ECE382M.20: System-on-Chip (SoC) Design

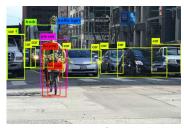
Lecture 1 – Project Overview

Andreas Gerstlauer
Electrical and Computer Engineering
The University of Texas at Austin

gerstl@ece.utexas.edu

Lecture 1: Outline

- Marketing requirements
 - · Market focus, product description
 - · Cost metrics, product features
- Product requirements
 - Deep learning
 - · Hardware acceleration
- Project description
 - Deep/Convolutional Neural Networks (DNNs/CNNs)
 - Object recognition
 - You Only Look Once (YOLO) CNN
 - · Hardware and software development tasks


ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

2

Market Focus

- Visual object recognition
 - Computer vision for drones, selfdriving cars, home automation, ...
 - Camera-based automotive driver assistance systems (ADAS)

Source: Jonathan Hui

What problem are we trying to solve?

- · Standard camera for
 - Collision avoidance
 - Lane tracking/keeping
 - Traffic sign recognition
 - ..
- Detect, locate and classify objects in video stream
 - Bounding boxes
 - Types of objects

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

3

Competition

- MobilEye (an Intel company)
 - http://mobileye.com
 - Custom ASIC/SoC solution
- Movidius (an Intel company)
 - https://www.movidius.com/
 - Custom ASIC/SoC solution
- NVIDIA DRIVE
 - https://www.nvidia.com/en-us/self-driving-cars
 - ARM+GPU based solution
 - · Used by Tesla

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

4

Product Description

- Visual object recognition SoC
 - Deliver hardware + software intellectual property (IP)
- Cost metrics
 - Real-time: frames per second (FPS), reaction time
 - Detection accuracy: mean average precision (mAP)
 - Power/thermal: W and operating temperature (°C)
 - Cost: \$ or die area (mm²)
- Product features
 - Supported image resolutions
 - · Supported detection classes
 - Flexibility: dynamic, over-the-air reprogramming/updating

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

5

Product Requirements

- High detection accuracy → deep learning
 - Convolutional Neural Network (CNN)
 - · Trained on large image data set
 - · Very computationally intensive
- High frame rate, low power → hardware acceleration
 - Key/dominating computational kernels
 - Convolutions and matrix operations
 - General matrix-matrix multiplication (GEMM)
- Flexiblity → software support
 - · Standard embedded Linux environment
 - Software optimizations for performance and power

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

6

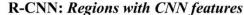
Objection Detection using Deep Learning

· Classification vs. detection

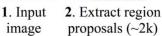
Image classification, global feature

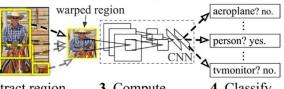
Object detection, classification + localization

- Convolutional neural networks (CNNs) widely used for image classification
- Sliding windows of different size/shape + CNN-based classification for brute-force, naïve object detection

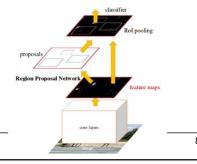

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer


7

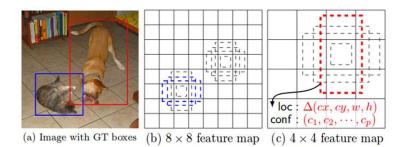

Object Recognition (1)

Region based (Fast/Faster/Mask R-CNN)



3. Compute CNN features

4. Classify regions

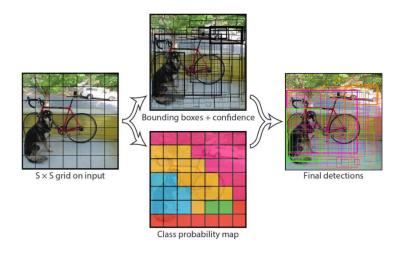

- Fast versions by sharing convolutional layers
- Common feature extraction for region proposal and classification

ECE382M.20: SoC Design, Lecture 1

Object Recognition (2)

Single Shot Multibox Detector (SSD)

- Apply windows of fixed size and shape at multiple scales
- · Detect both bounding box and class within window
- Predict likelihood of different box/class combinations


ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

9

Object Detection (3)

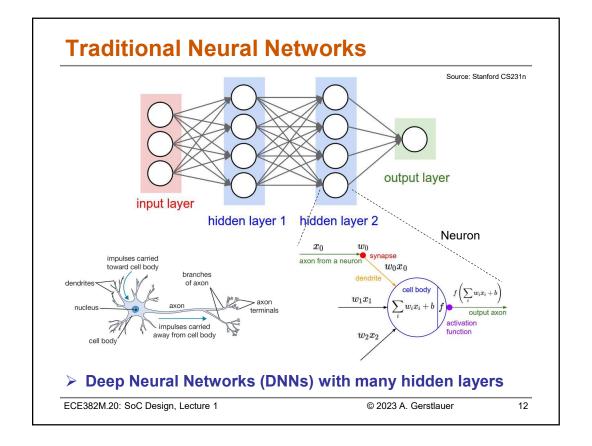
- You Only Look Once (YOLO)
 - Single grid/scale, predict arbitrary bounding box (and class)

