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* Introduction
» Verification flow

» Verification methods
« Simulation-based techniques
+ Formal analysis
» Semi-formal approaches

* Formal verification
+ Dealing with state explosion
* Property checking
+ Equivalence checking
» Software verification
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Verification versus Test
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Verification Effort

+ Verification portion of design increases to anywhere from
50 to 80% of total development effort for the design.

1996

300K gates SR EL LU N Synthesis
2000
1M SoC Verify (50 ~ 80%)
Verification methodology manual, 2000-
TransEDA
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Percentage of Total Flaws

* About 50% of flaws are functional flaws
* Need verification method to fix logical & functional flaws

Logical/
Functional
45%

From Mentor presentation material, 2003
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“Bug” Introduction and Detection
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HW/SW Co-Design

“virtual prototyping”
» Co-verification

time

SW
Integration

+ Concurrent design of HW/SW components
« Evaluate the effect of a design decision at early stage by

time
HW
Integrati

SW iteration
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Top-Down SoC Verification
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Bottom-Up SoC Verification
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Platform Based SoC Verification
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Interface-Driven SoC Verification
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Traditional Simulation
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* Problems of traditional testbench
* Real-World Stimuli
» System-Level Modeling
» High-Level Algorithmic Modeling
» Test Automation
» Source Coverage
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Outline

» Verification methods
« Simulation-based techniques
* Formal analysis
» Semi-formal approaches
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Design Verification Methods

» Simulation based methods
» Specify input test vector, output test vector pair

* Run simulation and compare output against expected
output

* Formal Methods
» Check equivalence of design models or parts of models
» Check specified properties on models

+ Semi-formal Methods
» Specify inputs and outputs as symbolic expressions
» Check simulation output against expected expression
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Verification Approaches
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Simulation

* Create test vectors and simulate model

[ Specification |

DUT

* Inputs
» Specification
— Used to create interesting stimuli and monitors

* Model of DUT
— Typically written in HDL or C or both

* Output
» Failed test vectors

« Simulation, debugging and visualization tools
[Synopsys VCS, Mentor ModelSim, Cadence NC-Sim]

— Pointed out in different design representations by debugging tools
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Simulation Technologies

» Different techniques at varying levels of abstraction
* Numerical Simulation (MATLAB)
* AMS Simulation
» Transaction-based Simulators
+ HW/SW co-simulation
» Cycle-based Simulators
» Event-based Simulators
» Emulation Systems
» Rapid Prototyping Systems
* Hardware Accelerators
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Static Technologies

+ “Lint” Checking
» Syntactic correctness

* Identifies simple errors

+ Static Timing Verification
» Setup, hold, delay timing requirements

+ Challenging: multiple sources
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Formal Techniques

* Theorem Proving Techniques
* Proof-based
* Not fully automatic

* Formal Model Checking
* Model-based
» Automatic

* Formal Equivalence Checking
» Reference design < modified design
* RTL-RTL, RTL-Gate, Gate-Gate implementations
* No timing verification
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Equivalence Checking

* LEC uses boolean algebra to check for logic equivalence
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Model Checking

* Model M satisfies property P? [Clarke, Emerson ’81]
* Inputs

» State transition system representation of M

+ Temporal property P as formula of state properties
* Output

* True (property holds)

» False + counter-example (property does not hold)

P1 W P2 P = P2 always leads to P4

@ @ ) g, True /

Ve False + counter-example
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Semi-Formal Methods

« Executable specification for behavioral modeling

* Design Productivity
— Easy to model complex algorithm
— Fast execution
— Simple Testbench
* Tools
— Native C/C++ through PLI/FLI
— Extended C/C++ : SpecC, SystemC

> Verify it on the fly!
* Test vector generation
* Compare RTL Code with Behavioral Model
* Coverage Test
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Assertion-Based Verification

