
ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 11 – Advanced HLS Techniques

Source: Z. Zhang, Cornell Univ.

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 2

Lecture 11: Outline

• Advanced scheduling approaches

• SDC-based scheduling

• Modulo scheduling

• HLS design space exploration (DSE)

• Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 2

• SDC = System of difference constraints

3

SDC-Based Scheduling

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si : schedule variable for operation i

 Dependence constraints
<v0 , v4 > : s0 – s4 ≤ 0
<v1 , v3 > : s1 – s3 ≤ 0
<v2 , v3 > : s2 – s3 ≤ 0
<v3 , v4 > : s3 – s4 ≤ 0
<v4 , v5 > : s4 – s5 ≤ 0

 Cycle time constraints
v1 v5 : s1 – s5 ≤ -1
v2 v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013]

ld

+

ldld

x

v1

v3

v4

v2v0

3ns

1ns

1ns

stv5
1ns

Timing
constraints

Operation
chaining is
naturally
supported

To meet the cycle time, v2 and v5 should have
a minimum separation of one cycle

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Difference Constraints

• A difference constraint is a formula in the form of
x – y b or x – y < b for numeric variables x and y, and
constant b

• With scheduling variables, we use integer difference
constraints to model a variety of scheduling constraints

• x and y must have integral values
– Thus b only needs to be an integer => form x – y < b is redundant

4ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 3

SDC Constraint Matrix

• Constraint matrix of SDC(X, C) is a totally unimodular matrix (TUM)

• Every nonsingular square submatrix has a determinant of -1/+1

s0

s1

s2

s3

s4

s5

0
0
0
0
0

-1
-1

A x b

• Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular
and b is a vector of integers, every extreme point of polyhedron
{x : Ax ≤ b} is integral.

 Solving linear programming (LP) relaxation leads to integral
solutions

5

1
0
0
0
0
0
0

0
1
0
0
0
0
1

0
0
1
0
0
1
0

0
-1
-1
1
0
0
0

-1
0
0

-1
1

0 0

0 0
0
0

-1
-1
-1

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

• Difference constraints can be conveniently represented
using constraint graph

• Each vertex represents a variable, and each weighted
edge corresponds to a different constraint

• Detect infeasibility by the presence of negative cycle (by
solving single-source shortest path)

6

SDC Constraint Graph

s0

s1

s2

s3
s4

00

0

0

-1

s0 – s4 ≤ 0
s1 – s3 ≤ 0
s2 – s3 ≤ 0
s3 – s4 ≤ 0
s4 – s5 ≤ 0
s2 – s4 ≤ -1
s1 – s4 ≤ -1
s4 – s2 ≤ 0

0
-1

s2 – s4 ≤ -1
s5

0

-1

s2 – s4 ≤ -1

s4 – s2 ≤ 0

0 ≤ -1

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 4

• Resource constraints cannot be represented exactly in
integer difference form

7

Handling Resource Constraints

 Resource constraints
 Heuristic partial orderings

v0 v2 : s0 – s2 ≤ -1

OR

v1 v0 : s1 – s0 ≤ -1
v2 v0 : s2 – s0 ≤ -1

3 cycle latency

2 cycle latency

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

• Resource constraint

– Two read ports

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Linear Objectives
• ASAP: min iV si

• ALAP: max iV si

• Minimum latency: min maxiV {si}
• Minimum average case latency

(control-intensive design)
• Many other …

8

min s0 + … + s5

max s0 + … + s5

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

ld

+

ld

ld x

v1

v3

v4

v2

v0

stv5

ALAP schedule

Clock
boundary

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

ASAP schedule

Clock
boundary

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 5

Control Flow Graphs

• Control dependencies can also be honored
• If bb2 is control dependent on bb1 , the operation

nodes of bb2 are not allowed to be scheduled
before those of bb1

• Polarize each basic block bbi with two
scheduling variables (head and tail)

– v bbi , sh(bbi) – sh(v) 0

– v bbi , st(v) – st(bbi) 0

• If ec(bbi, bbj) Ec and ec is not a back edge
– st(bbi) – sh(bbj) 0

9

B3

B1

B2

B4

t

h

h h

t t

t

h

st(B1) – sh(B2) 0

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 10

Lecture 11: Outline

• Advanced scheduling approaches

 SDC-based scheduling

• Modulo scheduling

• HLS design space exploration (DSE)

• Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 6

Modulo Scheduling

• A regular form of loop (or function) pipelining technique
• Also applies to software pipelining in compiler optimization
• Loop iterations use the same schedule, which are initiated

at a constant rate

• Typical objective: minimize II under resource constraints
– NP-hard in general

– Optimal polynomial time solution exists without recurrences or
resource constraints

