
ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 2 – Electronic System-Level (ESL) Design
with sources from:

Christian Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 2

Lecture 2: Outline

• Introduction

• Electronic system-level design (ESL/SLD)

• System-level design flow

• HW/SW co-design

• System-level design tasks

• Synthesis

• Modeling

• Summary and conclusions

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 2

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 3

Multi-Processor System-on-Chip (MPSoC)

Controller Bus

System
Memory

Local Bus

Local RAM

Bridge

Shared
RAM

DSP Bus

DSP RAM

Memory
Controller ASIP

DSP

Hardware
Accelerator

Micro-
Controller

Hardware
Accelerator

Video
Front End

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 4

SoC Design Challenges

Applications

Mapping?

• Complexity

• High degree of parallelism at
various levels

• Heterogeneity

• Of components

• Of tools

• Semantic gap

• Applications

• Architectures

 Raise abstraction level in design

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 3

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 5

Electronic System-Level (ESL) Design

System-level design

Hardware
development

Software
development

Integration &
Verification

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 6

system design

hardware
development

software
development

integration &
verification

Classical System Design Flow

(semi)automaticmanual

System requirement specification

System architecture design

Modeling

Hardware design

Software development

System

Integration & Verification

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 4

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 7

Hardware-Centric Design Cycle

Time

Task

Specification Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 8

Hardware-Centric Design Cycle

Time

Task

Specification Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification
✘

known if project is successful

✘

but you want to know here

✘

… and here

✘

… and here

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 5

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 9

system design

hardware
development

software
development

integration &
verification

Electronic System-Level (ESL) Design Flow

(semi)automaticmanual

System requirement specification

Hardware design Software development

System implementation

Integration & Verification

System-level design

High-level model

New ESL Design Cycle

• HW/SW co-design

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 10

Time

Task

Specification
(high-level & arch. models) Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification

Find good design options here -> high-level models as crucial enablers!

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 6

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 11

Design Methodologies

• Top down design
• Starts with functional system

specification
– Application behavior
– Models of Computation (MoC)

• Successive refinement
• Connect the hardware and

software design teams earlier in
the design cycle.

• Allows hardware and software to
be developed concurrently

• Goes through architectural
mapping

• The hardware and software parts
are either manually coded or
obtained by refinement from
higher model

• Ends with HW-SW co-verification
and System Integration

• Platform based design
• Starts with architecting a

processing platform for a given
vertical application space

– Semiconductor, ASSP vendors

• Enables rapid creation and
verification of sophisticated SoC
designs variants

• PBD uses predictable and pre-
verified firm and hard blocks

• PBD reduces overall time-to-
market

– Shorten verification time

• Provides higher productivity
through design reuse

• PBD allows derivative designs
with added functionality

• Allows the user to focus on the
part that differentiate his design

Source: Coware, Inc., 2005

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 12

Top-Down ESL Design Environment

SL
Design

Function
Design

System
Def.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODING

INTEG.
& TEST

PROTOTYPING ENVIRONMENT
Primarily
Virtual

Primarily
Physical

HW & SW
CODESIGN

Cost Models

Copyright © 1995-1999 SCRA Used with Permission

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 7

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 13

Flow To Implementation

Platform-Based Design (PBD)

System
Behavior

System
Platform

Mapping

Refinement

Behavior
Verification

Architecture

Models of
Computation

Performance models:
Emb. SW, Comm. and

Comp. resources

HW/SW Partitioning,
Scheduling & Estimation

Synthesis
& Coding

Performance
Analysis

and Simulation

Source: UC Berkeley, EECS249

Model Checking

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 14

Lecture 2: Outline

 Introduction

 ESL design methodology

• System-level design tasks

• Synthesis

• Modeling

• Summary and conclusions

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 8

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 15

Platform-Based System Design Tasks

Application

Optimal Mapping ?

