
ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 5 – Accelerated System 
Architecture & HW/SW Co-Design

Sources:
Prof. Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 2

Lecture 5: Outline

• Introduction

• SoC architecture

• Accelerated system design

• When and for what to use accelerators

• Performance analysis

• HW/SW co-design

• Specification

• Analysis

• Synthesis



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 2

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 3

SoC Architecture

• Employ a combination of
• SW on programmable 

processors
– Flexibility, complexity

• Application-specific, 
custom HW

– Performance, low power

• Memory
– On-chip SRAM or eDRAM

• I/O
– Transducers, sensors, actuators, A/D & D/A converters
– Interact with analog, continuous-time environment

 Heterogeneous, accelerator-rich system architecture
 CPUs, DSPs, GPUs, micro-controllers
 ASICs & field programmable gate arrays (FPGAs)

Application 
Specific Gates

Processor 
Cores

Analog 
I/O

Memory

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 4

Hardware vs. Software Modules

• Hardware
• Functionality implemented via a custom architecture 

(e.g. datapath + FSM)
• Software

• Functionality implemented on a programmable processor 
(datapath + programmable control)

 Key differences
• Concurrency

– Processors usually have one “thread of control”
– Dedicated hardware often has concurrent datapaths

Multiplexing
– Software modules multiplexed with others on a processor (e.g. OS)
– Hardware modules are typically mapped individually on dedicated 

hardware blocks

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 3

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 5

Hardware Accelerator Taxonomy

• Accelerator vs. co-processor

• Tightly-coupled, fine-grain co-processors
– Executes instructions dispatched by the CPU, integrated into pipeline

• Loosely-coupled, coarse-grain accelerators
– Executes thread as separate device on bus, controlled via registers

• Accelerator implementations

• Application-specific integrated circuit (ASIC)

• Field-programmable gate array (FPGA)

• Standard component
– Example: graphics processor unit (GPU)

 SoCs enable multiple accelerators, peripherals, and some 
memory to be placed with a CPU on a single chip

© Margarida Jacome, UT Austin

Accelerated System Architecture

• Most basic SoC architecture

• CPU + accelerator (+ memory + I/O)

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 6

CPU

Accelerator

Memory

I/O

request

data
result

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 4

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 7

Why Accelerators?

• Better cost/performance

• Custom logic may be able to perform operation faster or at 
lower power than a CPU of equivalent cost

– Better at real-time, I/O, streaming, parallelism

• CPU cost is a non-linear function of performance
– May not be able to do the work on even the largest CPU

cost

performance

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 8

Why Accelerators? (cont’d)

• Better real-time performance

• Time-critical functions on less-loaded processing elements

• Dynamic CPU effects make it hard to predict timing
– Scheduling overhead and engineering margin

cost

performance

deadline
deadline w/
scheduling overhead

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 5

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 9

Performance Analysis

• Critical parameter is speedup

• How much faster is the system with the accelerator?

• Must take into account

• Accelerator execution time

• Data transfer time

• Synchronization with the master CPU

• Total accelerator execution time

• taccel = tin + tx + tout

Data input Accelerated
computation

Data output

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 10

Accelerator Speedup

• Assume loop is executed n times

• Compare accelerated system to non-accelerated system

• Saved Time = n(tCPU - taccel)

• = n[tCPU - (tin + tx + tout)]

• Speed-Up = Original Ex. Time / Accelerated Ex. Time

• Speed-Up = tCPU / taccel

• Data input/output times include

• Flushing register/cache values to main memory

• Time required for CPU to set up transaction

• Data transfer overhead for bus packets, handshaking, etc.

Execution time of equivalent 
function on CPU

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 6

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 11

Accelerator/CPU Interface

• Data transfers

• Accelerator registers provide control registers for CPU

• Shared memory region for data exchange
– Data registers can be used for small data objects

• Accelerator may include special-purpose read/write logic 
(bus mastering DMA hardware)

– Especially valuable for large data transfers

• Caching problems

• CPU might not see memory writes by the accelerator

 Invalidate cache lines or disable caching of shared regions

• Synchronization

• Concurrent accesses to shared variables

 Semaphores using atomic test & set bus operations 

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 12

Single- vs. Multi-Threaded

• One critical factor is available parallelism
• Single-threaded/blocking

– CPU waits for accelerator

• Multithreaded/non-blocking
– CPU continues to execute along with accelerator

• To multithread, CPU must have useful work to do
• But software must also support multithreading

 Sources of parallelism
• Overlap I/O and accelerator computation

– Perform operations in batches, read in second batch of data while 
computing on first batch.