• Advantages of modulo scheduling
• Cost efficient: No code or hardware replication
• Easy to analyze

– Steady state determines performance & resource

11ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Modulo Scheduling Example

12

Dependence
graph of the loop
body

Schedule of
the body

II = 2

II = 2

0
1

2

3

× +

–

LD

ST

ST

–

LD

× +

Initiation Interval (II)

×+

LD

ST

– slot 0

slot 1

Steady state
(II cycles)

Modulo
reservation
table (MRT)

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

Iteration
1 2 30

1

0

2

3

Time
(cycle)

5

4

6

7

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 7

Algorithm for Modulo Scheduling

• Heuristic algorithm

• Find a lower bound on II

• Look for a schedule with the given II

• If a feasible schedule not found, increase II and try again

13

Find MII
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 14

Lecture 11: Outline

• Advanced scheduling approaches

• SDC-based scheduling

• Modulo scheduling

• HLS design space exploration (DSE)

• Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 8

Multi-Objective Design Space

• Design space enabled by manual synthesis directives
• Local pragma settings, global constraints & options
• Automatic exploration not handled by traditional algorithms

• Multi-objective optimization (MOO)
• Pareto optimality, find Pareto front

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 15

D
ela

y

Area

Source: J. Abraham

© A. Gerstlauer

clock: 10ns
loop1: unroll
loop2: pipeline, II=2

clock: 50ns
loop1: -
loop2: -

Design Space Exploration (DSE)

• Design space exploration

 Automatic DSE (Auto-DSE)

 Automatic pragma, option & configuration setting

 Synthesis area & delay result estimation

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 16

Evaluating
design points

(Modeling,
cost function)

Covering the
design space

(Decision
making)

Source: C. Haubelt

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 9

Automatic Decision Making & Exploration

• Brute-force methods

• Exhaustive search

• Random search

• Meta-heuristics

• Simulated annealing

• Genetic algorithms

• …

• Dedicated heuristics

• Divide & conquer

• Clustering

• …

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 17© A. Gerstlauer

Source: B. Carrion-Schaefer

Synthesis Result Estimation

• Synthesis-based

• Run design through HLS tool

• Use estimated HLS result metrics (synthesis report)

• Model-based

• Sample the design space

• Learn a model that predicts synthesis results

• Potentially even predict (parts of) the design space

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 18

Source: B. Carrion-Schaefer

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 19

Lecture 11: Outline

 Advanced scheduling approaches

 SDC-based scheduling

Modulo scheduling

 HLS design space exploration (DSE)

Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

Hurdles in Agile Hardware Design

• Tension between speed and fidelity w/ HLS-based design

20

RTL/Logic Synthesis

RTL

High-Level Synthesis (HLS)

C++/SystemC/Python

Placement & Routing (PnR)

Final implementation

Technology Mapping

Timing/Area/Power Analysis

Large & complex
design space

options/
directives

pragmas

Painfully slow
design iteration
(hours/days per

run)

Inaccurate
QoR estimation

(minutes per run)

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 11

ML-Based Function
Approximation

21

Machine Learning (ML) in HLS

Predicted area, delay, power

&
+

×

+^

+

×

0
1

48

1
0

21

0
1

10

1
0

32

0
1

18

0
1

27

1
0

36

Faster & More Accurate
QoR Inference

1

ML-Aided Decision Making

Search Space

tool configuration,
pragma settings, …Q

oR

More Intelligent Design
Space Exploration (DSE)

2

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

22

ML for HLS QoR Inference

ML
Model

Estimation
Targets

Reference

GNN
Post-HLS Resource

& Latency
GNN4HLS

[Ferretti et al. TODAES’22]

GNN
Post-HLS Resource

& Latency
GNN-DSE

[Sohrabizadeh et al. DAC’22]

GNN
Post-PnR Resource

& Timing
IronMan

[Wu et al. GLSVLSI’21]

GNN
Post-PnR Resource

& Timing
−

[Wu et al. DAC’22]

GNN
Post-PnR Resource

& Timing
IronMan-Pro

[Wu et al. TCAD’23]

GNN Post-PnR Power PowerGear
[Lin et al. DATE’22]

CNN Post-PnR Power HL-Pow
[Lin et al. TCAD’23]

High-Level Synthesis Performance Prediction using
GNNs: Benchmark ing, Model ing, and Advancing

Nan Wu
nanwu@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Hang Yang
innallyyang@hotmail.com

Nankai University
Tianjin, China

Yuan Xie
yuanxie@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Pan Li
panli@purdue.edu
Purdue University

