
ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 11 – Advanced HLS Techniques

Source: Z. Zhang, Cornell Univ.

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 2

Lecture 11: Outline

• Advanced scheduling approaches

• SDC-based scheduling

• Modulo scheduling

• HLS design space exploration (DSE)

• Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 2

• SDC = System of difference constraints

3

SDC-Based Scheduling

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si : schedule variable for operation i

 Dependence constraints
<v0 , v4 > : s0 – s4 ≤ 0
<v1 , v3 > : s1 – s3 ≤ 0
<v2 , v3 > : s2 – s3 ≤ 0
<v3 , v4 > : s3 – s4 ≤ 0
<v4 , v5 > : s4 – s5 ≤ 0

 Cycle time constraints
v1  v5 : s1 – s5 ≤ -1
v2  v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013]

ld

+

ldld

x

v1

v3

v4

v2v0

3ns

1ns

1ns

stv5
1ns

Timing
constraints

Operation
chaining is
naturally
supported

To meet the cycle time, v2 and v5 should have
a minimum separation of one cycle

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Difference Constraints

• A difference constraint is a formula in the form of
x – y  b or x – y < b for numeric variables x and y, and
constant b

• With scheduling variables, we use integer difference
constraints to model a variety of scheduling constraints

• x and y must have integral values
– Thus b only needs to be an integer => form x – y < b is redundant

4ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 3

SDC Constraint Matrix

• Constraint matrix of SDC(X, C) is a totally unimodular matrix (TUM)

• Every nonsingular square submatrix has a determinant of -1/+1

s0

s1

s2

s3

s4

s5

0
0
0
0
0

-1
-1



A x b

• Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular
and b is a vector of integers, every extreme point of polyhedron
{x : Ax ≤ b} is integral.

 Solving linear programming (LP) relaxation leads to integral
solutions

5

1
0
0
0
0
0
0

0
1
0
0
0
0
1

0
0
1
0
0
1
0

0
-1
-1
1
0
0
0

-1
0
0

-1
1

0 0

0 0
0
0

-1
-1
-1

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

• Difference constraints can be conveniently represented
using constraint graph

• Each vertex represents a variable, and each weighted
edge corresponds to a different constraint

• Detect infeasibility by the presence of negative cycle (by
solving single-source shortest path)

6

SDC Constraint Graph

s0

s1

s2

s3
s4

00

0

0

-1

s0 – s4 ≤ 0
s1 – s3 ≤ 0
s2 – s3 ≤ 0
s3 – s4 ≤ 0
s4 – s5 ≤ 0
s2 – s4 ≤ -1
s1 – s4 ≤ -1
s4 – s2 ≤ 0

0
-1

s2 – s4 ≤ -1
s5

0

-1

s2 – s4 ≤ -1

s4 – s2 ≤ 0

0 ≤ -1

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 4

• Resource constraints cannot be represented exactly in
integer difference form

7

Handling Resource Constraints

 Resource constraints
 Heuristic partial orderings

v0  v2 : s0 – s2 ≤ -1

OR

v1  v0 : s1 – s0 ≤ -1
v2  v0 : s2 – s0 ≤ -1

3 cycle latency

2 cycle latency

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

• Resource constraint

– Two read ports

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Linear Objectives
• ASAP: min iV si

• ALAP: max iV si

• Minimum latency: min maxiV {si}
• Minimum average case latency

(control-intensive design)
• Many other …

8

min s0 + … + s5

max s0 + … + s5

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

ld

+

ld

ld x

v1

v3

v4

v2

v0

stv5

ALAP schedule

Clock
boundary

ld

+

ldld

x

v1

v3

v4

v2v0

stv5

ASAP schedule

Clock
boundary

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 5

Control Flow Graphs

• Control dependencies can also be honored
• If bb2 is control dependent on bb1 , the operation

nodes of bb2 are not allowed to be scheduled
before those of bb1

• Polarize each basic block bbi with two
scheduling variables (head and tail)

– v  bbi , sh(bbi) – sh(v)  0

– v  bbi , st(v) – st(bbi)  0

• If ec(bbi, bbj) Ec and ec is not a back edge
– st(bbi) – sh(bbj)  0

9

B3

B1

B2

B4

t

h

h h

t t

t

h

st(B1) – sh(B2)  0

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 10

Lecture 11: Outline

• Advanced scheduling approaches

 SDC-based scheduling

• Modulo scheduling

• HLS design space exploration (DSE)

• Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 6

Modulo Scheduling

• A regular form of loop (or function) pipelining technique
• Also applies to software pipelining in compiler optimization
• Loop iterations use the same schedule, which are initiated

at a constant rate

• Typical objective: minimize II under resource constraints
– NP-hard in general

– Optimal polynomial time solution exists without recurrences or
resource constraints