• Find other work to do on the CPU
– May reschedule operations to move work after accelerator initiation.

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 7

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 13

Execution Time Analysis

• Single-threaded:

• Count execution time of all 
component processes.

• Multi-threaded:

• Find longest path through 
execution.

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 14

Lecture 5: Outline

 Introduction

 SoC design

 Accelerated system design

 When and for what to use accelerators

 Performance analysis

• HW/SW co-design

• Specification

• Analysis

• Synthesis



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 8

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 15

Embedded System Design

• The design of an embedded system consists of correctly 
implementing a specific set of functions while satisfying 
constraints on 

• Performance

• Dollar cost

• Energy consumption, power dissipation 

• Weight, etc.

The choice of a system architecture impacts whether designers  will 
implement a function as custom hardware or as (embedded) software 
running on a programmable component (processor). 

The choice of a system architecture impacts whether designers  will 
implement a function as custom hardware or as (embedded) software 
running on a programmable component (processor). 

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 16

Design Problem

• Design a heterogeneous multiprocessor architecture that 
satisfies the design requirements

• Use computational unit(s) dedicated to some functions
– Processing elements (PE): CPU, custom hardware accelerators

• Program the system

• A significant part of the design problem is deciding which 
parts should be in SW on programmable processors, and 
which in specialized HW

• Deciding the HW/SW architecture

• Ad-hoc approaches today

• Based on earlier experience with similar products

• HW/SW partitioning decided a priori, designed separately

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 9

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 17

Design Automation

• Computer-Aided Design (CAD)
Electronic Design Automation (EDA) 

• Tools take care of HW fairly well (at least in relative terms)

• Productivity gap emerging

• Situation in SW is worse

• HLLs such as C help, but can’t cope with exponential 
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a 
behavior description of the whole system at a high level of 

abstraction using formal computation models

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 18

HW/SW Co-Design

System Specification

Requirements Definition

System Architecture Development

SW Development
• Application SW
• Compilers, etc.
• RTOSs

Interface Design
• SW driver
• HW interface synthesis

HW Design
• HW architecture design
• HW synthesis
• Physical design

Integration and test

System-Level Design Process

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 19

HW/SW Co-Design

• Use additional computational unit(s) dedicated to some 
functions
• Hardwired logic, extra CPU 

 Automated design & optimization of HW/SW systems
• Specification

– Modeling
– Performance analysis

• Synthesis
– HW/SW partitioning (resource allocation & binding)
– Scheduling

• HW & SW implementation
– SW compilation
– HW synthesis

• Validation
– Integration, verification & debugging

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 20

Lecture 5: Outline

 Introduction

Embedded SoC design

• HW/SW co-design

• Specification

• Analysis

• Synthesis



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 11

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 21

System Specification

• Describe the desired behavior of a design as a relation 
between a set of inputs and a set of outputs

• This relation may be informal, even expressed in natural 
language 

• Such informal, ambiguous specifications may result in 
unnecessary redesigns…

 Formal Models of Computation (MoCs)

• Computation/behavior

• Communication

• Concurrency

• Time/order

• Heterogeneity, composability

• Implementability

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 22

Main MoCs for Embedded Systems

• Programming models

• Imperative & declarative

• Synchronous/reactive

• Process-based models

• Discrete event

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• State-based models

• Finite State Machines (FSM)

• Hierarchical, Concurrent State Machines (HCFSM)  

• Petri Nets

ECE382N.23: Embedded System Design & Modeling

© Margarida Jacome, UT Austin



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 12

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 23

Task Graph Model

• A graph representation of the application specification
• Derived from data dependency based representation 

commonly utilized in compilers

• Application is specified by a graph G(V,E)
• V is the set of tasks

– t(v,r) gives the run-time of “v” on a processing element “r” 

• E is the set of directed edges
– e(u,v) implies data produced by u is consumed by v
– v cannot begin execution before u has finished execution

• Execution constraints
– Deadlines, rates, latencies

 Data-dominated application model
• Multimedia and network processing applications can be 

specified by this model

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 24

Task Graph Example

• Assign weights to 
nodes and edges

• Cost, delays

• Constraints for nodes 
or whole graph

• Source-to-sink 
delay

 Analysis & synthesis

 Partitioning

 Real-Time 
Scheduling

 Amdahl’s law

a b

c

hgf

d e

Source

Sink



ECE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2023 A. Gerstlauer 13

ECE382M.20: SoC Design, Lecture 5 © 2023 A. Gerstlauer 25

Lecture 5: Outline

 Introduction

 Design methodology

• HW/SW co-design

 Models of Computation

• Analysis

• Synthesis


