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• SDC = System of difference constraints

3

SDC-Based Scheduling

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns

si : schedule variable for operation i

 Dependence constraints
<v0 , v4 > : s0 – s4 ≤ 0
<v1 , v3 > : s1 – s3 ≤ 0
<v2 , v3 > : s2 – s3 ≤ 0
<v3 , v4 > : s3 – s4 ≤ 0
<v4 , v5 > : s4 – s5 ≤ 0

 Cycle time constraints
v1  v5 : s1 – s5 ≤ -1
v2  v5 : s2 – s5 ≤ -1

[J. Cong & Z. Zhang, DAC, 2006] [Z. Zhang & B. Liu, ICCAD, 2013] 
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Timing 
constraints

Operation 
chaining is 
naturally 
supported

To meet the cycle time, v2 and v5 should have 
a minimum separation of one cycle 
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Difference Constraints

• A difference constraint is a formula in the form of 
x – y  b or x – y < b for numeric variables x and y, and 
constant b

• With scheduling variables, we use integer difference 
constraints to model a variety of scheduling constraints

• x and y must have integral values
– Thus b only needs to be an integer => form x – y < b is redundant

4ECE382M.20: SoC Design, Lecture 11 © Z. Zhang
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SDC Constraint Matrix

• Constraint matrix of SDC(X, C) is a totally unimodular matrix (TUM)

• Every nonsingular square submatrix has a determinant of -1/+1
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A x b

• Theorem (Hoffman & Kruskal, 1956): If A is totally unimodular
and b is a vector of integers, every extreme point of polyhedron 
{x : Ax ≤ b} is integral.

 Solving linear programming (LP) relaxation leads to integral 
solutions
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• Difference constraints can be conveniently represented 
using constraint graph

• Each vertex represents a variable, and each weighted 
edge corresponds to a different constraint 

• Detect infeasibility by the presence of negative cycle (by 
solving single-source shortest path)
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SDC Constraint Graph
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• Resource constraints cannot be represented exactly in 
integer difference form

7

Handling Resource Constraints

 Resource constraints
 Heuristic partial orderings

v0  v2 : s0 – s2 ≤ -1

OR

v1  v0 : s1 – s0 ≤ -1
v2  v0 : s2 – s0 ≤ -1

3 cycle latency

2 cycle latency

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5

• Resource constraint

– Two read ports
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Linear Objectives
• ASAP: min iV si

• ALAP: max iV si

• Minimum latency: min maxiV {si}
• Minimum average case latency 

(control-intensive design)
• Many other …
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min s0 + … + s5

max s0 + … + s5

ld

+ 

ldld

x

v1

v3

v4

v2v0

stv5

• Target cycle time: 5ns

• Delay estimates

– Mul (x): 3ns
– Add (+): 1ns
– Load/Store (ld/st): 1ns
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Clock 
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Control Flow Graphs

• Control dependencies can also be honored
• If bb2 is control dependent on bb1 , the operation 

nodes of bb2 are not allowed to be scheduled 
before those of bb1

• Polarize each basic block bbi with two 
scheduling variables (head and tail)

– v  bbi , sh(bbi) – sh(v)  0

– v  bbi ,  st(v) – st(bbi)  0

• If ec(bbi, bbj) Ec and ec is not a back edge
– st(bbi) – sh(bbj)  0

9
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Modulo Scheduling

• A regular form of loop (or function) pipelining technique
• Also applies to software pipelining in compiler optimization
• Loop iterations use the same schedule, which are initiated 

at a constant rate

• Typical objective: minimize II under resource constraints
– NP-hard in general

– Optimal polynomial time solution exists without recurrences or
resource constraints

• Advantages of modulo scheduling
• Cost efficient: No code or hardware replication
• Easy to analyze

– Steady state determines performance & resource

11ECE382M.20: SoC Design, Lecture 11 © Z. Zhang

Modulo Scheduling Example
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the body

II = 2

II = 2

0
1

2

3

× +

–

LD

ST

ST

–

LD

× +

Initiation Interval (II)

×+

LD

ST

– slot 0

slot 1

Steady state 
(II cycles)

Modulo 
reservation 
table (MRT)

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

Iteration  
1 2 30

1

0

2

3

Time 
(cycle)

5

4

6

7

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang



ECE382M.20: System-on-Chip (SoC) Design Lecture 11

© 2023 A. Gerstlauer 7

Algorithm for Modulo Scheduling

• Heuristic algorithm

• Find a lower bound on II

• Look for a schedule with the given II

• If a feasible schedule not found, increase II and try again

13

Find MII 
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes
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Multi-Objective Design Space

