ECE382M.20: System-on-Chip (SoC) Design Lecture 2

ECE382M.20:
System-on-Chip (SoC) Design

Lecture 2 — Electronic System-Level (ESL) Design

with sources from:
Christian Haubelt, Univ. of Erlangen-Nuremberg

Andreas Gerstlauer
Electrical and Computer Engineering
The University of Texas at Austin
gerstll@ece.utexas.edu

The University of Texas at Austin
Chandra Department of Electrical

and Computer Engineering
Cockrell School of Engineering

Lecture 2: Outline

* Introduction

Electronic system-level design (ESL/SLD)
» System-level design flow
* HW/SW co-design

System-level design tasks
* Synthesis
* Modeling

« Summary and conclusions

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 2

© 2023 A. Gerstlauer 1

ECE382M.20: System-on-Chip (SoC) Design

Multi-Processor System-on-Chip (MPSoC)

System
Memory

Memory Micro-
Controller Controller

Controller Bus

Hardware

DSP RAM Accelerator

DSP Bus

Local Bus

Hardware Video
Accelerator

Front End

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer

3

SoC Design Challenges

+ Complexity

» High degree of parallelism at
various levels

* Heterogeneity
» Of components
+ Oftools

+ Semantic gap
» Applications
+ Architectures

» Raise abstraction level in design

Mapping?

< >
£ >
>

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

Applications

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer

4

© 2023 A. Gerstlauer

Lecture 2

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Electronic System-Level (ESL) Design

System-level design

Hardware:x o Software
development development

Integration &
Verification

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 5

Classical System Design Flow

[System requirement specification]

System architecture design

Modeling

[

|

Software development

Integration & Verification

(System)

[_manual [(Sémijautomatic

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 6

© 2023 A. Gerstlauer 3

ECE382M.20: System-on-Chip (SoC) Design

Hardware-Centric Design Cycle

Task
Specification | . Fixes in specification
Z Z Z | |
'HW design . Fixes in hardware 5
| | |
' . HW verification | | 3 |

. SW design Fixe':a in sdftwaré
e — |
‘ . SW verification | ‘ |

. Integration & verification

v

Time
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 7
Hardware-Centric Design Cycle
but you want to know here
. and here
Task . and here
i Spécnflcatlon / Fixes in ;é:lflcatlon
HW deS|gn 3 lees/ hardware
L X | / |
| . HW verification/! | | ; ;
. SW design Fixe':a in sdftwaré
e T]
: . SW verification ! | ;
! Inte ratioﬁ & ve:rificatilon
| 3 1
1 1 | 1 | r X 1 N
I | I | I | I | v
/ Time
known if project is successful
8

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer

© 2023 A. Gerstlauer

Lecture 2

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Electronic System-Level (ESL) Design Flow

[System requirement specification |

System-level design

High-level model

Hardware design Software development

Integration & Verification

(System implementation)

____manual [(Semijautommatic

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 9

New ESL Design Cycle

+ HWISW co-design

Task

A~

Specification
(highrlevel & arch. models) Fixes'in specificati
|
C Hw diesig}Fixesiin hardwar

A —
: | HW.verification

| SW design iFixesiin SO
E. : . |.
| SW verification |

l' Intel,tgrathn & verlflca“clon
1 l l

Time

Find good design options here -> high-level models as crucial enablers!

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 10

© 2023 A. Gerstlauer 5

ECE382M.20: System-on-Chip (SoC) Design

Design Methodologies

Top down design

Starts with functional system
specification

— Application behavior

— Models of Computation (MoC)
Successive refinement

Connect the hardware and
software design teams earlier in
the design cycle.

Allows hardware and software to
be developed concurrently

Goes through architectural
mapping

The hardware and software parts
are either manually coded or
obtained by refinement from
higher model

Ends with HW-SW co-verification
and System Integration

* Platform based design

Starts with architecting a
processing platform for a given
vertical application space

— Semiconductor, ASSP vendors
Enables rapid creation and
verification of sophisticated SoC
designs variants
PBD uses predictable and pre-
verified firm and hard blocks
PBD reduces overall time-to-
market

— Shorten verification time
Provides higher productivity
through design reuse
PBD allows derivative designs
with added functionality
Allows the user to focus on the
part that differentiate his design

Source: Coware, Inc., 2005

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer 1

Top-Down ESL Design Environment

Primarily Primarily
Virtual PROTOTYPING ENVIRONMENT Physical
HW
DESIGN @ FAB
Function INTEG.
. & TEST
Design a—
HW & SW SW
CODING