West Lafayette, IN, USA

Cong Hao
callie.hao@ece.gatech.edu

Georgia Inst itute of Technology
Atlanta, GA, USA

Abstract
Agile hardwaredevelopment requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performanceprediction
usually needs extensive feature engineering after the syn-
thesis process. To expeditecircuit evaluation from asearlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programsas graphs. Thecontribution of this work is three-
fold. First, webuild a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and threesets of real-world HLSbenchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics.Second,weformally formulate theHLS
performanceprediction problemon graphs,andproposemul-
tiple modeling strategies with GNNsthat leveragedi erent
trade-o sbetween prediction timeliness (early/late predic-
tion) and accuracy. Third, wefurther proposeanovel hierar-
chical GNN that does not sacri ce timeliness but largely im-
provesprediction accuracy, signi cantly outperforming HLS
tools. Weapply extensiveevaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLSby up to 40⇥ and excelsexisting predictors
by 2⇥ to 5⇥in terms of resourceusageandtiming prediction.

1 Introduction
Oneessential requirement for agile hardwaredevelopment
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA toolsusu-
ally take hours to days to accurately evaluate circuit quality
with extensivemanual e orts.Although high-level synthesis
(HLS) toolscangreatly speedupcircuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in termsof circuit quality evaluation [28]. Given
thestrong need for hardwareagiledevelopment and produc-
tivity boost, aquick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. Theoverall performance prediction ow. (a) De-
sign ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
menteddesign metricssuch asresourceusage, timing, power,
and area. Analytical models areclassic approaches [19, 32,
33] but they only work for highly regular data ow such as
perfect loopsandarrays.Recent ML approacheshavebecome
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLSdesign performance on FPGAs.

Despite the great success, most of theML-based methods
rely on intensiveand empirical feature engineering: a large
number of featuresmust beobtained from HLSsynthesis re-
port or the intermediate resultsof apartially executed imple-
mentation process, which is still time-consuming. Therefore,

ar
X

iv
:2

20
1.

06
84

8v
1

 [
cs

.L
G

]
 1

8
Ja

n
20

22

ML-Based
Function

Approximation

Predicted QoR

&
+

×

+
^

0
1

48

1
0

32

0
1

18

0
1

27

1
0

36

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 12

23

ML for HLS DSE

AutoDSE

Design

HLS Tool

Pragma
settings

Q
o

R

H igh-Level Synthesis Performance Prediction using
GNNs: Benchmark ing, Model ing, and Advancing

Nan Wu
nanwu@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Hang Yang
innallyyang@hotmail.com

Nankai University
Tianjin, China

Yuan Xie
yuanxie@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Pan Li
panli@purdue.edu
Purdue University

West Lafayette, IN, USA

Cong Hao
callie.hao@ece.gatech.edu

Georgia Inst itute of Technology
Atlanta, GA, USA

Abstract
Agile hardwaredevelopment requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performanceprediction
usually needs extensive feature engineering after the syn-
thesis process. To expeditecircuit evaluation from asearlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programsas graphs. Thecontribution of this work is three-
fold. First, webuild a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and threesets of real-world HLSbenchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics.Second,weformally formulate theHLS
performanceprediction problemon graphs,andproposemul-
tiple modeling strategies with GNNsthat leveragedi erent
trade-o sbetween prediction timeliness (early/late predic-
tion) and accuracy. Third, wefurther proposeanovel hierar-
chical GNN that does not sacri ce timeliness but largely im-
provesprediction accuracy, signi cantly outperforming HLS
tools. Weapply extensiveevaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLSby up to 40⇥ and excelsexisting predictors
by 2⇥ to 5⇥in terms of resourceusageandtiming prediction.

1 Introduction
Oneessential requirement for agile hardwaredevelopment
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA toolsusu-
ally take hours to days to accurately evaluate circuit quality
with extensivemanual e orts.Although high-level synthesis
(HLS) toolscangreatly speedupcircuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in termsof circuit quality evaluation [28]. Given
thestrong need for hardwareagiledevelopment and produc-
tivity boost, aquick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. Theoverall performance prediction ow. (a) De-
sign ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
menteddesign metricssuch asresourceusage, timing, power,
and area. Analytical models areclassic approaches [19, 32,
33] but they only work for highly regular data ow such as
perfect loopsandarrays.Recent ML approacheshavebecome
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLSdesign performance on FPGAs.

Despite the great success, most of theML-based methods
rely on intensiveand empirical feature engineering: a large
number of featuresmust beobtained from HLSsynthesis re-
port or the intermediate resultsof apartially executed imple-
mentation process, which is still time-consuming. Therefore,

ar
X

iv
:2

20
1.