* Property Detection: To decide whether a
simulation run (trace) of a design satisfies a
given property (assertion)

trace

(simulation runy~__| property — . ves/
detection witness

pr'oper"ry/ module |—— no/
(specification) counterexample

e.g., violation of mutual exclusion, critical; & critical,

» Temporal logic
« Example: Properties written in PSL/Sugar
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Specifying Properties (Assertions)

» Open Vera Assertions Language (Synopsys)

» Property Specification Language (PSL)
(IBM, based on Sugar)

* Accelera driving consortium
+ |EEE Std. 1850-2005

* Accelera Open Verification Library (OVL) provides ready
to use assertion functions in the form of VHDL and
Verilog HDL libraries

+ SystemVerilog is a next generation language, added to
the core Verilog HDL

+ |EEE Std. 1800-2005
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Outline

* Formal verification
+ Dealing with state explosion
* Property checking
» Equivalence checking
» Software verification
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Formal Verification of SoCs

Property Checking Equivalence Checking
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State Explosion!

16°°% :
|
|
|
? |
£ 1gm _ |
(7] Protons in the Udiverse I
Y " |
o |
° |
[= 10 - Stars in the Mhiverse {
= . i |
4 _/ |
~ World'population {
10+ - |
|
|
|
|
p |
I 1 1 I 1 I 1
1 10 100 1000 10000 10000? 1000000
Number of Storage Elements
Number of latches
in Itanium processor
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 27

Abstractions to Deal with Large State Spaces

* Model checking models need to be made smaller

* Problem: State-Space Explosion

« Smaller or “reduced” models must retain information
* Property being checked should yield same result

» Balancing solution: Abstractions
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Program Transformation Based Abstractions

» Abstractions on Kripke structures
* Cone of Influence (COIl), Symmetry, Partial Order, etc.

+ State transition graphs for even small programs can be
very large to build

« Abstractions on program text
» Scale well with program size
+ High economic interest
» Static program transformation
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Types of Abstractions

e Sound

* Property holds in abstraction implies property holds in the
original program

 Complete
+ Algorithm always finds an abstract program if it exists

 Exact

* Property holds in the abstraction iff property holds in the
main program
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Abstraction Landscape
High High
Property Dependence Slicing Automation
Counterexample .
Medium Guided Medium
Property Dependence Refinement techniques Automation
Low Data Abstractions Low
Property Dependenc Abstract Interpretation Automation
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Program Slicing

* Program transformation involving statement deletion

+ “Relevant statements” determined according to slicing
criterion

» Slice construction is completely automatic

« Correctness is property specific
» Loss of generality

* Abstractions are sound and complete
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Specialized Slicing Techniques

» Static slicing produces large slices
* Has been used for verification
+ Semantically equivalent to COI reductions

» Slicing criterion can be enhanced to produce other types
of slices

* Amorphous Slicing
» Conditioned Slicing
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Example Program
begin
1: read(N);
2: A=1;
3: if (N<0){
4: B = f(A);
5: C=g(A);
6: }else if (N> 0) {
7: B =f(A);
8: C=g'(A);
}else {
9: B =f’(A);
10: C=g"(A);
}
11: print(B);
12: print(C);
end
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Static Slicing wrt <11, B>

begin
1: read(N);
2: A=1;
3: if(N<0){
4: B = f(A);
5: C=g(A);
6: }else if (N> 0) {
7: B =f(A);
B8 C=9g'(A);
}else {
9: B =f’(A);
10— C=9g"(A);
}
11: print(B);
12: ——  print(C);——
end
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Conditioned Slicing wrt <(N<0),11, B>

begin

read(N);
A=1;
if (N<0){
B =f(A);

6 Yelseif(N>0){
7: B = f(A);
& C=g(A);

}else {

tl )

i

11: print(B);
12— print(C);

end
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Verification Using Conditioned Slicing

» Slicing part of design irrelevant to property being
verified

» Safety Properties of the form
* G (antecedent => consequent)