CODESIGN

Copyright © 1995-1999 SCRA Used with Permission

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer 12

—_—

© 2023 A. Gerstlauer

Lecture 2

ECE382M.20: System-on-Chip (SoC) Design

Platform-Based Design (PBD)

Performance models:
Emb. SW, Comm. and
Comp. resources

Models of
Computation

System System
Behavior Platform

Model Checking

HW/SW Partitioning,
Scheduling & Estimation

Analysis

Performance
and Simulation

Refinement

Synthesis
& Coding

Flow To Implementation

Source: UC Berkeley, EECS249

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 13

Lecture 2: Outline

« System-level design tasks
» Synthesis
* Modeling

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 14

© 2023 A. Gerstlauer

Lecture 2

ECE382M.20: System-on-Chip (SoC) Design

Platform-Based System Design Tasks

Application

U

>
>

Platform

U

Optimal Mapping ?

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer 15

Resource Allocation

* Resource allocation, i.e., select resources from a
platform for implementing the application

P o/ o/ o/ g

/.%.

/% ”

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer 16

© 2023 A. Gerstlauer

Lecture 2

ECE382M.20: System-on-Chip (SoC) Design

Process Mapping

* Process mapping, i.e., partition & bind processes onto
allocated computational resources

/%@ g
s
e =

L /

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 17

Communication Mapping

+ Channel mapping, i.e., assign channels to paths over
busses and address spaces

Py = =
P =
/J w2 —

/

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 18

© 2023 A. Gerstlauer

Lecture 2

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Design Space Exploration (DSE)

* Design is an iterative process
+ Make design decisions to explore the design space
» Evaluate the impact of decisions on design metrics

[EE———— [EE— |
Evaluating Covering the
design points design space
(Modeling) (Optimization)

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 19

Design Convergence

Front End Design Implementation

g time due to mini data

{—A—\ Convergence time increases due to more design data

Reduced convergence time due to reduced solution space

Ci time i due to ition phase

verg time due to lution space

I

Design Converges

Optimization Solutions

Rapid Exploration Rapid Traversal

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 20

© 2023 A. Gerstlauer 10

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Lecture 2: Outline

+ System-level design tasks

* Modeling

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 21

System Modeling

+ Design models are the core of any design flow
» Representation for evaluation and analysis
» Specification for further implementation

> System-level design models
» Support HW/SW co-design
» Support early SoC architecture design
» Support rapid design space exploration

> System-level design languages
» Capture system-level models
* Hardware and software

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 22

© 2023 A. Gerstlauer 11

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Performance Analysis

Predictability

-€ >

- 3 W.C.guarantee

- » W.C. performance
| | — |
| | ! >

0 Lower Best Worst Upper
bound case case bound

Variation of actual execution times

» Simulation (dynamic) vs. analysis (static)
» Tightness of bounds, under- vs. over-estimation

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 23

Performance of a System

+ Depends on many factors
+ System design (algorithms and data structures)
* Implementation (code)
« Execution platform architecture
» The workload to which it is subjected
» The metric used in the evaluation

> Interactions between these factors

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 24

© 2023 A. Gerstlauer 12

ECE382M.20: System-on-Chip (SoC) Design

Design Models

« Algorithm and application level
* Profiling on existing hardware
 Analytical complexity models
+ Identify bottlenecks, evaluate tradeoffs

« Component level
» Software & hardware partition
« Simulation-based component models
 Analytical performance/power/... estimates

+ System level
» Simulation-based virtual platform prototyping
 Physical prototyping

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 25

Darknet Modeling

» Application profiling (Lab 1)
» Profiling of software code on board (gpro£)

» Accelerator synthesis (Lab 2)
» Accelerator performance/area estimation
» Accelerator simulation model

Virtual platform prototyping (Lab 3)
» SystemC-based SoC simulation model
* HW/SW co-simulation

* Physical prototyping (Project)
* FPGA-based SoC prototyping

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 26

© 2023 A. Gerstlauer

Lecture 2

13

ECE382M.20: System-on-Chip (SoC) Design

Algorithm-Level Analysis

» Theoretical complexity scaling analysis
* O() notation (“order-of”)

+ Example: Sorting
— “Bubble” sort
— Merge sort

« Example: Fourier transform
— Discrete Fourier transform
— Fast Fourier transform

+ Code analysis
+ Closed-form analytical complexity model
« Example: BCH" encoding