Platform

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 16

Resource Allocation

• Resource allocation, i.e., select resources from a
platform for implementing the application

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 9

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 17

Process Mapping

• Process mapping, i.e., partition & bind processes onto
allocated computational resources

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 18

Communication Mapping

• Channel mapping, i.e., assign channels to paths over
busses and address spaces

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 19

Design Space Exploration (DSE)

• Design is an iterative process

• Make design decisions to explore the design space

• Evaluate the impact of decisions on design metrics

Covering the
design space
(Optimization)

Evaluating
design points

(Modeling)

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 20

Design Convergence

Front End DesignFront End Design ImplementationImplementation

Rapid Exploration Rapid Traversal

O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

Design Converges

Reduced convergence time due to minimal data

Convergence time increases due to more design data

Reduced convergence time due to reduced solution space

Convergence time increases due to transition phase

Reduced convergence time due to reduced solution space

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 11

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 21

Lecture 2: Outline

 Introduction

 ESL design methodology

• System-level design tasks

Synthesis

• Modeling

• Summary and conclusions

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 22

System Modeling

• Design models are the core of any design flow
• Representation for evaluation and analysis
• Specification for further implementation

 System-level design models
• Support HW/SW co-design
• Support early SoC architecture design
• Support rapid design space exploration

 System-level design languages
• Capture system-level models
• Hardware and software

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 12

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 23

 Simulation (dynamic) vs. analysis (static)

• Tightness of bounds, under- vs. over-estimation

Predictability

w.c. guarantee

w.c. performance

0 Lower Best
case

Worst
case

Upper
boundbound

Performance Analysis

Variation of actual execution times

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 24

Performance of a System

• Depends on many factors

• System design (algorithms and data structures)

• Implementation (code)

• Execution platform architecture

• The workload to which it is subjected

• The metric used in the evaluation

 Interactions between these factors

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 13

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 25

Design Models

• Algorithm and application level
• Profiling on existing hardware
• Analytical complexity models
• Identify bottlenecks, evaluate tradeoffs

• Component level
• Software & hardware partition
• Simulation-based component models
• Analytical performance/power/… estimates

• System level
• Simulation-based virtual platform prototyping
• Physical prototyping

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 26

Darknet Modeling

• Application profiling (Lab 1)
• Profiling of software code on board (gprof)

• Accelerator synthesis (Lab 2)
• Accelerator performance/area estimation
• Accelerator simulation model

• Virtual platform prototyping (Lab 3)
• SystemC-based SoC simulation model
• HW/SW co-simulation

• Physical prototyping (Project)
• FPGA-based SoC prototyping

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 14

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 27

Algorithm-Level Analysis

• Theoretical complexity scaling analysis
• O() notation (“order-of”)
• Example: Sorting

– “Bubble” sort
– Merge sort

• Example: Fourier transform
– Discrete Fourier transform
– Fast Fourier transform

• Code analysis
• Closed-form analytical complexity model
• Example: BCH* encoding

– Find the number of XOR and AND operations performed in the loop as a
function of k

– Assume length is 1024, and in any bit position, 0 and 1 are equally likely

* A BCH code is a multilevel, cyclic, error-correcting, variable-length digital code used to correct multiple random error
patterns. BCH codes may also be used with multilevel phase-shift keying whenever the number of levels is a prime
number or a power of a prime number.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 28

encode_bch()
{

register int i, j;
register int feedback;
for (i = 0; i < length - k; i++)

bb[i] = 0;
for (i = k - 1; i >= 0; i--) {

feedback = data[i] ^ bb[length - k - 1];
if (feedback != 0) {

for (j = length - k - 1; j > 0; j--)
if (g[j] != 0)

bb[j] = bb[j - 1] ^ feedback;
else

bb[j] = bb[j - 1];
bb[0] = g[0] && feedback;

} else {
for (j = length - k - 1; j > 0; j--)

bb[j] = bb[j - 1];
bb[0] = 0;

}
}

}

BCH Code

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 15

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 29

Application-Level Profiling

• Execute code on physical or simulated machine
• (Cross-)Compile down to binary
• Run on real processor or component-level simulator

