
ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 1 – Project Overview

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 2

Lecture 1: Outline

• Marketing requirements

• Market focus, product description

• Cost metrics, product features

• Product requirements

• Deep learning

• Hardware acceleration

• Project description

• Deep/Convolutional Neural Networks (DNNs/CNNs)

• Object recognition

• You Only Look Once (YOLO) CNN

• Hardware and software development tasks

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 2

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 3

Market Focus

• Visual object recognition
• Computer vision for drones, self-

driving cars, home automation, …
 Camera-based automotive driver

assistance systems (ADAS)

 What problem are we trying to solve?
• Standard camera for

– Collision avoidance
– Lane tracking/keeping
– Traffic sign recognition
– …

• Detect, locate and classify
objects in video stream

– Bounding boxes
– Types of objects

Source: Jonathan Hui

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 4

Competition

• MobilEye (an Intel company)

• http://mobileye.com

• Custom ASIC/SoC solution

• Movidius (an Intel company)

• https://www.movidius.com/

• Custom ASIC/SoC solution

• NVIDIA DRIVE

• https://www.nvidia.com/en-us/self-driving-cars

• ARM+GPU based solution

• Used by Tesla

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 3

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 5

Product Description

• Visual object recognition SoC
• Deliver hardware + software intellectual property (IP)

• Cost metrics
• Real-time: frames per second (FPS), reaction time
• Detection accuracy: mean average precision (mAP)
• Power/thermal: W and operating temperature (°C)
• Cost: $ or die area (mm2)

• Product features
• Supported image resolutions
• Supported detection classes
• Flexibility: dynamic, over-the-air reprogramming/updating

Product Requirements

• High detection accuracy  deep learning

• Convolutional Neural Network (CNN)

• Trained on large image data set

• Very computationally intensive

• High frame rate, low power  hardware acceleration

• Key/dominating computational kernels

• Convolutions and matrix operations

• General matrix-matrix multiplication (GEMM)

• Flexiblity software support

• Standard embedded Linux environment

• Software optimizations for performance and power

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 6

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 4

Objection Detection using Deep Learning

• Classification vs. detection

• Convolutional neural networks (CNNs) widely used for
image classification

• Sliding windows of different size/shape + CNN-based
classification for brute-force, naïve object detection

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 7

Image classification, global feature Object detection, classification + localization

Object Recognition (1)

• Region based (Fast/Faster/Mask R-CNN)

• Fast versions by sharing
convolutional layers

• Common feature extraction
for region proposal and
classification

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 8

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 5

Object Recognition (2)

• Single Shot Multibox Detector (SSD)

• Apply windows of fixed size and shape at multiple scales

• Detect both bounding box and class within window

• Predict likelihood of different box/class combinations

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 9

Object Detection (3)

• You Only Look Once (YOLO)

• Single grid/scale, predict arbitrary bounding box (and class)

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 10

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 6

You Only Look Once (YOLO)

• Default implementation on top of Darknet
• General open-source CNN framework/library in C

• Also available for other deep learning frameworks
• PyTorch, Caffee2 [Facebook], TensorFlow [Google]

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 11

h
tt

p
s:

//
p

jr
e

d
di

e
.c

o
m

/d
ar

kn
et

/y
o

lo
/

Traditional Neural Networks

 Deep Neural Networks (DNNs) with many hidden layers

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 12

Neuron

Source: Stanford CS231n

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 7

Convolutional Neural Networks (CNNs)

• Different types of layers
● Convolutional: convolutions with trainable filters
● Rectified linear units (ReLU): elementwise function
● Pooling: non-linear down-sampling
● Fully connected: traditional neural networks

 Fully convolutional network (FCN): no fully connected layer

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 13

usually
combined

Digit recognition CNN (image classification)

Convolution Operations

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 14

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 8

Convolution Operations

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 15

Input map sliding window xc,i,,j (c = 0…C-1)

*

Filter kernel w0,c,f1,f2

Output element 𝑦଴,௞,௟ = ෍ ෍ ෍ 𝑥
௖,௞ା௙భି

ிభ
ଶ

,௟ା௙మି
ிమ
ଶ

 𝑤଴,௖,௙భ,௙మ

௙మ௙భ௖

(f1 = 0…F1-1, f2 = 0…F2-1)
F1

F2

*

Filter kernel wN-1,c,f1,f2

F1

F2

Output element 𝑦ேିଵ,௞,௟ = ෍ ෍ ෍ 𝑥
௖,௞ା௙భି

ிభ
ଶ

,௟ା௙మି
ிమ
ଶ

 𝑤ேିଵ,௖,௙భ,௙మ

௙మ௙భ௖

N filters and output maps

Casting Convolutions as GEMM

1. Convert input map

• Image-to-columns

• Sliding window order

• One column per window

• Concatenate columns across map
stacks

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 16

Cin = 3

Cout = 4

Conv-BN-ReLU

Cin = 3

Cout = 4

Wout

Hin

Hout

Win

H in
= 6

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 9

Casting Convolutions as GEMM

2. Convert filter kernels

• One row per
filter stack

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 17

Cin = 3

Cout = 4

Conv-BN-ReLU

Cin = 3

Cout = 4

Wout

Hin

Hout

Win

Casting Convolutions as GEMM

3. Perform
GEMM

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 18

Cin = 3

Cout = 4

Conv-BN-ReLU

Cin = 3

Cout = 4

Wout

Hin

Hout

Win

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 19

Project Description

• HW/SW co-design of an embedded SoC

• Low-power YOLO/Darknet implementation

• ARM-based target platform
– ARM Cortex-A9 processor, memory components, I/O devices

– Custom hardware accelerators (GEMM)

– Interconnected via standard system busses or memory/cache interfaces

• Virtual and physical prototyping
– SystemC TLM-based virtual platform model (QEMU ARM simulator)

– ARM- and Xilinx FPGA-based prototyping board (Zynq-7000)

 Lab and project in teams
 2-3 per team, 20 teams for 20 boards

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 20

Project Objectives and Activities

• Project objective:

• Implement the YOLO/Darknet code on a ARM based SoC
while meeting the performance, area and power metrics.

• Project activities:

• Profile the YOLO/Darknet software implementation to
determine performance bottlenecks

• Optimize the YOLO/Darknet software (fixed point operation)

• Partition the software into components which will run on the
ARM processor and on hardware accelerators

• Synthesize accelerators into Verilog for gate level
implementation

• Co-simulate and prototype the HW/SW implementation

• Estimate timing, area and power metrics and validate
against product requirements

ECE382M.20: System-on-Chip (SoC) Design Lecture 1

© 2023 A. Gerstlauer 11

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 21

Development Tasks

• ARM software development
• Compile and profile YOLO/Darknet on ARM board
• Convert floating-point to fixed-point code and check mAP
• Compile and profile fixed-point Yolo on ARM board
• Optimize software on dual-core ARM platform
• Develop hardware abstraction layer (HAL) and I/O handler
• Develop interrupt handler & driver (Linux kernel module)

• Hardware development on FPGA
• Hardware accelerators (synthesize fixed-point code)
• Interface to ARM board and on-chip bus
• Memory/cache interfaces (optional DRAM controller)
• Interrupt logic, clocking & reset
• Debug, diagnostics

Xilinx Tincy YOLO on Zynq

• Starting from Tiny YOLO

• Smaller CNN model for
constrained devices

• HW/SW co-optimizations

• HW acceleration

• SW optimizations

https://t.co/ffkZgMRmwM

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 22

TincyYOLO demo at NIPS’17