— Find the number of XOR and AND operations performed in the loop as a

function of k

— Assume length is 1024, and in any bit position, 0 and 1 are equally likely

* A BCH code is a multilevel, cyclic, error-correcting, variable-length digital code used to correct multiple random error
patterns. BCH codes may also be used with multilevel phase-shift keying whenever the number of levels is a prime

number or a power of a prime number.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 27
BCH Code
encode bch ()
{
register int i, 37
register int feedback;
for (i = 0; i < length - k; i++)
bb[i] = 0;
for (i = k - 1; 1 >= 0; i--) {
feedback = data[i] » bb[length - k - 1];
if (feedback != 0) {
for (7 = length - k - 1; jJ > 0; j--)
if (g[j] != 0)
bb[j] = bb[j - 1] ~ feedback;
else
bb[j] = bb[j - 11;
bb[0] = g[0] && feedback;
} else {
for (3 = length - k - 1; 3 > 0; j--)
bb[j] = bb[j - 11;
bb[0] = 0;
}
}
}
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 28

© 2023 A. Gerstlauer

Lecture 2

14

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Application-Level Profiling

» Execute code on physical or simulated machine
* (Cross-)Compile down to binary

* Run on real processor or component-level simulator
— Benchmarks and input data test vectors

* Instrument code and collect metrics at runtime

* Include effect of processor instruction set and architecture
— For the given runtime platform (not necessarily the intended target)

* Many profiling tools for data gathering and analysis

— gprof measures where program spends its time and which functions call other
functions while it was executing

» Various interfaces, levels of automation, and approaches to
information presentation
— Flat profile: total amount of time program spends executing each function
— Call graph: how much time was spent in each function and its children

* Aot of work in the high performance computing community
» Effect of instrumentation on measured results?

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 29

Instrumentation Techniques

* Program instrumentation techniques
* Manual: Programmer inserted directives

» Automatic: No direct user involvement
— Sampling-based [gprof], binary rewriting [PIN], dynamic Instrumentation

* Hardware instrumentation techniques
» Hardware timers

* Hardware counters
— Cycles, cache misses, pipeline stalls, memory reads/writes, memory stalls, etc.
— Available mostly through special registers or memory mapped location

» Hardware assisted signal tracing

* Operating system instrumentation techniques
+ Virtual memory, file system, file cache, etc. statistics
* Access via APIs

* Network instrumentation techniques
» Passive, e.g. RMON protocol packet header fields for monitoring
+ Active, e.g. ping, NWS in grid style computing.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 30

© 2023 A. Gerstlauer 15

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Component-Level Estimation

Static analysis and prediction of performance

» Ability to provide hard guarantees
— Reliability, safety, etc.

» Worst-Case Execution Time (WCET) estimation of software
» Tightness of bounds?

Analysis of modern processors is very difficult

* Dynamic effects
— Pipeline introduces dependencies on input sequence (instructions)
— Cache effects
— Branch prediction
* Hazards lead to timing accidents & penalties
— Structural (resource being used by another)

— Data (dependence for data calculations)
— Control (calculating next address — branches, interrupts)

31

© 2023 A. Gerstlauer

ECE382M.20: SoC Design, Lecture 2

Component-Level Simulation

* Cycle-accurate o CPU
pp.
» Describe micro-architecture/RTL in C £ [RToS
HAL

* Functionality/behavior only

* Instruction-set simulation (ISS) S5
» Cycle-accurate/-approximate v @ ©
State

« Compiled ISS
+ Binary translation
+ Offline vs. just-in-time (self-modifying code)
* Functional only (no/rough timing, e.g. CPI=1)

* Source-level/host-compiled simulation
+ C model describing functionality/behavior
+ Back-annotate with timing and other metrics

© 2023 A. Gerstlauer 32

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Quick EMUlator (QEMU)

+ Open-source, binary-translating ISS [Bellard’05]
* Emulates a variety of architectures (x86, ARM, PowerPC)
» Stand-alone or full-system model (peripherals to boot OS)

“ [micro-ops [_d_"_ B

- buffer : Iny code

Instruction |—— _— : . TB Cache Entry|
| ‘Code Generation! Translation Cache

Target binary (host binary code)

code (.elf)

Micro-operations

built-in
Source: M. Gilgor, N. Fournel, F. Pétrot, “Using Binary Translation in Event Driven Simulation for Fast and Flexible MPSoC Simulation,”
CODES+ISSS'09
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 33

System-Level Modeling

e P— + SoC architecture exploration
| \ S fe « HWISW co-design
= ’ Concept\ < System
el
Data ROM|