– Benchmarks and input data test vectors

• Instrument code and collect metrics at runtime
• Include effect of processor instruction set and architecture

– For the given runtime platform (not necessarily the intended target)

• Many profiling tools for data gathering and analysis
– gprof measures where program spends its time and which functions call other

functions while it was executing

• Various interfaces, levels of automation, and approaches to
information presentation

– Flat profile: total amount of time program spends executing each function
– Call graph: how much time was spent in each function and its children

• A lot of work in the high performance computing community
 Effect of instrumentation on measured results?

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 30

Instrumentation Techniques
• Program instrumentation techniques

• Manual: Programmer inserted directives
• Automatic: No direct user involvement

– Sampling-based [gprof], binary rewriting [PIN], dynamic Instrumentation

• Hardware instrumentation techniques
• Hardware timers
• Hardware counters

– Cycles, cache misses, pipeline stalls, memory reads/writes, memory stalls, etc.
– Available mostly through special registers or memory mapped location

• Hardware assisted signal tracing

• Operating system instrumentation techniques
• Virtual memory, file system, file cache, etc. statistics
• Access via APIs

• Network instrumentation techniques
• Passive, e.g. RMON protocol packet header fields for monitoring
• Active, e.g. ping, NWS in grid style computing.

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 16

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 31

Component-Level Estimation

• Static analysis and prediction of performance
• Ability to provide hard guarantees

– Reliability, safety, etc.

 Worst-Case Execution Time (WCET) estimation of software
 Tightness of bounds?

• Analysis of modern processors is very difficult
• Dynamic effects

– Pipeline introduces dependencies on input sequence (instructions)
– Cache effects
– Branch prediction

• Hazards lead to timing accidents & penalties
– Structural (resource being used by another)
– Data (dependence for data calculations)
– Control (calculating next address – branches, interrupts)

Component-Level Simulation

• Cycle-accurate

• Describe micro-architecture/RTL in C

• Instruction-set simulation (ISS)

• Cycle-accurate/-approximate

• Functionality/behavior only

• Compiled ISS

• Binary translation

• Offline vs. just-in-time (self-modifying code)

• Functional only (no/rough timing, e.g. CPI=1)

• Source-level/host-compiled simulation

• C model describing functionality/behavior

• Back-annotate with timing and other metrics

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 32

CPU

HAL

ISS

RTOS

App.

I/O

B
in

a
ry

Arch.
State

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 17

Quick EMUlator (QEMU)

• Open-source, binary-translating ISS [Bellard’05]

• Emulates a variety of architectures (x86, ARM, PowerPC)

• Stand-alone or full-system model (peripherals to boot OS)

Source: M. Gilgor, N. Fournel, F. Pétrot, “Using Binary Translation in Event Driven Simulation for Fast and Flexible MPSoC Simulation,”
CODES+ISSS'09

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 33

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 34

Processor

Interface

RAM

ROM

Intr

Addr

Data

Concept

System
Development

Implementation

System

System-Level Modeling

• SoC architecture exploration

• HW/SW co-design

Source: CoWare, Inc.

• Analytical system models

• Best-case (roofline)

• Worst-case (real-time calculus)

• Simulation-based system models

• Virtual platform prototyping

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 18

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 35

Hardware

• Processors
• Bus
• Memory
• Peripherals
• Interfaces

Software
• Startup code
• Device drivers
• RTOS
• Application

code

Simulation

Processor

I/F

RAM

ROM

Intr

Addr

Data

Analysis

System

Virtual Platforms

• Virtual prototyping
• Full-system co-simulation of different components
• Observability of software, bus, memory, hardware behavior

Source: CoWare, Inc.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 36

System-Level Modeling Concerns

Managing
Complexity

Orthogonalizing
concerns

across
multiple levels

of
abstraction

Behavior
Vs.

Structure

Computation
Vs.

