ECE382M.20: System-on-Chip (SoC) Design Lecture 16

ECE382M.20:
System-on-Chip (SoC) Design

Lecture 16 — SoC Verification

Sources:
Jacob A. Abraham

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstll@ece.utexas.edu

The University of Texas at Austin
Chandra Department of Electrical

and Computer Engineering
Cockrell School of Engineering

Outline

* Introduction
» Verification flow

» Verification methods
« Simulation-based techniques
+ Formal analysis
» Semi-formal approaches

* Formal verification
+ Dealing with state explosion
* Property checking
+ Equivalence checking
» Software verification

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 2

© 2023 A. Gerstlauer 1

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Verification versus Test

Specification b Validation

Design Verification

Hardware/Software Validation

Implementation]DPre-Silicon

Manufacture Test
Hard Post-Silicon
araware . .
Validation
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 3

Verification Effort

+ Verification portion of design increases to anywhere from
50 to 80% of total development effort for the design.

1996

300K gates SR EL LU N Synthesis
2000
1M SoC Verify (50 ~ 80%)
Verification methodology manual, 2000-
TransEDA
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 4

© 2023 A. Gerstlauer 2

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Percentage of Total Flaws

* About 50% of flaws are functional flaws
* Need verification method to fix logical & functional flaws

Logical/
Functional
45%

From Mentor presentation material, 2003

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 5

“Bug” Introduction and Detection

70 7

50 -

40 A

O introduced
B Deatectlad

30 ~

Percent Defects

20 1

10

Spec Design Implement Test
Design Stages

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 6

© 2023 A. Gerstlauer 3

ECE382M.20: System-on-Chip (SoC) Design

HW/SW Co-Design

“virtual prototyping”
» Co-verification

time

SW
Integration

+ Concurrent design of HW/SW components
« Evaluate the effect of a design decision at early stage by

time
HW
Integrati

SW iteration

ECE382M.20: SoC Design, Lecture 16

© J. A. Abraham

Top-Down SoC Verification

Functional Veriﬁcation,\
Timing Verification,
Physical Verification &

System Specifications
System Level .)
¥/eriﬁcation System Design
, 1 v
Functonal HWISW Parttioning
. J J
{ N\ * "\
Netlist Synthesis,
| Verification) Chip Plan & Design |

Device Test)

Design Sign-off

SWIPs &
TOS Library

UOIIEDIJLIDA

ECE382M.20: SoC Design, Lecture 16

© J. A. Abraham

© 2023 A. Gerstlauer

Lecture 16

ECE382M.20: System-on-Chip (SoC) Design

Bottom-Up SoC Verification

-
Design Files
Componeqts, Front-ond
blocks , units N‘jﬂed i Acceptance
[Level 0 Testing |
Memory map, Abstract Model View

internal interconnect” > { Level 1 Testing |

Basic functionality, _—

. y
external interconnect Level 3 Testin
Netiist Synthesis, Chip
System level [H]

Verification Plan & Design

uonRedLLIAA

unctional Verification,
Timing Verification,
Physical Verification &

Device Test

Design Sign-oft

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham

Platform Based SoC Verification

[4 A
] - - -
g Testbench i [Testoench] Derivative Design
i T %
i 5 f ! High
i h;ogram] SoC Platform ! Performance
1 | Memory !
| ﬁ') Interconnect
"""""""""" > Verification
System Bus > between:

Peripheral Bus

Peripheral
Block

> SoC Platform

> Newly added

IPs
Testbench

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham

© 2023 A. Gerstlauer

Lecture 16

ECE382M.20: System-on-Chip (SoC) Design

Interface-Driven SoC Verification

N\

[BlockD
| Interface Model |

v

Block A Block E Block C
Interface Model Design & Test Interface Model

Block B
Interface Model

Besides Design-Under-Test,
all others are interface models

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham

Traditional Simulation

Stimulus
Generator

Response
Checking

o
]
® 3"
m —
-~ O Q

=5
L Y,

* Problems of traditional testbench
* Real-World Stimuli
» System-Level Modeling
» High-Level Algorithmic Modeling
» Test Automation
» Source Coverage

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer

© 2023 A. Gerstlauer

Lecture 16

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Outline

» Verification methods
« Simulation-based techniques
* Formal analysis
» Semi-formal approaches