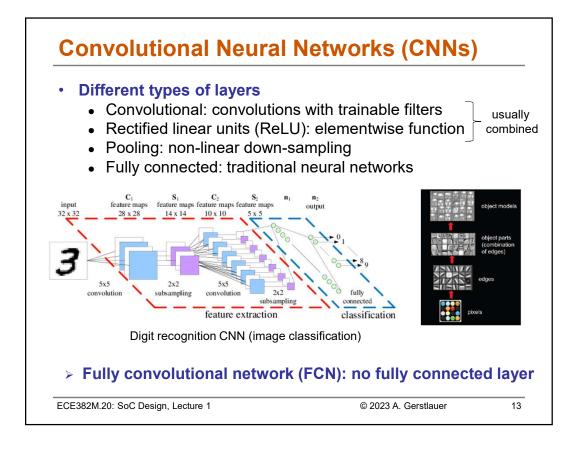
ECE382M.20: SoC Design, Lecture 1

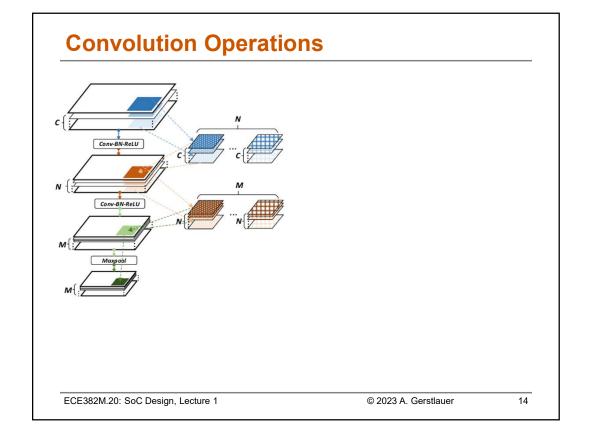
© 2023 A. Gerstlauer

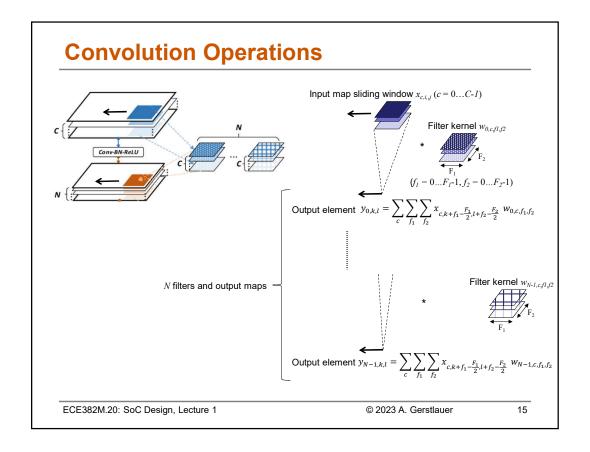
10

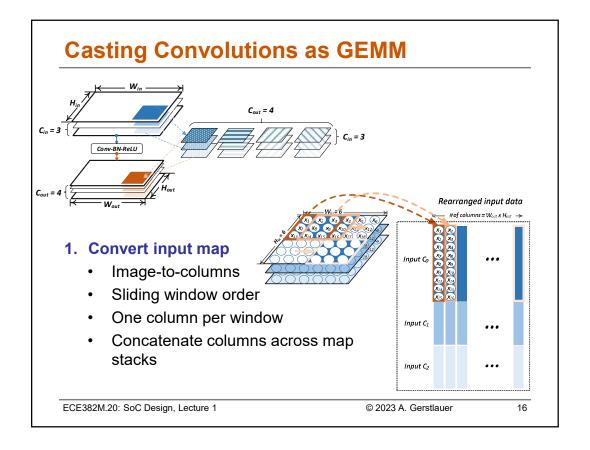
You Only Look Once (YOLO)