• Advantages of modulo scheduling
• Cost efficient: No code or hardware replication
• Easy to analyze

– Steady state determines performance & resource

11ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Modulo Scheduling Example

12

Dependence
graph of the loop
body

Schedule of
the body

II = 2

II = 2

0
1

2

3

× +

–

LD

ST

ST

–

LD

× +

Initiation Interval (II)

×+

LD

ST

– slot 0

slot 1

Steady state
(II cycles)

Modulo
reservation
table (MRT)

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

Iteration
1 2 30

1

0

2

3

Time
(cycle)

5

4

6

7

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 7

Algorithm for Modulo Scheduling

• Heuristic algorithm

• Find a lower bound on II

• Look for a schedule with the given II

• If a feasible schedule not found, increase II and try again

13

Find MII
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 14

Lecture 11: Outline

• Advanced scheduling approaches

• SDC-based scheduling

• Modulo scheduling

• HLS design space exploration (DSE)

• Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 8

Multi-Objective Design Space

• Design space enabled by manual synthesis directives
• Local pragma settings, global constraints & options
• Automatic exploration not handled by traditional algorithms

• Multi-objective optimization (MOO)
• Pareto optimality, find Pareto front

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 15

D
ela

y

Area

Source: J. Abraham

© A. Gerstlauer

clock: 10ns
loop1: unroll
loop2: pipeline, II=2

clock: 50ns
loop1: -
loop2: -

Design Space Exploration (DSE)

• Design space exploration

 Automatic DSE (Auto-DSE)

 Automatic pragma, option & configuration setting

 Synthesis area & delay result estimation

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 16

Evaluating
design points

(Modeling,
cost function)

Covering the
design space

(Decision
making)

Source: C. Haubelt

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 9

Automatic Decision Making & Exploration

• Brute-force methods

• Exhaustive search

• Random search

• Meta-heuristics

• Simulated annealing

• Genetic algorithms

• …

• Dedicated heuristics

• Divide & conquer

• Clustering

• …

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 17© A. Gerstlauer

Source: B. Carrion-Schaefer

Synthesis Result Estimation

• Synthesis-based

• Run design through HLS tool

• Use estimated HLS result metrics (synthesis report)

• Model-based

• Sample the design space

• Learn a model that predicts synthesis results

• Potentially even predict (parts of) the design space

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 18

Source: B. Carrion-Schaefer

© A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 19

Lecture 11: Outline

 Advanced scheduling approaches

 SDC-based scheduling

Modulo scheduling

 HLS design space exploration (DSE)

Multi-objective optimization

• HLS outlook

• Machine learning for HLS

© A. Gerstlauer

Hurdles in Agile Hardware Design

• Tension between speed and fidelity w/ HLS-based design

20

RTL/Logic Synthesis

RTL

High-Level Synthesis (HLS)

C++/SystemC/Python

Placement & Routing (PnR)

Final implementation

Technology Mapping

Timing/Area/Power Analysis

Large & complex
design space

options/
directives

pragmas

Painfully slow
design iteration
(hours/days per

run)

Inaccurate
QoR estimation

(minutes per run)

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 11

ML-Based Function
Approximation

21

Machine Learning (ML) in HLS

Predicted area, delay, power

&
+

×

+^

+

×

0
1

48

1
0

21

0
1

10

1
0

32

0
1

18

0
1

27

1
0

36

Faster & More Accurate
QoR Inference

1

ML-Aided Decision Making

Search Space

tool configuration,
pragma settings, …Q

oR

More Intelligent Design
Space Exploration (DSE)

2

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

22

ML for HLS QoR Inference

ML
Model

Estimation
Targets

Reference

GNN
Post-HLS Resource

& Latency
GNN4HLS

[Ferretti et al. TODAES’22]

GNN
Post-HLS Resource

& Latency
GNN-DSE

[Sohrabizadeh et al. DAC’22]

GNN
Post-PnR Resource

& Timing
IronMan

[Wu et al. GLSVLSI’21]

GNN
Post-PnR Resource

& Timing
−

[Wu et al. DAC’22]

GNN
Post-PnR Resource

& Timing
IronMan-Pro

[Wu et al. TCAD’23]

GNN Post-PnR Power PowerGear
[Lin et al. DATE’22]

CNN Post-PnR Power HL-Pow
[Lin et al. TCAD’23]

High-Level Synthesis Performance Prediction using
GNNs: Benchmark ing, Model ing, and Advancing

Nan Wu
nanwu@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Hang Yang
innallyyang@hotmail.com