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 13

Design Verification Methods

» Simulation based methods
» Specify input test vector, output test vector pair

* Run simulation and compare output against expected
output

* Formal Methods
» Check equivalence of design models or parts of models
» Check specified properties on models

+ Semi-formal Methods
» Specify inputs and outputs as symbolic expressions
» Check simulation output against expected expression

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 14

© 2023 A. Gerstlauer 7

ECE382M.20: System-on-Chip (SoC) Design

Verification Approaches

uct
ro find prod

Hardware
Accelerated
Simulation

Basic
verification
tool

Semi-formal
Verification

Formal
Verification

ECE382M.20: SoC Design, Lecture 16

© J. A. Abraham

Simulation

* Create test vectors and simulate model

[Specification |

DUT

* Inputs
» Specification
— Used to create interesting stimuli and monitors

* Model of DUT
— Typically written in HDL or C or both

* Output
» Failed test vectors

« Simulation, debugging and visualization tools
[Synopsys VCS, Mentor ModelSim, Cadence NC-Sim]

— Pointed out in different design representations by debugging tools

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer

© 2023 A. Gerstlauer

Lecture 16

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Simulation Technologies

» Different techniques at varying levels of abstraction
* Numerical Simulation (MATLAB)
* AMS Simulation
» Transaction-based Simulators
+ HW/SW co-simulation
» Cycle-based Simulators
» Event-based Simulators
» Emulation Systems
» Rapid Prototyping Systems
* Hardware Accelerators

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 17

Static Technologies

+ “Lint” Checking
» Syntactic correctness

* Identifies simple errors

+ Static Timing Verification
» Setup, hold, delay timing requirements

+ Challenging: multiple sources

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 18

© 2023 A. Gerstlauer 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Formal Techniques

* Theorem Proving Techniques
* Proof-based
* Not fully automatic

* Formal Model Checking
* Model-based
» Automatic

* Formal Equivalence Checking
» Reference design < modified design
* RTL-RTL, RTL-Gate, Gate-Gate implementations
* No timing verification

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 19

Equivalence Checking

* LEC uses boolean algebra to check for logic equivalence

N
Py

[outputs | [outputs |

Equivalence
—

\‘ result
/ '

IRRRY!

2,

in;ﬁuts inEuts

+ SEC uses FSMs to check for sequential equivalence

X a O\céé @~
a% Xy =
b b b

yx (o) @
yy

>

bb

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 20

© 2023 A. Gerstlauer 10

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Model Checking

* Model M satisfies property P? [Clarke, Emerson ’81]
* Inputs

» State transition system representation of M

+ Temporal property P as formula of state properties
* Output

* True (property holds)

» False + counter-example (property does not hold)

P1 W P2 P = P2 always leads to P4

@ @) g, True /

Ve False + counter-example

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 21

Semi-Formal Methods

« Executable specification for behavioral modeling

* Design Productivity
— Easy to model complex algorithm
— Fast execution
— Simple Testbench
* Tools
— Native C/C++ through PLI/FLI
— Extended C/C++ : SpecC, SystemC

> Verify it on the fly!
* Test vector generation
* Compare RTL Code with Behavioral Model
* Coverage Test

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 22

© 2023 A. Gerstlauer 11

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Assertion-Based Verification

* Property Detection: To decide whether a
simulation run (trace) of a design satisfies a
given property (assertion)

trace

(simulation runy~__| property — . ves/
detection witness

pr'oper"ry/ module |—— no/
(specification) counterexample

e.g., violation of mutual exclusion, critical; & critical,

» Temporal logic
« Example: Properties written in PSL/Sugar

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 23

Specifying Properties (Assertions)

» Open Vera Assertions Language (Synopsys)

» Property Specification Language (PSL)
(IBM, based on Sugar)

* Accelera driving consortium
+ |EEE Std. 1850-2005

* Accelera Open Verification Library (OVL) provides ready
to use assertion functions in the form of VHDL and
Verilog HDL libraries

+ SystemVerilog is a next generation language, added to
the core Verilog HDL

+ |EEE Std. 1800-2005

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 24

© 2023 A. Gerstlauer 12

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Outline

* Formal verification
+ Dealing with state explosion
* Property checking
» Equivalence checking
» Software verification

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 25

Formal Verification of SoCs

Property Checking Equivalence Checking

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 26

© 2023 A. Gerstlauer 13

ECE382M.20: System-on-Chip (SoC) Design

State Explosion!

