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• SDC = System of difference constraints

3

SDC-Based Scheduling

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si : schedule variable for operation i

 Dependence constraints
<v0 , v4 > : s0 – s4 ≤ 0
<v1 , v3 > : s1 – s3 ≤ 0
<v2 , v3 > : s2 – s3 ≤ 0
<v3 , v4 > : s3 – s4 ≤ 0
<v4 , v5 > : s4 – s5 ≤ 0

 Cycle time constraints
v1  v5 : s1 – s5 ≤ -1
v2  v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013] 
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Timing 
constraints

Operation 
chaining is 
naturally 
supported

To meet the cycle time, v2 and v5 should have 
a minimum separation of one cycle 

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Difference Constraints

• A difference constraint is a formula in the form of 
x – y  b or x – y < b for numeric variables x and y, and 
constant b

• With scheduling variables, we use integer difference 
constraints to model a variety of scheduling constraints

• x and y must have integral values
– Thus b only needs to be an integer => form x – y < b is redundant
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SDC Constraint Matrix

• Constraint matrix of SDC(X, C) is a totally unimodular matrix (TUM)

• Every nonsingular square submatrix has a determinant of -1/+1
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A x b

• Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular
and b is a vector of integers, every extreme point of polyhedron 
{x : Ax ≤ b} is integral.

 Solving linear programming (LP) relaxation leads to integral 
solutions

5

1
0 
0
0 
0
0
0

0
1 
0
0 
0 
0
1

0
0 
1
0
0
1
0

0
-1
-1
1
0
0
0

-1 
0
0

-1 
1

0 0

0 0
0
0 

-1
-1 
-1

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

• Difference constraints can be conveniently represented 
using constraint graph

• Each vertex represents a variable, and each weighted 
edge corresponds to a different constraint 

• Detect infeasibility by the presence of negative cycle (by 
solving single-source shortest path)

6

SDC Constraint Graph
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• Resource constraints cannot be represented exactly in 
integer difference form

7

Handling Resource Constraints

 Resource constraints
 Heuristic partial orderings

v0  v2 : s0 – s2 ≤ -1

OR

v1  v0 : s1 – s0 ≤ -1
v2  v0 : s2 – s0 ≤ -1

3 cycle latency

2 cycle latency

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5

• Resource constraint

– Two read ports
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Linear Objectives
• ASAP: min iV si

• ALAP: max iV si

• Minimum latency: min maxiV {si}
• Minimum average case latency 

(control-intensive design)
• Many other …

8

min s0 + … + s5

max s0 + … + s5

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

ld

+ 
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stv5

ALAP schedule

Clock 
boundary
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Control Flow Graphs

• Control dependencies can also be honored
• If bb2 is control dependent on bb1 , the operation 

nodes of bb2 are not allowed to be scheduled 
before those of bb1

• Polarize each basic block bbi with two 
scheduling variables (head and tail)

– v  bbi , sh(bbi) – sh(v)  0

– v  bbi ,  st(v) – st(bbi)  0

• If ec(bbi, bbj) Ec and ec is not a back edge
– st(bbi) – sh(bbj)  0

9
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Modulo Scheduling

• A regular form of loop (or function) pipelining technique
• Also applies to software pipelining in compiler optimization
• Loop iterations use the same schedule, which are initiated 

at a constant rate

• Typical objective: minimize II under resource constraints
– NP-hard in general

– Optimal polynomial time solution exists without recurrences or
resource constraints

• Advantages of modulo scheduling
• Cost efficient: No code or hardware replication
• Easy to analyze

– Steady state determines performance & resource

11ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Modulo Scheduling Example
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Algorithm for Modulo Scheduling

• Heuristic algorithm

• Find a lower bound on II

• Look for a schedule with the given II

• If a feasible schedule not found, increase II and try again

13

Find MII 
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes
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Multi-Objective Design Space

• Design space enabled by manual synthesis directives
• Local pragma settings, global constraints & options
• Automatic exploration not handled by traditional algorithms

• Multi-objective optimization (MOO)
• Pareto optimality, find Pareto front

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 15

D
ela

y

Area

Source: J. Abraham
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clock: 10ns
loop1: unroll
loop2: pipeline, II=2

clock: 50ns
loop1: -
loop2: -

Design Space Exploration (DSE)

