

ACP Usage

The ACP provides a low latency path between the PS and the accelerators implemented in the PL when compared with a legacy cache flushing and loading scheme. Steps that must take place in an example of a PL-based accelerator are as follows:

- **1.** The CPU prepares input data for the accelerator within its local cache space.
- 2. The CPU sends a message to the accelerator using one of the general purpose AXI master interfaces to the PL.
- **3.** The accelerator fetches the data through the ACP, processes the data, and returns the result through the ACP.
- 4. The accelerator sets a flag by writing to a known location to indicate that the data processing is complete. Status of this flag can be polled by the processor

9/21/2023

<section-header><list-item><list-item><list-item><list-item>

Common HW Acceleration Applications
Graphics
Data Compression/Decompression
Data Streaming: Audio/Video Encoding/Decoding, Network, I/O
Image sensing and processing
Logic Simulation
Data Encryption: RSA, DES, AES
= FFT, DCT, EXP, LOG,
Neuronal Networks
Neuromorphic
9/21/2023 10

Interface Name	Description	Master	Slave
S_AXI_ACP_FPD	The Accelerator Coherency Port (ACP) provides a coherent path between the PL and the APU's Level 2 cache.	PL	PS FPD
S_AXI_ACE_FPD	The AXI Coherency Extension (ACE) can access system memory and the local memory of the APU, via the Cache Coherent Interconnect (CCI); sharing up-to-date information.	PL	PS FPD
S_AXI_HPC0_FPD	Each High-Performance Coherent (HPC) port is directly connected to the CCI and System Memory Management Unit (SMMU).	PL	PS FPD
S_AXI_HPC1_FPD		PL	PS FPD
S_AXI_HP0_FPD	These High-Performance (HP) ports pass through the SMMU and are con- nected to the interconnect's central switch in the FPD. They are con- nected to three dedicated ports on the DDR controller. However, sharing exists with the DisplayPort and Full- Power DMA (FP-DMA).	PL	PS FPD
S_AXI_HP1_FPD		PL	PS FPD
S_AXI_HP2_FPD		PL	PS FPD
S_AXI_HP3_FPD		PL	PS FPD
M_AXI_HPM0_FPD	High-Performance port from the FPD to the PL.	PS FPD	PL
M_AXI_HPM1_FPD		PS FPD	PL
S_AXI_LPD	A high-performance path from the PL to the LPD. This port can access the RPU when the FPD is powered down.	PL	PS LPD
M_AXI_HPM0_LPD	Low-latency high-performance port that interfaces the LPD to the PL.	PS LPD	PL

Baseline the software
 Use WC datasets to profile the time spent in each function.
– Do the results make sense? If not, fix your profiling techniques
 Generate a matrix of candidates that could be accelerated.
 Rank order, based on factors that are critical in your system.
Determine "Speeds & Feeds" in your system
– I/O, memory, disk, CPU, algorithmic, busses, etc.?
- Which ones can you do anything about?
— Is latency an issue or is it throughput or both?
Finalize data representations
– Is fixed point sufficient? How many bits?
 What about conversion overhead between Application and Accelerate
Build a debug "nest" for the accelerator hardware.
 Build test pattern generation and stimulus system for block level debu
 Build controllability and observability hooks into your design. Descrift come for free
Doesn't come for free.