• Design space enabled by manual synthesis directives
• Local pragma settings, global constraints & options
• Automatic exploration not handled by traditional algorithms

• Multi-objective optimization (MOO)
• Pareto optimality, find Pareto front

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 15

D
ela

y

Area

Source: J. Abraham

© A. Gerstlauer

clock: 10ns
loop1: unroll
loop2: pipeline, II=2

clock: 50ns
loop1: -
loop2: -

Design Space Exploration (DSE)

• Design space exploration

 Automatic DSE (Auto-DSE)

 Automatic pragma, option & configuration setting

 Synthesis area & delay result estimation

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 16

Evaluating 
design points

(Modeling, 
cost function)

Covering the 
design space

(Decision 
making)

Source: C. Haubelt
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Automatic Decision Making & Exploration

• Brute-force methods

• Exhaustive search

• Random search

• Meta-heuristics

• Simulated annealing

• Genetic algorithms

• …

• Dedicated heuristics

• Divide & conquer

• Clustering

• …
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Source: B. Carrion-Schaefer

Synthesis Result Estimation

• Synthesis-based

• Run design through HLS tool

• Use estimated HLS result metrics (synthesis report)

• Model-based

• Sample the design space

• Learn a model that predicts synthesis results

• Potentially even predict (parts of) the design space

ECE382M.20: SoC Design, Lecture 11 © Z. Zhang 18
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Hurdles in Agile Hardware Design

• Tension between speed and fidelity w/ HLS-based design 

20

RTL/Logic Synthesis

RTL

High-Level Synthesis (HLS)

C++/SystemC/Python

Placement & Routing (PnR)

Final implementation

Technology Mapping

Timing/Area/Power Analysis

Large & complex 
design space

options/
directives

pragmas

Painfully slow 
design iteration 
(hours/days per 

run)

Inaccurate 
QoR estimation

(minutes per run)
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ML-Based Function 
Approximation

21

Machine Learning (ML) in HLS

Predicted area, delay, power

&
+

×

+^

+

×

0
1

48

1
0

21

0
1

10

1
0

32

0
1

18

0
1

27

1
0

36

Faster & More Accurate 
QoR Inference

1

ML-Aided Decision Making

Search Space

tool configuration, 
pragma settings, …Q
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More Intelligent Design 
Space Exploration (DSE)
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ML for HLS QoR Inference

ML 
Model

Estimation 
Targets

Reference

GNN
Post-HLS Resource 

& Latency
GNN4HLS 

[Ferretti et al. TODAES’22]

GNN
Post-HLS Resource 

& Latency
GNN-DSE

[Sohrabizadeh et al. DAC’22]

GNN
Post-PnR Resource 

& Timing
IronMan

[Wu et al. GLSVLSI’21]

GNN
Post-PnR Resource 

& Timing
−

[Wu et al. DAC’22]

GNN
Post-PnR Resource 

& Timing
IronMan-Pro

[Wu et al. TCAD’23]

GNN Post-PnR Power PowerGear
[Lin et al. DATE’22]

CNN Post-PnR Power HL-Pow
[Lin et al. TCAD’23]
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Abstract
Agile hardwaredevelopment requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performanceprediction
usually needs extensive feature engineering after the syn-
thesis process. To expeditecircuit evaluation from asearlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programsas graphs. Thecontribution of this work is three-
fold. First, webuild a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and threesets of real-world HLSbenchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics.Second,weformally formulate theHLS
performanceprediction problemon graphs,andproposemul-
tiple modeling strategies with GNNsthat leveragedi erent
trade-o sbetween prediction timeliness (early/late predic-
tion) and accuracy. Third, wefurther proposeanovel hierar-
chical GNN that does not sacri ce timeliness but largely im-
provesprediction accuracy, signi cantly outperforming HLS
tools. Weapply extensiveevaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLSby up to 40⇥ and excelsexisting predictors
by 2⇥ to 5⇥in terms of resourceusageandtiming prediction.

1 Introduction
Oneessential requirement for agile hardwaredevelopment
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA toolsusu-
ally take hours to days to accurately evaluate circuit quality
with extensivemanual e orts.Although high-level synthesis
(HLS) toolscangreatly speedupcircuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in termsof circuit quality evaluation [28]. Given
thestrong need for hardwareagiledevelopment and produc-
tivity boost, aquick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. Theoverall performance prediction ow. (a) De-
sign ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
menteddesign metricssuch asresourceusage, timing, power,
and area. Analytical models areclassic approaches [19, 32,
33] but they only work for highly regular data ow such as
perfect loopsandarrays.Recent ML approacheshavebecome
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [ 18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLSdesign performance on FPGAs.