Nankai University
Tianjin, China

Yuan Xie
yuanxie@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Pan Li
panli@purdue.edu
Purdue University

West Lafayette, IN, USA

Cong Hao
callie.hao@ece.gatech.edu

Georgia Inst itute of Technology
Atlanta, GA, USA

Abstract
Agile hardwaredevelopment requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performanceprediction
usually needs extensive feature engineering after the syn-
thesis process. To expeditecircuit evaluation from asearlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programsas graphs. Thecontribution of this work is three-
fold. First, webuild a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and threesets of real-world HLSbenchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics.Second,weformally formulate theHLS
performanceprediction problemon graphs,andproposemul-
tiple modeling strategies with GNNsthat leveragedi erent
trade-o sbetween prediction timeliness (early/late predic-
tion) and accuracy. Third, wefurther proposeanovel hierar-
chical GNN that does not sacri ce timeliness but largely im-
provesprediction accuracy, signi cantly outperforming HLS
tools. Weapply extensiveevaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLSby up to 40⇥ and excelsexisting predictors
by 2⇥ to 5⇥in terms of resourceusageandtiming prediction.

1 Introduction
Oneessential requirement for agile hardwaredevelopment
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA toolsusu-
ally take hours to days to accurately evaluate circuit quality
with extensivemanual e orts.Although high-level synthesis
(HLS) toolscangreatly speedupcircuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in termsof circuit quality evaluation [28]. Given
thestrong need for hardwareagiledevelopment and produc-
tivity boost, aquick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. Theoverall performance prediction ow. (a) De-
sign ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
menteddesign metricssuch asresourceusage, timing, power,
and area. Analytical models areclassic approaches [19, 32,
33] but they only work for highly regular data ow such as
perfect loopsandarrays.Recent ML approacheshavebecome
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLSdesign performance on FPGAs.

Despite the great success, most of theML-based methods
rely on intensiveand empirical feature engineering: a large
number of featuresmust beobtained from HLSsynthesis re-
port or the intermediate resultsof apartially executed imple-
mentation process, which is still time-consuming. Therefore,

ar
X

iv
:2

20
1.

06
84

8v
1

 [
cs

.L
G

]
 1

8
Ja

n
20

22

ML-Based
Function

Approximation

Predicted QoR

&
+

×

+
^

0
1

48

1
0

32

0
1

18

0
1

27

1
0

36

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 12

23

ML for HLS DSE

AutoDSE

Design

HLS Tool

Pragma
settings

Q
o

R

H igh-Level Synthesis Performance Prediction using
GNNs: Benchmark ing, Model ing, and Advancing

Nan Wu
nanwu@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Hang Yang
innallyyang@hotmail.com

Nankai University
Tianjin, China

Yuan Xie
yuanxie@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Pan Li
panli@purdue.edu
Purdue University

West Lafayette, IN, USA

Cong Hao
callie.hao@ece.gatech.edu

Georgia Inst itute of Technology
Atlanta, GA, USA

Abstract
Agile hardwaredevelopment requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performanceprediction
usually needs extensive feature engineering after the syn-
thesis process. To expeditecircuit evaluation from asearlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programsas graphs. Thecontribution of this work is three-
fold. First, webuild a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and threesets of real-world HLSbenchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics.Second,weformally formulate theHLS
performanceprediction problemon graphs,andproposemul-
tiple modeling strategies with GNNsthat leveragedi erent
trade-o sbetween prediction timeliness (early/late predic-
tion) and accuracy. Third, wefurther proposeanovel hierar-
chical GNN that does not sacri ce timeliness but largely im-
provesprediction accuracy, signi cantly outperforming HLS
tools. Weapply extensiveevaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLSby up to 40⇥ and excelsexisting predictors
by 2⇥ to 5⇥in terms of resourceusageandtiming prediction.

1 Introduction
Oneessential requirement for agile hardwaredevelopment
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA toolsusu-
ally take hours to days to accurately evaluate circuit quality
with extensivemanual e orts.Although high-level synthesis
(HLS) toolscangreatly speedupcircuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in termsof circuit quality evaluation [28]. Given
thestrong need for hardwareagiledevelopment and produc-
tivity boost, aquick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. Theoverall performance prediction ow. (a) De-
sign ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
menteddesign metricssuch asresourceusage, timing, power,
and area. Analytical models areclassic approaches [19, 32,
33] but they only work for highly regular data ow such as
perfect loopsandarrays.Recent ML approacheshavebecome
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLSdesign performance on FPGAs.

Despite the great success, most of theML-based methods
rely on intensiveand empirical feature engineering: a large
number of featuresmust beobtained from HLSsynthesis re-
port or the intermediate resultsof apartially executed imple-
mentation process, which is still time-consuming. Therefore,

ar
X

iv
:2

20
1.