Communication

Source: UC Berkeley, EECS249

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 19

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 37

Computation vs. Communication

ComputationCommunication

Bus Model Device Model

Behavior can be described
algorithmically, without the burden of
the handshaking and control logic
associated with bus communication.

Communication can be described in a
wide range of fashions, from high-level
messages, to detailed signal level
handshakes without impacting the
behavior description.

c = a * b;
get a;
get b;
send c;

Must be synchronized

• Separation of concerns

• Flexibility in modeling, IP reuse

• Design computation & communication separately

Source: Coware, Inc.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 38

Communication Models

• Pin-Accurate Model (PAM)
• Redundant RTL complexity

results in slow simulation
• Each device interface must

implement the bus protocol
• Each device on the bus has a

pin-accurate interface
• Detailed signal handshaking

• Transaction-Level Model (TLM)
• Each device communicates via

function-level API
• Protocol is modeled as a single

bus model instead of in each
device

• Abstracted communication, less
code, no wires, fewer events

 100x-10,000x faster than PAM

Source: Coware, Inc.

BUS

MEM CPU

Periph Req

Grnt
Sel

Data
Addr

Clk

Pin/Cycle
Accurate

BUS

MEM CPU

Periph

TLM API TLM API

TLM API
Transaction

Transactions
(Function

Calls)

read(addr)
write(addr, data)

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 20

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 39

Virtual Platform Prototyping

Computation refinement

Communication refinement

Untimed TLM PAM

Virtual Prototype

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 40

Not Modeled
-Point to point

-Memory-mapped

Abstraction Levels

Functional Validation

System Partitioning and
Assembly

-Exploration and analysis

System Partitioning and
Assembly

-Exploration and analysis

Emb. System Modeling
-Executable spec. capture

-Functional testing

Emb. System Modeling
-Executable spec. capture

-Functional testing

RTL Design & Verification
-Block design and unit test
-Validation in the system

RTL Design & Verification
-Block design and unit test
-Validation in the system

System-level Verification
-Complete design at RTL
-System-level testbench

System-level Verification
-Complete design at RTL
-System-level testbench

Architectural Validation

Hardware Refinement

RTL Verification

RTL RTL

Timed
Bus-Functional

Untimed

Approximately
Timed TLM

Cycle-Accurate
TLM

(Transfer Level)

RTL

Instruction
Accurate

Cycle
Accurate

Processor Interconnect Peripheral

Host-compiled

Loosely Timed
TLM

RTL
(DUT)

TF
(rest)

In
cr

ea
si

n
g

S
co

pe
 f

or
 R

el
at

iv
e

O
pt

im
iz

at
io

n

In
cr

ea
si

n
g

S
im

u
la

ti
on

 P
er

fo
rm

an
ce

Source: Coware, Inc.

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

© 2023 A. Gerstlauer 21

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 41

UT

IA ISS
TLM Bus

Log A C C U R A C Y

Lo
g

S

 P
 E

 E
 D

Executable TLM

100Kcps

1MIPS

10MIPS

10Kcps

100cps

1Kcps

Cycle
Accurate

-TLM

Pin-accurate
w/RTL

RTL

Host-based

Re-use for
Early

Software
Development

Re-use for
System-level

Hardware
Verification

ESL
Architectural

Design LT
3 Mcps

CA
150 kps

PAM+RTL
15 kps

Speed vs. Accuracy

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 42

System Design Flow Summary

Design Export
… after initial platform
configuration through
design refinement and

communication synthesis

Functional
IP

C/C++
SDL
SPW

Simulink

Synthesis / Place & Route etc.

Implementation Level Verification

Software
Assembly

Hardware
Assembly

Communication
Refinement, Integration &

Synthesis

Performance Analysis and
Platform Configuration

System Integration

Platform
Function

Platform
Architecture

Embedded System Requirements

Platform
Configuration

… at the
un-clocked, timing-

aware
system level

Architecture
IP

CPU/DSP
RTOS

Bus, Memory
HW
SW