06
84

8v
1

 [
cs

.L
G

]
 1

8
Ja

n
20

22

ML Model Model Inputs Reference

Gaussian
Processes

HLS Pragmas Prospector
[Mehrabi et al. DATE’22]

Gaussian
Processes

HLS Pragmas −
[Sun et al. TODAES’22]

CNN HLS Pragmas HL-Pow
[Lin et al. TCAD’23]

GNN HLS Pragmas + CDFGs
GNN4HLS
[Ferretti et al.
TODAES’22]

GNN HLS Pragmas + CDFGs
GNN-DSE

[Sohrabizadeh et al.
DAC’22]

GNN + RL HLS Pragmas + DFGs IronMan
[Wu et al. GLSVLSI’21]

GNN + RL HLS Pragmas + DFGs IronMan-Pro
[Wu et al. TCAD’23]

LLM + GNN
HLS Source + Pragmas +

CDFG
ProgSG

[Bai et al. ArXiv’23]

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

HLS Estimation Accuracy

• 65 individual designs
• CHStone [Hara et.al, JIP’08]

• Machsuite [Reagen et.al, IISWC’14]

• S2CBench [Schafer & Mahapatra, ESL’14]

• Rosetta [Zhou et.al, FPGA’18]

• 1300 data samples
• Clock periods: 1, 2, 3, 5, 10ns

• Zynq, Artix, Kintex, and
Virtex devices

24

Commercial HLS
(Post-HLS estimates)
 Resource usage
 Timing
 Performance
 HDL details, etc.

Implementation
(Post-PnR results)
 Resource usage
 Timing, etc.

Estimation Error

LUT: mean 2~4x

FF: mean 2~3x

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 13

25

ML-Based Resource Estimation in HLS

HLS Report
(Estimated)

LUTs, FFs, DSPs, BRAMs

ML
Models

87 features

Implementation
Report
(Actual)

 Estimated LUT, FF, DSP,
and BRAM usage

 Estimated clock period
 Multiplexer statistics
 Statistics for logic

operations
…

Features

Targets

[1] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F.Y. Young, and Z. Zhang, Fast and Accurate Estimation of Quality of Results in High-Level Synthesis
with Machine Learning, FCCM, May 2018. (Best Paper Award, Short Paper Category)

Linear model: LASSO
Neural network: ANN
Gradient tree boosting: XGBoost
Graph neural networks: GNN

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Challenges to Effective DSE

• Creating a high-performance HLS design require nontrivial manual
source-level transformations that alters the loop structures and data
layout

• Example: Inefficient matrix multiplication using inner product

• Slow pipeline due to carried dependency from floating-point
accumulation

26

A B C

=

o
u

te
r

lo
o

p
 i

(M
)

middle loop j (N) inner loop k (K) middle loop j (N)

o
u

te
r

lo
o

p
 i

(M
)

𝐶 𝑖, 𝑗 = 𝐴[𝑖, :] ȉ 𝐵[: , 𝑗]

for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

C[i, j] = 0;
for (int k = 0; k < K; k++)
C[i, j] += A[i, k] * B[k, j]

×

MatMul via inner product

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 14

Challenges to Effective DSE

• A faster approach using row-wise product

• Different loop orders & additional on-chip storage

 Existing HLS AutoDSE methods cannot achieve this solution through
permutations of the pragma settings

27

for (int i = 0; i < M; i++) {
float C_vec[N];
for (int j = 0; j < N; j++)

C_vec[j] = 0.0;

for (int k = 0; k < K; k++)
for (int j = 0; j < N; j++)

#pragma pipeline II=1
C_vec[j] += A[i, k] * B[k, j];

for (int j = 0; j < N; j++)
C[i, j] = C_vec[j];

}
A B C

=

o
u

te
r

lo
o

p
 i

(M
)

middle loop k
(K)

inner loop j (N)

o
u

te
r

lo
o

p
 i

(M
)

inner loop j (N)

𝐶 𝑖, : = 𝐴[𝑖, 𝑘] ȉ 𝐵[𝑘, :]

×

MatMul via row-wise product

New opportunities in co-designing HLS programming models and ML-based DSE
to enable exploration of high-level (initially algebraic) transformations

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Lecture 11: Summary

• HLS is (again) an active research area

• Golden age for hardware specialization
– End of traditional semiconductor scaling

• Application demands
– E.g. machine learning

• “Programmable” hardware substrates
– FPGAs

• Advanced HLS techniques

• Scheduling generalizations and optimality

• Automatic design space exploration (Auto-DSE)

• Machine learning for HLS

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 28© A. Gerstlauer

