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Lecture 1: Outline

• Marketing requirements

• Market focus, product description

• Cost metrics, product features

• Product requirements

• Deep learning

• Hardware acceleration

• Project description

• Deep/Convolutional Neural Networks (DNNs/CNNs)

• Object recognition

• You Only Look Once (YOLO) CNN

• Hardware and software development tasks
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Market Focus

• Visual object recognition
• Computer vision for drones, self-

driving cars, home automation, …
 Camera-based automotive driver 

assistance systems (ADAS)

 What problem are we trying to solve?
• Standard camera for

– Collision avoidance
– Lane tracking/keeping
– Traffic sign recognition
– …

• Detect, locate and classify 
objects  in video stream

– Bounding boxes 
– Types of objects

Source: Jonathan Hui
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Competition

• MobilEye (an Intel company)

• http://mobileye.com

• Custom ASIC/SoC solution

• Movidius (an Intel company)

• https://www.movidius.com/

• Custom ASIC/SoC solution

• NVIDIA DRIVE

• https://www.nvidia.com/en-us/self-driving-cars

• ARM+GPU based solution

• Used by Tesla
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Product Description

• Visual object recognition SoC
• Deliver hardware + software intellectual property (IP)

• Cost metrics
• Real-time: frames per second (FPS), reaction time
• Detection accuracy: mean average precision (mAP)
• Power/thermal: W and operating temperature (°C)
• Cost: $ or die area (mm2)

• Product features
• Supported image resolutions
• Supported detection classes
• Flexibility: dynamic, over-the-air reprogramming/updating

Product Requirements

• High detection accuracy  deep learning

• Convolutional Neural Network (CNN)

• Trained on large image data set

• Very computationally intensive

• High frame rate, low power  hardware acceleration

• Key/dominating computational kernels

• Convolutions and matrix operations

• General matrix-matrix multiplication (GEMM)

• Flexiblity software support

• Standard embedded Linux environment

• Software optimizations for performance and power
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Objection Detection using Deep Learning

• Classification vs. detection

• Convolutional neural networks (CNNs) widely used for 
image classification

• Sliding windows of different size/shape + CNN-based 
classification for brute-force, naïve object detection 

ECE382M.20: SoC Design, Lecture 1 © 2023 A. Gerstlauer 7

Image classification, global feature Object detection, classification + localization

Object Recognition (1)

• Region based (Fast/Faster/Mask R-CNN)

• Fast versions by sharing 
convolutional layers 

• Common feature extraction
for region proposal and
classification 
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Object Recognition (2)

• Single Shot Multibox Detector (SSD)

• Apply windows of fixed size and shape at multiple scales

• Detect both bounding box and class within window

• Predict likelihood of different box/class combinations
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Object Detection (3)

• You Only Look Once (YOLO)

• Single grid/scale, predict arbitrary bounding box (and class)
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You Only Look Once (YOLO)

• Default implementation on top of Darknet
• General open-source CNN framework/library in C

• Also available for other deep learning frameworks
• PyTorch, Caffee2 [Facebook], TensorFlow [Google]
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Traditional Neural Networks

 Deep Neural Networks (DNNs) with many hidden layers
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Neuron

Source: Stanford CS231n
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Convolutional Neural Networks (CNNs)

• Different types of layers
● Convolutional: convolutions with trainable filters 
● Rectified linear units (ReLU): elementwise function
● Pooling: non-linear down-sampling 
● Fully connected: traditional neural networks

 Fully convolutional network (FCN): no fully connected layer
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usually 
combined

Digit recognition CNN (image classification) 

Convolution Operations
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Convolution Operations
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N filters and output maps

Casting Convolutions as GEMM

1. Convert input map

• Image-to-columns

• Sliding window order

• One column per window

• Concatenate columns across map
stacks
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Casting Convolutions as GEMM

2. Convert filter kernels

• One row per
filter stack
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Casting Convolutions as GEMM

3. Perform 
GEMM
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Project Description

• HW/SW co-design of an embedded SoC

• Low-power YOLO/Darknet implementation

• ARM-based target platform
– ARM Cortex-A9 processor, memory components, I/O devices

– Custom hardware accelerators (GEMM)

– Interconnected via standard system busses or memory/cache interfaces

• Virtual and physical prototyping
– SystemC TLM-based virtual platform model (QEMU ARM simulator)

– ARM- and Xilinx FPGA-based prototyping board (Zynq-7000)

 Lab and project in teams
 2-3 per team, 20 teams for 20 boards
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Project Objectives and Activities

• Project objective:

• Implement the YOLO/Darknet code on a ARM based SoC
while meeting the performance, area and power metrics. 

• Project activities:

• Profile the YOLO/Darknet software implementation to 
determine performance bottlenecks

• Optimize the YOLO/Darknet software (fixed point operation)

• Partition the software into components which will run on the 
ARM processor and on hardware accelerators

• Synthesize accelerators into Verilog for gate level 
implementation

• Co-simulate and prototype the HW/SW implementation

• Estimate timing, area and power metrics and validate 
against product requirements
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Development Tasks

• ARM software development
• Compile and profile YOLO/Darknet on ARM board
• Convert floating-point to fixed-point code and check mAP
• Compile and profile fixed-point Yolo on ARM board
• Optimize software on dual-core ARM platform
• Develop hardware abstraction layer (HAL) and I/O handler 
• Develop interrupt handler & driver (Linux kernel module)

• Hardware development on FPGA
• Hardware accelerators (synthesize fixed-point code)
• Interface to ARM board and on-chip bus
• Memory/cache interfaces (optional DRAM controller)
• Interrupt logic, clocking & reset
• Debug, diagnostics

Xilinx Tincy YOLO on Zynq

• Starting from Tiny YOLO

• Smaller CNN model for
constrained devices

• HW/SW co-optimizations

• HW acceleration

• SW optimizations

https://t.co/ffkZgMRmwM
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TincyYOLO demo at NIPS’17


