.7 GHz Xeon

Accelerated (w/Overhead)

Accelerated (Exectution
Only)

PowerPC Software 27.7

0 5 10 15 20 25 30

Time per Macroblock (us)

Page: 19

USER

Logic Simulation Accelerator
e

DESCRIPTION,

TEGAS
Design
Language

TEGAStation

= 2 hours to compile 64K gate design
— No incremental compile

= 751/0 pins
= 500+ observation points

= 30 minutes to download compiled
descriptors to accelerator

= 11 seconds to simulate 2000 puSec of
sim-time

= 3-4 hours to unload accelerator data
— Pins & observation points

= Only marginally faster than SW

simulation
— Amdahl’s Law at work....

TEXOUT

Opional
Output
Listing

9/21/2023 20

10

Single-threaded vs Multi-threading

= One critical factor is the available parallelism in the application:
— Single-threaded/blocking: CPU waits for accelerator;
— Multithreaded/non-blocking: CPU continues to execute along with
accelerator.

= For multithread, CPU must have some useful work to do while

accelerators perform some tasks.
— Software environment must also support multi- threading.

G. Khan Page: 21

Caching Issues with Accelerators

= Main memory provides the primary data transfer mechanism to
the accelerator.

= Programs must ensure that caching does not invalidate main

memory data.
— CPU reads location S.
— Accelerator writes location S.
— CPU writes location S.
¢ Program will not see proper value of S stored in the cache
= Many CPU buses implement test-and-set atomic operations that
the accelerator can use to implement a semaphore. This can
serve as a highly efficient means of synchronizing inter-process

Communications (IPC)

9/21/2023 22

11

Configuring an Accelerator in the Ultra96 FPGA

PS-PL Interconnect

Key Processing System Programmable Logic
FPD o
e S_AXI_LPD
PLPD OCM M_AXI_HPMO_LPD
Switch ol o [~} [-]
- afla M oloflofao 4 [
st ERERENE J =
(= B B3 .
SHS ST ol o H H
R BRaE R [
S_AXI_ACP_FPD HE EHEEE]
e oo HH HEHEE BE
MPCore S_AXI_ACE_FPD q M 0 B X b b
o'l o' o'l o'l o'l o H B
LPD Main cel £
= Switch Coherency a
&
o5 and
5§ Bypass
USBO WDMA 2|
= SMMU TCU
z
=
o
JEE— O] GPU cfg
[E—— . b

SATA

IOP Slaves A_
FPD PCle
Main
10Ps with Masters Switch FPD Slaves

FPD SLCRs
I

PMU Processor

—'l LPD Slaves

IOP Inbound

0P Outbound

S0 s1/s2 3, S4 S5,
DDR Memory Controller

9/21/2023

24

12

Detailed PS Bussing Block Diagram

& XILINX » ALL PROGRAMMABLE.

| savanced cos reguisors B A0 Timeoutslock

| sonossamaam
I o
I e

v

@ s

e I NI

e

Programmable
X Domin Bidge: Lw?c
0CM Memory TR S Tsnsston st Uit

SAXLHPAFPD

MAXLHEMO_FPD
MAXLHPMI_FPD

4 oo
B msmend sanm
o - gy gy
- — "
s Switch e FE
— oy swesm 3 D
o’ MPCore shero 3 2
g,
s ®

T

10P Inbound

/' LPD Main /
e s/

10P Outbound

SI0U Outbound.

FPD Main +—»[P]
BIED

L 4 | 1
ki
S
R DDR Memory Controller
9/21/2023 25
Interface Name Description Master | Slave
S_AXI_ACP_FPD The Accelerator Coherency Port PL PS FPD
(ACP) provides a coherent path
between the PL and the APU’s Level
2 cache.
S_AXI_ACE_FPD The AXT Coherency Extension PL PSFPD
(ACE) can access system memory and
the local memory of the APU, via the
Cache Coherent Interconnect (CCI);
sharing up-to-date information.
S_AXI_HPCO_FPD Each High-Performance Coherent PL PSFPD
(HPC) port is directly connected to
SAXIHPCLEFPD | 4} CCI and System Memory PL PSFPD
Management Unit (SMMU).
S_AXI_HPO_FPD These High-Performance (HP) ports PL PS FPD
pass through the SMMU and are con-
S_AXI_HP1_FPD nected to the interconnect’s central PL PSFPD
S_AXI HP2 FPD | switch in the FPD. They are con- PL PS FPD
B ——— nected to three dedicated ports on the
S_AXI_HP3_FPD DDR controller. However, sharing PL PS FPD
exists with the DisplayPort and Full-
Power DMA (FP-DMA).
M_AXI_HPMO_FPD | High-Performance port from the FPD | PSFPD | PL
to the PL.

M_AXI_HPM1_FPD PSFPD | PL
S_AXI_LPD A high-performance path from the PL. | PL PSLPD
to the LPD. This port can access the

RPU when the FPD is powered down.
M_AXI_HPMO_LPD | Low-latency high-performance port | PS LPD | PL
that interfaces the LPD to the PL.
9/21/2023 26

13

AMBA

AMBA
Enhancements for FPGAs
AMBA 3.0
(2003)
Same Spec ,__|___ -_— -
—_ I | AMBA 4.0
(2010)
Interface Features
Memory Map / Full Traditional Address/Data Burst (single address, multiple data)
(AXI4)
Streaming Data-Only, Burst
(AX14-Stream)
Lite Traditional Address/Data—No Burst (single address, single data)
(AXI4-Lite)

£ XILINX » ALL PROGRAMMABLE.