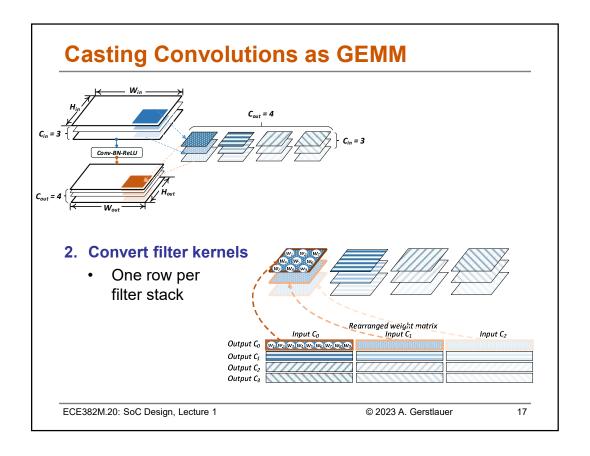


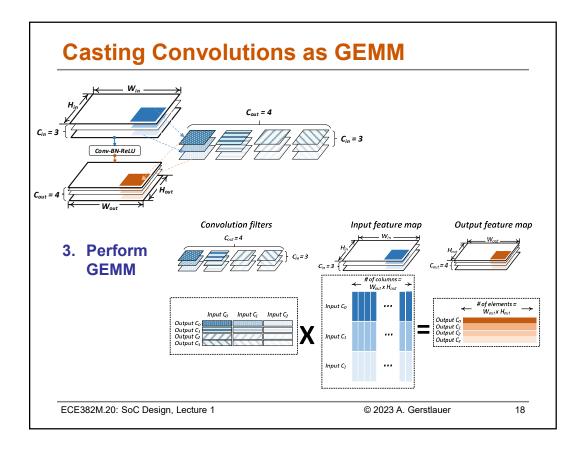

- · Default implementation on top of Darknet
 - General open-source CNN framework/library in C
 - Also available for other deep learning frameworks
 - PyTorch, Caffee2 [Facebook], TensorFlow [Google]


ECE382M.20: SoC Design, Lecture 1


© 2023 A. Gerstlauer


11





Project Description

- HW/SW co-design of an embedded SoC
 - Low-power YOLO/Darknet implementation
 - ARM-based target platform
 - ARM Cortex-A9 processor, memory components, I/O devices
 - Custom hardware accelerators (GEMM)
 - Interconnected via standard system busses or memory/cache interfaces
 - Virtual and physical prototyping
 - SystemC TLM-based virtual platform model (QEMU ARM simulator)
 - ARM- and Xilinx FPGA-based prototyping board (Zynq-7000)
 - > Lab and project in teams
 - > 2-3 per team, 20 teams for 20 boards

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

19

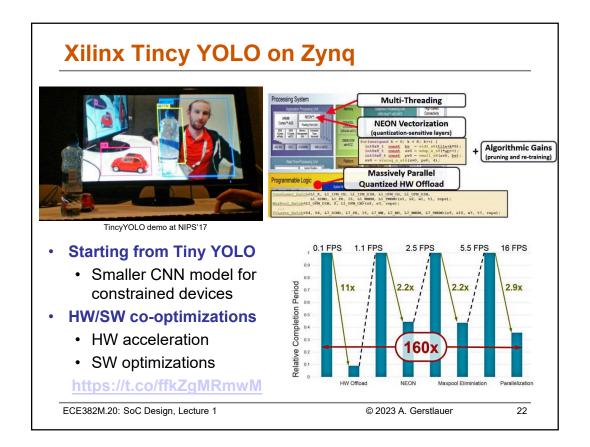
Project Objectives and Activities

- Project objective:
 - Implement the YOLO/Darknet code on a ARM based SoC while meeting the performance, area and power metrics.
- Project activities:
 - Profile the YOLO/Darknet software implementation to determine performance bottlenecks
 - Optimize the YOLO/Darknet software (fixed point operation)
 - Partition the software into components which will run on the ARM processor and on hardware accelerators
 - Synthesize accelerators into Verilog for gate level implementation
 - Co-simulate and prototype the HW/SW implementation
 - Estimate timing, area and power metrics and validate against product requirements

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

20


Development Tasks

- ARM software development
 - Compile and profile YOLO/Darknet on ARM board
 - Convert floating-point to fixed-point code and check mAP
 - Compile and profile fixed-point Yolo on ARM board
 - Optimize software on dual-core ARM platform
 - Develop hardware abstraction layer (HAL) and I/O handler
 - Develop interrupt handler & driver (Linux kernel module)
- Hardware development on FPGA
 - Hardware accelerators (synthesize fixed-point code)
 - Interface to ARM board and on-chip bus
 - Memory/cache interfaces (optional DRAM controller)
 - Interrupt logic, clocking & reset
 - Debug, diagnostics

ECE382M.20: SoC Design, Lecture 1

© 2023 A. Gerstlauer

21