Despite the great success, most of theML-based methods
rely on intensiveand empirical feature engineering: a large
number of featuresmust beobtained from HLSsynthesis re-
port or the intermediate resultsof apartially executed imple-
mentation process, which is still time-consuming. Therefore,
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Gaussian 
Processes

HLS Pragmas Prospector 
[Mehrabi et al. DATE’22]

Gaussian 
Processes

HLS Pragmas −
[Sun et al. TODAES’22]

CNN HLS Pragmas HL-Pow
[Lin et al. TCAD’23]

GNN HLS Pragmas + CDFGs
GNN4HLS
[Ferretti et al. 
TODAES’22]

GNN HLS Pragmas + CDFGs
GNN-DSE

[Sohrabizadeh et al. 
DAC’22]

GNN + RL HLS Pragmas + DFGs IronMan
[Wu et al. GLSVLSI’21]

GNN + RL HLS Pragmas + DFGs IronMan-Pro
[Wu et al. TCAD’23]

LLM + GNN
HLS Source + Pragmas + 

CDFG
ProgSG

[Bai et al. ArXiv’23]
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HLS Estimation Accuracy 

• 65 individual designs
• CHStone [Hara et.al, JIP’08]

• Machsuite [Reagen et.al, IISWC’14]

• S2CBench [Schafer & Mahapatra, ESL’14]

• Rosetta [Zhou et.al, FPGA’18]

• 1300 data samples 
• Clock periods: 1, 2, 3, 5, 10ns

• Zynq, Artix, Kintex, and 
Virtex devices

24

Commercial HLS
(Post-HLS estimates)
 Resource usage
 Timing
 Performance
 HDL details, etc.

Implementation
(Post-PnR results)
 Resource usage
 Timing, etc.

Estimation Error

LUT: mean 2~4x 

FF:   mean 2~3x
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ML-Based Resource Estimation in HLS

HLS Report
(Estimated)

LUTs, FFs, DSPs, BRAMs

ML 
Models

87 features

Implementation 
Report
(Actual)

 Estimated LUT, FF, DSP, 
and BRAM usage

 Estimated clock period
 Multiplexer statistics
 Statistics for logic 

operations
…

Features

Targets

[1] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F.Y. Young, and Z. Zhang, Fast and Accurate Estimation of Quality of Results in High-Level Synthesis 
with Machine Learning, FCCM, May 2018. (Best Paper Award, Short Paper Category)

Linear model: LASSO
Neural network: ANN
Gradient tree boosting: XGBoost
Graph neural networks: GNN
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Challenges to Effective DSE

• Creating a high-performance HLS design require nontrivial manual
source-level transformations that alters the loop structures and data 
layout

• Example: Inefficient matrix multiplication using inner product

• Slow pipeline due to carried dependency from floating-point 
accumulation

26
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middle loop j (N) inner loop k (K) middle loop j (N) 
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(M
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𝐶 𝑖, 𝑗 = 𝐴[𝑖, : ] ȉ 𝐵[: , 𝑗]

for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

C[i, j] = 0;
for (int k = 0; k < K; k++)
C[i, j] += A[i, k] * B[k, j]

×

MatMul via inner product 
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Challenges to Effective DSE

• A faster approach using row-wise product

• Different loop orders & additional on-chip storage

 Existing HLS AutoDSE methods cannot achieve this solution through 
permutations of the pragma settings

27

for (int i = 0; i < M; i++) {
float C_vec[N];
for (int j = 0; j < N; j++)

C_vec[j] = 0.0;

for (int k = 0; k < K; k++)
for (int j = 0; j < N; j++) 

#pragma pipeline II=1
C_vec[j] += A[i, k] * B[k, j];

for (int j = 0; j < N; j++)
C[i, j] = C_vec[j];

}
A B C

=
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te
r 
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p
 i

(M
) 

middle loop k 
(K) 

inner loop j (N) 

o
u
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r 

lo
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 i

(M
) 

inner loop j (N) 

𝐶 𝑖, : = ෍𝐴[𝑖, 𝑘] ȉ 𝐵[𝑘, : ]

௞

×

MatMul via row-wise product 

New opportunities in co-designing HLS programming models and ML-based DSE 
to enable exploration of high-level (initially algebraic) transformations
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Lecture 11: Summary

• HLS is (again) an active research area

• Golden age for hardware specialization
– End of traditional semiconductor scaling

• Application demands
– E.g. machine learning

• “Programmable” hardware substrates
– FPGAs

• Advanced HLS techniques

• Scheduling generalizations and optimality

• Automatic design space exploration (Auto-DSE)

• Machine learning for HLS
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