16°°% :
|
|
|
? |
£ 1gm _ |
(7] Protons in the Udiverse I
Y " |
o |
° |
[= 10 - Stars in the Mhiverse {
= . i |
4 _/ |
~ World'population {
10+ - |
|
|
|
|
p |
I 1 1 I 1 I 1
1 10 100 1000 10000 10000? 1000000
Number of Storage Elements
Number of latches
in Itanium processor
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 27

Abstractions to Deal with Large State Spaces

* Model checking models need to be made smaller

* Problem: State-Space Explosion

« Smaller or “reduced” models must retain information
* Property being checked should yield same result

» Balancing solution: Abstractions

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 28

© 2023 A. Gerstlauer

Lecture 16

14

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Program Transformation Based Abstractions

» Abstractions on Kripke structures
* Cone of Influence (COIl), Symmetry, Partial Order, etc.

+ State transition graphs for even small programs can be
very large to build

« Abstractions on program text
» Scale well with program size
+ High economic interest
» Static program transformation

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 29

Types of Abstractions

e Sound

* Property holds in abstraction implies property holds in the
original program

 Complete
+ Algorithm always finds an abstract program if it exists

 Exact

* Property holds in the abstraction iff property holds in the
main program

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 30

© 2023 A. Gerstlauer 15

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Abstraction Landscape
High High
Property Dependence Slicing Automation
Counterexample .
Medium Guided Medium
Property Dependence Refinement techniques Automation
Low Data Abstractions Low
Property Dependenc Abstract Interpretation Automation
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 31

Program Slicing

* Program transformation involving statement deletion

+ “Relevant statements” determined according to slicing
criterion

» Slice construction is completely automatic

« Correctness is property specific
» Loss of generality

* Abstractions are sound and complete

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 32

© 2023 A. Gerstlauer 16

ECE382M.20: System-on-Chip (SoC) Design

Specialized Slicing Techniques

» Static slicing produces large slices
* Has been used for verification
+ Semantically equivalent to COI reductions

» Slicing criterion can be enhanced to produce other types
of slices

* Amorphous Slicing
» Conditioned Slicing

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 33

Example Program
begin
1: read(N);
2: A=1;
3: if (N<0){
4: B = f(A);
5: C=g(A);
6: }else if (N> 0) {
7: B =f(A);
8: C=g'(A);
}else {
9: B =f’(A);
10: C=g"(A);
}
11: print(B);
12: print(C);
end
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 34

© 2023 A. Gerstlauer

Lecture 16

17

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Static Slicing wrt <11, B>

begin
1: read(N);
2: A=1;
3: if(N<0){
4: B = f(A);
5: C=g(A);
6: }else if (N> 0) {
7: B =f(A);
B8 C=9g'(A);
}else {
9: B =f’(A);
10— C=9g"(A);
}
11: print(B);
12: —— print(C);——
end
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 35

Conditioned Slicing wrt <(N<0),11, B>

begin

read(N);
A=1;
if (N<0){
B =f(A);

6 Yelseif(N>0){
7: B = f(A);
& C=g(A);

}else {

tl)

i

11: print(B);
12— print(C);

end

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 36

© 2023 A. Gerstlauer 18

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Verification Using Conditioned Slicing

» Slicing part of design irrelevant to property being
verified

» Safety Properties of the form
* G (antecedent => consequent)

+ Use antecedent to specify states we are
interested in

» We do not need to preserve program executions
where the antecedent is false

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 37

Antecedent Conditioned Slicing
h: & (A =>C) if (A) if (A)
/ \ C - 1 Static c = 1’
Antecedent Consequent else :> j:ic(i:ng on |:> else
XnC cC=0; : \ C=0:
Variable
if (A) Antecedent if (A) dependency
C=1; conditioned -1 analysis
else |:> slicing on :> Cl L
CcC=0: <A=true>, A, C -€=0—
Semantic analysis
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 38