+ Use antecedent to specify states we are
interested in

» We do not need to preserve program executions
where the antecedent is false
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Antecedent Conditioned Slicing
h: & (A =>C) if (A) if (A)
/ \ C - 1 Static c = 1’
Antecedent Consequent else :> j:ic(i:ng on |:> else
XnC cC=0; : \ C=0:
Variable
if (A) Antecedent if (A) dependency
C=1; conditioned -1 analysis
else |:> slicing on :> Cl L
CcC=0: <A=true>, A, C -€=0—
Semantic analysis
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Example
always @ (clk) begin
case(insn)
f_add: dec=d_add;
f_sub: dec =d_sub;
f_and: dec=d_and;
f or: dec =d_or;
endcase

end

always @ (clk)

case(dec)
d add:
d sub:
d and:
d or:
endcase
end

always @ (clk)
case(ex)
¢ add:
¢ sub:
e and:
e or:
endcase
end

begin

ex =e¢_add;
ex =e¢_sub;
ex =e_and;
ex =e_or;

begin

res = atb;
res = a-b;
res = a&b;
res = alb;

h =[G((insn =={ add) = XX(res == a+b))]
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Example
always @ (clk) begin always @ (clk) begin
case(insn) case(dec)
f_add: dec =d_add; d add: ex=e¢ add;
endcase endcase
end end
always @ (clk) begin
case(ex)
¢ add: res=atb;
endcase
end
Single instruction behavior for f_add instruction
h =[G((insn == add) = XX(res == a+b))]
ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 40

© 2023 A. Gerstlauer

Lecture 16

20



ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Experimental Results

* Verilog RTL implementation of USB 2.0 function core

+ USB has many interacting state machines
— Approximately 1033 states

* Properties taken from specification document
— Mostly control based, state machine related

* Temporal property verification

» Safety properties of the form (in LTL)
— G(a=>Xc)
- G(a=>aUsc)

* Liveness Properties
— G(a=>Fc)

 Used Cadence SMV-BMC
+ Circuit too big for SMV
* Used a bound of 24
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Example Properties of the USB

* G((crc5err) V —(match) => —(send_token))
+ If a packet with a bad CRCS5 is received, or there is an
endpoint field mismatch, the token is ignored

* G((state == SPEED_NEG_FS) => X((mode_hs) * (T1_gt_3_0ms) =>
(next_state == RES_SUSPEND))
+ If the machine is in the speed negotiation state, then in the
next clock cycle, if it is in high speed mode for more than 3
ms, it will go to the suspend state

+  G((state == RESUME_WAIT) * —(idle_cnt_clr) =>F(state == NORMAL))
+ If the machine is waiting to resume operation and a counter
is set, eventually (after 100 mS) it will return to normal
operation

ECE382M.20: SoC Design, Lecture 16 © J. A. Abraham 42

© 2023 A. Gerstlauer 21



ECE382M.20: System-on-Chip (SoC) Design Lecture 16

Results on USB G(a=>c)Properties

CPU Seconds
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40+

Results on Temporal USB Properties
CPU Seconds
600
500 O Original M
O Static Slicing
400 i .
@ Conditioned Slicing L
300 M
200 ]
100
0 / T |—|_. T —h T |—I_| T T |_|_L T ,_‘_| T ,_‘_‘_ T -M
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
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Amorphous Slicing

Static slicing preserves syntax of program

Semantic property of the slice is retained

Uses rewriting rules for program transformation

Amorphous Slicing does not follow syntax preservation
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45

Example of Amorphous Slicing

begin

i = start;

while (i <= (start + num))
{
result = K + f(i);
sum = sum + result;
i=i+1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})
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Example of Amorphous Slicing

Amorphous Slice:

begin

sum = sum + K + f(start);

sum = sum + K + f(start + num);
end

Program Transformation rules applied
* Induction variable elimination
* Dependent assignment removal

» Amorphous slice takes a fraction of the time as the real
slice
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Counterexample Guided Refinement