06
84

8v
1

 [
cs

.L
G

]
 1

8
Ja

n
20

22

ML Model Model Inputs Reference

Gaussian
Processes

HLS Pragmas Prospector
[Mehrabi et al. DATE’22]

Gaussian
Processes

HLS Pragmas −
[Sun et al. TODAES’22]

CNN HLS Pragmas HL-Pow
[Lin et al. TCAD’23]

GNN HLS Pragmas + CDFGs
GNN4HLS
[Ferretti et al.
TODAES’22]

GNN HLS Pragmas + CDFGs
GNN-DSE

[Sohrabizadeh et al.
DAC’22]

GNN + RL HLS Pragmas + DFGs IronMan
[Wu et al. GLSVLSI’21]

GNN + RL HLS Pragmas + DFGs IronMan-Pro
[Wu et al. TCAD’23]

LLM + GNN
HLS Source + Pragmas +

CDFG
ProgSG

[Bai et al. ArXiv’23]

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

HLS Estimation Accuracy

• 65 individual designs
• CHStone [Hara et.al, JIP’08]

• Machsuite [Reagen et.al, IISWC’14]

• S2CBench [Schafer & Mahapatra, ESL’14]

• Rosetta [Zhou et.al, FPGA’18]

• 1300 data samples
• Clock periods: 1, 2, 3, 5, 10ns

• Zynq, Artix, Kintex, and
Virtex devices

24

Commercial HLS
(Post-HLS estimates)
 Resource usage
 Timing
 Performance
 HDL details, etc.

Implementation
(Post-PnR results)
 Resource usage
 Timing, etc.

Estimation Error

LUT: mean 2~4x

FF: mean 2~3x

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 13

25

ML-Based Resource Estimation in HLS

HLS Report
(Estimated)

LUTs, FFs, DSPs, BRAMs

ML
Models

87 features

Implementation
Report
(Actual)

 Estimated LUT, FF, DSP,
and BRAM usage

 Estimated clock period
 Multiplexer statistics
 Statistics for logic

operations
…

Features

Targets

[1] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F.Y. Young, and Z. Zhang, Fast and Accurate Estimation of Quality of Results in High-Level Synthesis
with Machine Learning, FCCM, May 2018. (Best Paper Award, Short Paper Category)

Linear model: LASSO
Neural network: ANN
Gradient tree boosting: XGBoost
Graph neural networks: GNN

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Challenges to Effective DSE

• Creating a high-performance HLS design require nontrivial manual
source-level transformations that alters the loop structures and data
layout

• Example: Inefficient matrix multiplication using inner product

• Slow pipeline due to carried dependency from floating-point
accumulation

26

A B C

=

o
u

te
r

lo
o

p
 i

(M
)

middle loop j (N) inner loop k (K) middle loop j (N)

o
u

te
r

lo
o

p
 i

(M
)

𝐶 𝑖, 𝑗 = 𝐴[𝑖, :] ȉ 𝐵[: , 𝑗]

for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

C[i, j] = 0;
for (int k = 0; k < K; k++)
C[i, j] += A[i, k] * B[k, j]

×

MatMul via inner product

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 14

Challenges to Effective DSE

• A faster approach using row-wise product

• Different loop orders & additional on-chip storage

 Existing HLS AutoDSE methods cannot achieve this solution through
permutations of the pragma settings

27

for (int i = 0; i < M; i++) {
float C_vec[N];
for (int j = 0; j < N; j++)

C_vec[j] = 0.0;

for (int k = 0; k < K; k++)
for (int j = 0; j < N; j++)

#pragma pipeline II=1
C_vec[j] += A[i, k] * B[k, j];

for (int j = 0; j < N; j++)
C[i, j] = C_vec[j];

}
A B C

=

o
u

te
r

lo
o

p
 i

(M
)

middle loop k
(K)

inner loop j (N)

o
u

te
r

lo
o

p
 i

(M
)

inner loop j (N)

𝐶 𝑖, : = ෍𝐴[𝑖, 𝑘] ȉ 𝐵[𝑘, :]

௞

×

MatMul via row-wise product

New opportunities in co-designing HLS programming models and ML-based DSE
to enable exploration of high-level (initially algebraic) transformations

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Lecture 11: Summary

• HLS is (again) an active research area

• Golden age for hardware specialization
– End of traditional semiconductor scaling

• Application demands
– E.g. machine learning

• “Programmable” hardware substrates
– FPGAs

• Advanced HLS techniques

• Scheduling generalizations and optimality

• Automatic design space exploration (Auto-DSE)

• Machine learning for HLS

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 28© A. Gerstlauer