© 2023 A. Gerstlauer 19

ECE382M.20: System-on-Chip (SoC) Design

Example
always @ (clk) begin
case(insn)
f_add: dec=d_add;
f_sub: dec =d_sub;
f_and: dec=d_and;
f or: dec =d_or;
endcase

end

always @ (clk)

case(dec)
d add:
d sub:
d and:
d or:
endcase
end

always @ (clk)
case(ex)
¢ add:
¢ sub:
e and:
e or:
endcase
end

begin

ex =e¢_add;
ex =e¢_sub;
ex =e_and;
ex =e_or;

begin

res = atb;
res = a-b;
res = a&b;
res = alb;

h =[G((insn =={ add) = XX(res == a+b))]

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 39
Example
always @ (clk) begin always @ (clk) begin
case(insn) case(dec)
f_add: dec =d_add; d add: ex=e¢ add;
endcase endcase
end end
always @ (clk) begin
case(ex)
¢ add: res=atb;
endcase
end
Single instruction behavior for f_add instruction
h =[G((insn == add) = XX(res == a+b))]
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 40

© 2023 A. Gerstlauer

Lecture 16

20

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Experimental Results

* Verilog RTL implementation of USB 2.0 function core

+ USB has many interacting state machines
— Approximately 1033 states

* Properties taken from specification document
— Mostly control based, state machine related

* Temporal property verification

» Safety properties of the form (in LTL)
— G(a=>Xc)
- G(a=>aUsc)

* Liveness Properties
— G(a=>Fc)

 Used Cadence SMV-BMC
+ Circuit too big for SMV
* Used a bound of 24

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 4

Example Properties of the USB

* G((crc5err) V —(match) => —(send_token))
+ If a packet with a bad CRCS5 is received, or there is an
endpoint field mismatch, the token is ignored

* G((state == SPEED_NEG_FS) => X((mode_hs) * (T1_gt_3_0ms) =>
(next_state == RES_SUSPEND))
+ If the machine is in the speed negotiation state, then in the
next clock cycle, if it is in high speed mode for more than 3
ms, it will go to the suspend state

+ G((state == RESUME_WAIT) * —(idle_cnt_clr) =>F(state == NORMAL))
+ If the machine is waiting to resume operation and a counter
is set, eventually (after 100 mS) it will return to normal
operation

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 42

© 2023 A. Gerstlauer 21

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Results on USB G(a=>c)Properties

CPU Seconds
200

180

160

140 _—

120 1 = — —

Original
100 — | — | — o e
[] Static Slicing
[Conditioned Slicing

801 | -

1

60 — | | o

} F F =Lk [l

P1 P2 P3 P P5 P6 P7 P8 P9
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 43

40+

Results on Temporal USB Properties
CPU Seconds
600
500 O Original M
O Static Slicing
400 i .
@ Conditioned Slicing L
300 M
200]
100
0 / T |—|_. T —h T |—I_| T T |_|_L T ,_‘_| T ,_‘_‘_ T -M
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 44

© 2023 A. Gerstlauer 22

ECE382M.20: System-on-Chip (SoC) Design

Amorphous Slicing

Static slicing preserves syntax of program

Semantic property of the slice is retained

Uses rewriting rules for program transformation

Amorphous Slicing does not follow syntax preservation

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham

45

Example of Amorphous Slicing

begin

i = start;

while (i <= (start + num))
{
result = K + f(i);
sum = sum + result;
i=i+1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham

46

© 2023 A. Gerstlauer

Lecture 16

23

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Example of Amorphous Slicing

Amorphous Slice:

begin

sum = sum + K + f(start);

sum = sum + K + f(start + num);
end

Program Transformation rules applied
* Induction variable elimination
* Dependent assignment removal

» Amorphous slice takes a fraction of the time as the real
slice

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 47

Counterexample Guided Refinement

« Approximation on set of states
* Initial state to bad path

» Successive refinement of approximation
» Forward or backward passes

* Process repeated until fixpoint is reached
» Empty resulting set of states implies property proved
» Otherwise, counterexample is found

» Counterexample can be spurious because of over-
approximations

* Heuristics used to determine spuriousness of
counterexamples

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 48

© 2023 A. Gerstlauer 24

ECE382M.20: System-on-Chip (SoC) Design

Counterexample Guided Refinement

+ CEGAR tool
M’ Pass
Build New — —>
Abstract Model Madel Chesk No Bug

|

Real CE

——>Bug

Refinement Cue

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 49

Equivalence Checking

+ Sequential equivalence checking
» Verifying two models with different state encodings