« Approximation on set of states
* Initial state to bad path

» Successive refinement of approximation
» Forward or backward passes

* Process repeated until fixpoint is reached
» Empty resulting set of states implies property proved
» Otherwise, counterexample is found

» Counterexample can be spurious because of over-
approximations

* Heuristics used to determine spuriousness of
counterexamples
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Counterexample Guided Refinement

+ CEGAR tool
M’ Pass
Build New — —>
Abstract Model Madel Chesk No Bug

|

Real CE

——>Bug

Refinement Cue
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Equivalence Checking

+ Sequential equivalence checking
» Verifying two models with different state encodings

+ System specifications as system-level model (SLM)
» Higher level of abstraction
+ Timing-aware models

* Design concept in RTL needs checking
* Retiming, power, area modifications
» Every change requires verification against SLM

+ Simulation of SLM & RTL
* Tedious to develop
+ Inordinately long running times
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Sequential Equivalence Checking

Variables of interest (observables) obtained from

user/block diagram

» Primary outputs / relevant intermediate variables

Symbolic expressions obtained for observables assigned
in a given cycle (high level symbolic simulation)

» High-level symbolic simulation of RTL implementation
+ High-level symbolic simulation of system-level spec

Introduce notion of sequential compare points
« Identification with respect to relative position in time
+ ldentification with respect to space (data or variables)

Symbolic expressions compared at compare points
» Using a SAT solver or other Boolean level engines

ECE382M.20: SoC Design, Lecture 16
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Sequential Compare Points Algorithm

M: System level model

V: RTL model
O: list of observables

For all sequential compare points C

Construct the control flow
graph for both M and V

y

Compute symbolic expression at
sequential compare point C using

high level symbolic simulation
for both M and V

y

Check equivalence of
symbolic expressions
at sequential compare point C
using a SAT solver

Obtain Proof

ECE382M.20: SoC Design, Lecture 16

If not satisfiable

Error Trace

52
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Verifying Embedded Software

+ Software Testing
» Execute software for test cases
* Analogous to simulation in hardware

* Testing Criteria
+ Coverage measures

* Formal analysis of software
* Model Checking
* Theorem Proving
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Software Path Testing

« Assumption: bugs affect the control flow

» Execute all possible control flow paths through the
program

» Attempt 100% path coverage

« Execute all statements in program at least once
* 100% statement coverage

+ Exercise every branch alternative during test
» Attempt 100% branch coverage
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Software Verification

* Formal analysis of code

* Result, if obtained, is guaranteed for all possible inputs
and all possible states

» Example of software model checker: SPIN

* Problem: applicable only to small modules
» State Explosion

» Data abstractions
» Abstract interpretation
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Data Abstractions

» Abstract data information
* Typically manual abstractions

+ Infinite behavior of system abstracted
« Each variable replaced by abstract domain variable

« Each operation replaced by abstract domain
operation

+ Data independent systems
» Data values do not affect computation

« Datapath entirely abstracted
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Data Abstractions: Examples

» Arithmetic operations

» Congruence modulo an integer
— kreplaced by k mod m

* High orders of magnitude
» Logarithmic values instead of actual data value

Bitwise logical operations

» Large bit vector to single bit value
— Parity generator

e Cumbersome enumeration of data values
+ Symbolic values of data
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Abstract Interpretation

« Abstraction function mapping concrete domain values to
abstract domain values

» Over-approximation of program behavior
* Every execution corresponds to abstract execution

+ Abstract semantics constructed once, manually
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Abstract Interpretation: Examples

» Sign abstraction

* Replace integers by their sign
— Each integer K replaced by one of {> 0, < 0, =0}

* Interval abstraction

* Approximates integers by maximal and minimal values
— Counter variable i replaced by lower and upper limits of loop

* Relational abstraction

» Retain relationship between sets of data values
— Set of integers replaced by their convex hull
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Summary

 Simulation-based validation
» Assertion-based verification
» Limited by stimuli

* Formal verification
* Model checking
* Equivalence checking
» State explosion
» Abstractions
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