• Design space exploration

 Automatic DSE (Auto-DSE)

 Automatic pragma, option & configuration setting

 Synthesis area & delay result estimation
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Evaluating 
design points

(Modeling, 
cost function)

Covering the 
design space

(Decision 
making)

Source: C. Haubelt
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Automatic Decision Making & Exploration

• Brute-force methods

• Exhaustive search

• Random search

• Meta-heuristics

• Simulated annealing

• Genetic algorithms

• …

• Dedicated heuristics

• Divide & conquer

• Clustering

• …
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Source: B. Carrion-Schaefer

Synthesis Result Estimation

• Synthesis-based

• Run design through HLS tool

• Use estimated HLS result metrics (synthesis report)

• Model-based

• Sample the design space

• Learn a model that predicts synthesis results

• Potentially even predict (parts of) the design space

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 18

Source: B. Carrion-Schaefer
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Hurdles in Agile Hardware Design

• Tension between speed and fidelity w/ HLS-based design 

20

RTL/Logic Synthesis

RTL

High-Level Synthesis (HLS)

C++/SystemC/Python

Placement & Routing (PnR)

Final implementation

Technology Mapping

Timing/Area/Power Analysis

Large & complex 
design space

options/
directives

pragmas

Painfully slow 
design iteration 
(hours/days per 

run)

Inaccurate 
QoR estimation

(minutes per run)
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ML-Based Function 
Approximation

21

Machine Learning (ML) in HLS

Predicted area, delay, power
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Faster & More Accurate 
QoR Inference

1

ML-Aided Decision Making

Search Space

tool configuration, 
pragma settings, …Q

oR

More Intelligent Design 
Space Exploration (DSE)

2
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ML for HLS QoR Inference

ML 
Model

Estimation 
Targets

Reference

GNN
Post-HLS Resource 

& Latency
GNN4HLS 

[Ferretti et al. TODAES’22]

GNN
Post-HLS Resource 

& Latency
GNN-DSE

[Sohrabizadeh et al. DAC’22]

GNN
Post-PnR Resource 

& Timing
IronMan

[Wu et al. GLSVLSI’21]

GNN
Post-PnR Resource 

& Timing
−

[Wu et al. DAC’22]

GNN
Post-PnR Resource 

& Timing
IronMan-Pro

[Wu et al. TCAD’23]

GNN Post-PnR Power PowerGear
[Lin et al. DATE’22]

CNN Post-PnR Power HL-Pow
[Lin et al. TCAD’23]
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Abstract
Agile hardwaredevelopment requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performanceprediction
usually needs extensive feature engineering after the syn-
thesis process. To expeditecircuit evaluation from asearlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programsas graphs. Thecontribution of this work is three-
fold. First, webuild a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and threesets of real-world HLSbenchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics.Second,weformally formulate theHLS
performanceprediction problemon graphs,andproposemul-
tiple modeling strategies with GNNsthat leveragedi erent
trade-o sbetween prediction timeliness (early/late predic-
tion) and accuracy. Third, wefurther proposeanovel hierar-
chical GNN that does not sacri ce timeliness but largely im-
provesprediction accuracy, signi cantly outperforming HLS
tools. Weapply extensiveevaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLSby up to 40⇥ and excelsexisting predictors
by 2⇥ to 5⇥in terms of resourceusageandtiming prediction.

1 Introduction
Oneessential requirement for agile hardwaredevelopment
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA toolsusu-
ally take hours to days to accurately evaluate circuit quality
with extensivemanual e orts.Although high-level synthesis
(HLS) toolscangreatly speedupcircuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in termsof circuit quality evaluation [28]. Given
thestrong need for hardwareagiledevelopment and produc-
tivity boost, aquick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. Theoverall performance prediction ow. (a) De-
sign ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
menteddesign metricssuch asresourceusage, timing, power,
and area. Analytical models areclassic approaches [19, 32,
33] but they only work for highly regular data ow such as
perfect loopsandarrays.Recent ML approacheshavebecome
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [ 18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLSdesign performance on FPGAs.