+ System specifications as system-level model (SLM)
» Higher level of abstraction
+ Timing-aware models

* Design concept in RTL needs checking
* Retiming, power, area modifications
» Every change requires verification against SLM

+ Simulation of SLM & RTL
* Tedious to develop
+ Inordinately long running times

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 50

© 2023 A. Gerstlauer

Lecture 16

25

ECE382M.20: System-on-Chip (SoC) Design

Sequential Equivalence Checking

Variables of interest (observables) obtained from

user/block diagram

» Primary outputs / relevant intermediate variables

Symbolic expressions obtained for observables assigned
in a given cycle (high level symbolic simulation)

» High-level symbolic simulation of RTL implementation
+ High-level symbolic simulation of system-level spec

Introduce notion of sequential compare points
« Identification with respect to relative position in time
+ ldentification with respect to space (data or variables)

Symbolic expressions compared at compare points
» Using a SAT solver or other Boolean level engines

ECE382M.20: SoC Design, Lecture 16

© J. A. Abraham

51

Sequential Compare Points Algorithm

M: System level model

V: RTL model
O: list of observables

For all sequential compare points C

Construct the control flow
graph for both M and V

y

Compute symbolic expression at
sequential compare point C using

high level symbolic simulation
for both M and V

y

Check equivalence of
symbolic expressions
at sequential compare point C
using a SAT solver

Obtain Proof

ECE382M.20: SoC Design, Lecture 16

If not satisfiable

Error Trace

52

© 2023 A. Gerstlauer

Lecture 16

26

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Verifying Embedded Software

+ Software Testing
» Execute software for test cases
* Analogous to simulation in hardware

* Testing Criteria
+ Coverage measures

* Formal analysis of software
* Model Checking
* Theorem Proving

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 53

Software Path Testing

« Assumption: bugs affect the control flow

» Execute all possible control flow paths through the
program

» Attempt 100% path coverage

« Execute all statements in program at least once
* 100% statement coverage

+ Exercise every branch alternative during test
» Attempt 100% branch coverage

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 54

© 2023 A. Gerstlauer 27

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Software Verification

* Formal analysis of code

* Result, if obtained, is guaranteed for all possible inputs
and all possible states

» Example of software model checker: SPIN

* Problem: applicable only to small modules
» State Explosion

» Data abstractions
» Abstract interpretation

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 55

Data Abstractions

» Abstract data information
* Typically manual abstractions

+ Infinite behavior of system abstracted
« Each variable replaced by abstract domain variable

« Each operation replaced by abstract domain
operation

+ Data independent systems
» Data values do not affect computation

« Datapath entirely abstracted

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 56

© 2023 A. Gerstlauer 28

ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Data Abstractions: Examples

» Arithmetic operations

» Congruence modulo an integer
— kreplaced by k mod m

* High orders of magnitude
» Logarithmic values instead of actual data value

Bitwise logical operations

» Large bit vector to single bit value
— Parity generator

e Cumbersome enumeration of data values
+ Symbolic values of data

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 57

Abstract Interpretation

« Abstraction function mapping concrete domain values to
abstract domain values

» Over-approximation of program behavior
* Every execution corresponds to abstract execution

+ Abstract semantics constructed once, manually

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 58

© 2023 A. Gerstlauer 29

ECE382M.20: System-on-Chip (SoC) Design

Abstract Interpretation: Examples

» Sign abstraction

* Replace integers by their sign
— Each integer K replaced by one of {> 0, < 0, =0}

* Interval abstraction

* Approximates integers by maximal and minimal values
— Counter variable i replaced by lower and upper limits of loop

* Relational abstraction

» Retain relationship between sets of data values
— Set of integers replaced by their convex hull

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 59

Summary

 Simulation-based validation
» Assertion-based verification
» Limited by stimuli

* Formal verification
* Model checking
* Equivalence checking
» State explosion
» Abstractions

ECE382M.20: SoC Design, Lecture 16 © 2023 A. Gerstlauer 60

© 2023 A. Gerstlauer

Lecture 16

30