9/21/2023

The AXI Interface—AXI4-Stream

= No address channel, no read and
write, always just master to slave

= Effectively an AXI4 “write data”

channel

.. AXl4-Stream Transfer
= Unlimited burst length

— AXI4 max 256
— Note: AXI4-Lite does not burst

= Virtually same signaling as AXI

Write data channel

Wite | Wite | Write | Wite
data data data data

Data Channels e

—_— — —— —

= Protocol allows merging, packing,
width conversion

= Supports sparse, continuous,
aligned, unaligned streams

£ XILINX » ALL PROGRAMMABLE.

Slave
interface

9/21/2023

14

DMA Engine Overview

= DMA controller (DMAC) uses a 64-bit AXI provider interface
operating at the CPU_2x clock rate to perform DMA data
transfers to/from system memories and PL peripherals.

= Transfers are controlled by the DMA instruction execution
engine. The DMA engine runs on a small instruction set that
provides a flexible method of specifying DMA transfers.
— This method provides greater flexibility than the capabilities of DMA
controller methods.
= Program code for the DMA engine is written by software into a
region of system memory that is accessed by the controller using

its AXI provider interface.
— DMA engine instruction set includes instructions for DMA transfers and
management instructions to control the system.

https://www.fpgadeveloper.com/2014/08/using-the-axi-dma-in-vivado.html/

9/21/2023

29

Basic Dual Ported w/CDMA

ZYNQ™

UltraSCALE~

Slvlespvvlvivivvieeivel

v

9/21/2023

30

15

Multiple BRAM blocks

ey
Tyvaultra, w 00 ey
Wooa
M e 0 {1 so0 s B s 41— ||
MR AT £SO] = - e oo s =
Ll canun 2 YNQ w00 4] £ s w2 woran] ——H | : b
. P | b a3 i mem,_gen_ 1
UHraSCALE Shesan sAMPORIA 4]+ s ponT
L 0 + ERAMLFORTE

T— i bram_ctrl 0 b mern.gen 0
| EE b S0 BRAMPORTA a|\>—| 4 BRAMLPORTA
—_— + wanponre
o B
ax_bram_cul 1 sk Mmnory
Hesan maupoRia 4’1

bik mem_gen_2

4 wRw poRTA

BRAM A

:‘ BRAM_PORTR
o T WK iy Sy
£ | Systolic Array
< (T*T)
w
BRAM C
9/21/2023
FIFOs for buffering
PLPS
Controller |« » AXlLite Slave | => CPU
Control & State
Signals I.\.XI Full r_l l_’ CDMA ‘_1
1 ocm
BRAM —_—
Data FIFOs .
Raw BRAMO —_—
32-bit R
Intradx4, BRAM1
H.264 Intra8x8
Encoder
_Encoded EIIII
BRAM2
s bit (1
Byte)
streaming

9/21/2023

32

16

Master Connection

axi_smc
/4 s00_Ax1 .->—(‘.
B Moo Axi | —
=
Image_filter (Pre-Production) AXI SmartConnect
processing_system7_0
{>DDOR
4S_AXI_HPO_FIFO_CTRL {O Fixen_o
o S_AXI_HP2_FIFO_CTRL
+s_axi_nrPo ps7_0_axi_periph
- =
+5_AxI_HP2 ZYNO I
_AXI_GPO_ACLK t
5_AXI_HPO_AGLK
: AXI_HP2_ACLK
ZYNQT Processing System
Lo AXT Inferconnect
+ so0_axi rst_ps7_0_100M
rat¥ - —
| _K. Mo0_pxa s Tt mb_resetim
Qaresetn [T TAT™ i
reset_in bus_struct_reset{0-0]
AXT SmartConnect Qaux_reset_in peripheral_reset{0-0]mm
w=mb_debug_sys_rst i s
=dom_locked peripheral_s
Processor System Reset
9/21/2023 33

Master connection to DRAM

9/21/2023

34

17

AXI Master Connection to OCM

s et A5

]

i)
. o s b 0}

[y —

i

Design flow suggestions

= Baseline the software
— Use WC datasets to profile the time spent in each function.
— Do the results make sense? If not, fix your profiling techniques...
— Generate a matrix of candidates that could be accelerated.
¢ Rank order, based on factors that are critical in your system.

= Determine “Speeds & Feeds” in your system
— 1/0, memory, disk, CPU, algorithmic, busses, etc.?
— Which ones can you do anything about?
— Is latency an issue or is it throughput or both?

= Finalize data representations
— Is fixed point sufficient? How many bits?
— What about conversion overhead between Application and Accelerator

= Build a debug “nest” for the accelerator hardware.
— Build test pattern generation and stimulus system for block level debug
— Build controllability and observability hooks into your design.
* Doesn’t come for free.

9/21/2023

36

18

Design Suggestions

= Crawl before you run.
— Build, test and profile blocks using your new debug nest.
e Don’t try to debug the top level first.
— Use data streams from the software to confirm functionality and
performance (if possible)

= Remember the following debug wisdom:
— Disprove all theories.
— Firmware is not always wrong, but it is mostly wrong
— Hardware is not always perfect either.
e Crosstalk in FPGAs can cause weird problems
— If you must use someone else's IP, then make sure you get the verification IP
too.

= Remember the following about using design tools:
— GIGO - garbage in garbage out.
— Synthesis is a constraint design system.
— Spend time writing good constraints —> spend less time debugging.

9/21/2023 37

Design Suggestions

= Register bits make great controllability nodes
— "tie” nodes to high or low when debugging.
— recompiling is not free.

= Register bits make great observability nodes

= Use at least one preprogrammed register as a ”"Canary in the coal
mine”.

= There are a number of free widgets in the Xilinx IP Repo that can
help with your design or debugging.

— Test them in a separate nest to prove that they are doing what they
advertise.
* Then integrate the widget into your design.

9/21/2023 38

19

Questions?

9/21/2023

39

20