Despite the great success, most of theML-based methods
rely on intensiveand empirical feature engineering: a large
number of featuresmust beobtained from HLSsynthesis re-
port or the intermediate resultsof apartially executed imple-
mentation process, which is still time-consuming. Therefore,
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Gaussian 
Processes

HLS Pragmas Prospector 
[Mehrabi et al. DATE’22]

Gaussian 
Processes

HLS Pragmas −
[Sun et al. TODAES’22]

CNN HLS Pragmas HL-Pow
[Lin et al. TCAD’23]

GNN HLS Pragmas + CDFGs
GNN4HLS
[Ferretti et al. 
TODAES’22]

GNN HLS Pragmas + CDFGs
GNN-DSE

[Sohrabizadeh et al. 
DAC’22]

GNN + RL HLS Pragmas + DFGs IronMan
[Wu et al. GLSVLSI’21]

GNN + RL HLS Pragmas + DFGs IronMan-Pro
[Wu et al. TCAD’23]

LLM + GNN
HLS Source + Pragmas + 

CDFG
ProgSG

[Bai et al. ArXiv’23]
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HLS Estimation Accuracy 

• 65 individual designs
• CHStone [Hara et.al, JIP’08]

• Machsuite [Reagen et.al, IISWC’14]

• S2CBench [Schafer & Mahapatra, ESL’14]

• Rosetta [Zhou et.al, FPGA’18]

• 1300 data samples 
• Clock periods: 1, 2, 3, 5, 10ns

• Zynq, Artix, Kintex, and 
Virtex devices

24

Commercial HLS
(Post-HLS estimates)
 Resource usage
 Timing
 Performance
 HDL details, etc.

Implementation
(Post-PnR results)
 Resource usage
 Timing, etc.

Estimation Error

LUT: mean 2~4x 

FF:   mean 2~3x
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ML-Based Resource Estimation in HLS

HLS Report
(Estimated)

LUTs, FFs, DSPs, BRAMs

ML 
Models

87 features

Implementation 
Report
(Actual)

 Estimated LUT, FF, DSP, 
and BRAM usage

 Estimated clock period
 Multiplexer statistics
 Statistics for logic 

operations
…

Features

Targets

[1] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F.Y. Young, and Z. Zhang, Fast and Accurate Estimation of Quality of Results in High-Level Synthesis 
with Machine Learning, FCCM, May 2018. (Best Paper Award, Short Paper Category)

Linear model: LASSO
Neural network: ANN
Gradient tree boosting: XGBoost
Graph neural networks: GNN
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Challenges to Effective DSE

• Creating a high-performance HLS design require nontrivial manual
source-level transformations that alters the loop structures and data 
layout

• Example: Inefficient matrix multiplication using inner product

• Slow pipeline due to carried dependency from floating-point 
accumulation

26
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middle loop j (N) inner loop k (K) middle loop j (N) 
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(M
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𝐶 𝑖, 𝑗 = 𝐴[𝑖, : ] ȉ 𝐵[: , 𝑗]

for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

C[i, j] = 0;
for (int k = 0; k < K; k++)
C[i, j] += A[i, k] * B[k, j]

×

MatMul via inner product 
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Challenges to Effective DSE

• A faster approach using row-wise product

• Different loop orders & additional on-chip storage

 Existing HLS AutoDSE methods cannot achieve this solution through 
permutations of the pragma settings

27

for (int i = 0; i < M; i++) {
float C_vec[N];
for (int j = 0; j < N; j++)

C_vec[j] = 0.0;

for (int k = 0; k < K; k++)
for (int j = 0; j < N; j++) 

#pragma pipeline II=1
C_vec[j] += A[i, k] * B[k, j];

for (int j = 0; j < N; j++)
C[i, j] = C_vec[j];

}
A B C
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 i
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) 

middle loop k 
(K) 

inner loop j (N) 

o
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r 

lo
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 i

(M
) 

inner loop j (N) 

𝐶 𝑖, : = 𝐴[𝑖, 𝑘] ȉ 𝐵[𝑘, : ]



×

MatMul via row-wise product 

New opportunities in co-designing HLS programming models and ML-based DSE 
to enable exploration of high-level (initially algebraic) transformations
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Lecture 11: Summary

• HLS is (again) an active research area

• Golden age for hardware specialization
– End of traditional semiconductor scaling

• Application demands
– E.g. machine learning

• “Programmable” hardware substrates
– FPGAs

• Advanced HLS techniques

• Scheduling generalizations and optimality

• Automatic design space exploration (Auto-DSE)

• Machine learning for HLS
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