N I nt
Intr

* Analytical system models \

« Best-case (roofline) - Implementatio
» Worst-case (real-time calculus)
* Simulation-based system models ~
* Virtual platform prototyping
Source: CoWare, Inc.
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 34

© 2023 A. Gerstlauer 17

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Virtual Platforms

Hardware
scsiftware) \ + Processors
« Startup code *Bus
- Device drivers System EUN— + Memory
*RTOS « Peripherals
« Applicati Addr
pc;‘) ication Data « Interfaces
code

* Virtual prototyping
» Full-system co-simulation of different components
» Observability of software, bus, memory, hardware behavior

Source: CoWare, Inc.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 35

System-Level Modeling Concerns

Managing
Complexity

Orthogonalizing
concerns

Behavior across Computation
Vs, multiple levels Vs,

Structure of Communication
abstraction

Source: UC Berkeley, EECS249

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 36

© 2023 A. Gerstlauer 18

ECE382M.20: System-on-Chip (SoC) Design Lecture 2

Computation vs. Communication

» Separation of concerns
+ Flexibility in modeling, IP reuse
» Design computation & communication separately

Bus Model Device Model
Communication Computation
Must be synchronized
< > | get a;
get b;
send ¢;
Communication can be described in a Behavior can be described
wide range of fashions, from high-level algorithmically, without the burden of
messages, to detailed signal level the handshaking and control logic
handshakes without impacting the associated with bus communication.
behavior description.
Source: Coware, Inc.
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 37

Communication Models

* Pin-Accurate Model (PAM)
ng,o CPU %O « Redundant RTL complexity

results in slow simulation
Pin/Cycle » Each device interface must
BUS Accirate |mplemen_t the bus protocol
« Each device on the bus has a

E ; o pin-accurate interface
ts;'l —— « Detailed signal handshaking

* Transaction-Level Model (TLM)

* Each device communicates via
function-level API
L]

Transactions Protocol is modeled as a single
(Function bus model instead of in each

Calls) device
Transaction * Abstracted communication, less
———— | ceadadan code, no wires, fewer events
—— EHER | witeteasr, cata > 100x-10,000x faster than PAM
Source: Coware, Inc.
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 38

© 2023 A. Gerstlauer 19

ECE382M.20: System-on-Chip (SoC) Design

Virtual Platform Prototyping

Untimed

&l

System Partitioning and

Assembly
-Exploration and analysis

Hardware Refinement
RTL Design & Verification

Cycle
Accurate

-Block design and unit test
-Validation in the system

RTL Verification

System-level Verification
-Complete design at RTL

-System-level testbench

Approximately

Timed TLM

Cycle-Accurate

TLM
(Transfer Level)

RTL

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 39
Abstraction Levels
Functional Validation Processor Interconnect Peripheral
Emb. System Modeling Host-compiled Not Modeled
-Executable spec. capture -Point to point
-Functional testing
-Memory-mapped
) o Instruction Loosely Timed
Architectural Validation Accurate TLM Untimed

Timed
Bus-Functional

RTL TF
(DUT) | (rest)

Increasing Simulation Performance

RTL

Source: Coware, Inc.

ECE382M.20: SoC Design, Lecture 2

© 2023 A. Gerstlauer 40

Increasing Scope for Relative Optimization

© 2023 A. Gerstlauer

Lecture 2

20

ECE382M.20: System-on-Chip (SoC) Design

Speed vs. Accuracy

ESL
Host-based Archnte_ctural
LOMIPS Design LT
3 Mcps
Executable TLM P
Re-use fo
1MIPS Early
Dei:::)wamrzm Cycle
a P Accurate CA
w 100Kcps TLM 150 kps
w
a
7)) .
o 10Kcps Re-use for in-accurate PAM+RTL
S System-level w/RTL 15 kps
Hardware
1Kcps Verification
100cps
Log ACCURACY EE——
ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer 41

System Design Flow Summary

Embedded stem Requirements

Platform
Architecture

Platform
Function =
— P

CPU/DSP
System Integration RTOS
- Bus, Memory
_N— v
Performance Analysis and
Platform Configuration

Communication
Refinement, Integration &
Synthesis
Hardware Software
Assembly Assembly
g

Implementation Level Verification
Synthesis / Place & Route etc.

ECE382M.20: SoC Design, Lecture 2 © 2023 A. Gerstlauer

42

© 2023 A. Gerstlauer

Lecture 2

21

