
ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 6 – HW/SW Partitioning & Scheduling
Sources:

Prof. Margarida Jacome, UT Austin
Prof. Lothar Thiele, ETH Zürich

Prof. Peter Marwedel, TU Dortmund

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 2

Lecture 6: Outline

• HW/SW co-design tasks

• System mapping

• Partitioning

• Constructive heuristics

• Iterative heuristics

• Scheduling

• Uni-processor scheduling

• Task graph scheduling

• System-level design

• MPSoC synthesis

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 2

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 3

Design Synthesis

Imperative States Processes Discrete event

Scheduling &
Partitioning

High-Level
synthesis

Software
synthesis

Logic
synthesis

Compiler

Specification
(MoC)

Refinement

Implementation
Logic
model

Processor
model

Processor
model

Logic
model

Target architecture model

Executable functional modelC (language) VHDL (language)

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 4

Synthesis Tasks

• Mapping

• Allocate resources (hardware/software processors)

• Bind computations to resources

• Schedule operations in time

 Partitioning = (allocation +) binding

Mapping = binding + scheduling

• Allocation, scheduling and binding interact,
but separating them helps

• Alternatively allocate, bind, then schedule

© Margarida Jacome, UT Austin

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 3

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 5

Mapping Example

P1 P2

P3

d1 d2

Task graph Hardware platform

M1 M2

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 6

Example Cost Model

• Process execution times

• Communication cost

• Assume communication within PE is free

• Cost of communication from P1 to P3 is d1 = 2

• Cost of P2 to P3 communication is d2 = 4

P1 P2

P3

d1 d2
2 4

P1

P2

P3

M1 M2
5

5

--

5

6

5

© Margarida Jacome, UT Austin

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 4

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 7

First Design

• Allocate P2 -> M1; P1, P3 -> M2.

time

M1

M2

network

5 10 15 20

P1

P2

d2

P3

Time = 15

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 8

Second Design

• Allocate P1 -> M1; P2, P3 -> M2:

M1

M2

network

5 10 15 20

P1

P2

d1

P3

Time = 12

© Margarida Jacome, UT Austin

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 5

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 9

Lecture 6: Outline

 HW/SW co-design tasks

 System mapping

• Partitioning

• Constructive heuristics

• Iterative heuristics

• Scheduling

• Uni-processor scheduling

• Task graph scheduling

• System-level design

• MPSoC synthesis

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 10

Decomposition

• Divide functional specification into modules

• Map units onto PEs

• Units may become processes

• Determine proper level of parallelism

f3(f1(),f2())

f1() f2()

f3()

vs.

© Margarida Jacome, UT Austin

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 6

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 11

Decomposition Example

• Divide program into Control-Data Flow Graph (CDFG)

• Hierarchically decompose CDFG to identify partitions

Block 1

Block 2

Block 3

cond 1

cond 2
P1

P2

P3
P4

P5

© Margarida Jacome, UT Austin

Partitioning

• Assign tasks (objects) to processors (partitions) such
that all objects are assigned to unique partitions

• Minimize communication cost (graph partitioning)

• Minimize partition count (bin packing)

• Partition size, partition count, etc. constraints

 Exact methods

• Exhaustive enumeration, integer linear programming (ILP)

 Constructive heuristics

• Random mapping, hierarchical clustering

 Iterative heuristics

• Hill climbing, Kernighan-Lin, simulated annealing

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 12© Lothar Thiele, ETH Zürich

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 7

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 13

Constructive Methods

• Construct solution one by one

• Visit every object once

• Can generate a starting partition for iterative methods

• Shows the difficulty of finding proper closeness functions

 Random mapping

• Each object is assigned to a block randomly

 Hierarchical clustering

• Stepwise grouping of objects

• Closeness function determines how desirable it is to group
two objects

© Lothar Thiele, ETH Zürich

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 14

Hierarchical Clustering - Example (1)

2010

10
8

4 6

v1

v3v2

v4

v5 = v1v3

10

7

4 v4

v5

v2

Closeness function: arithmetic mean of weights

© Lothar Thiele, ETH Zürich

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 8

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 15

Hierarchical Clustering - Example (2)

v6 = v2v5

5.5

v4

v610

7

4 v4

v5

v2

© Lothar Thiele, ETH Zürich

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 16

Hierarchical Clustering - Example (3)

v7 = v6v4

v75.5

v4

v6

© Lothar Thiele, ETH Zürich

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 9

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 17

Hierarchical Clustering - Example (4)

v7 = v6v4

v4

v6 = v2v5

v5 = v1v3

v1 v2 v3

Step 1:

Step 2:

Step 3:

Cut lines
(partitions)

© Lothar Thiele, ETH Zürich

Iterative Methods

• Principles

• Start with some initial solution

• Search neighborhood (similar solutions), select candidate
and make local change based on fitness/cost function

• End on stopping criterion

 Simple iterative improvement or “hill climbing”

• Select candidate with best improvement in cost

• Stop when no candidate with lower cost is found

 Kernighan-Lin

• More exhaustive search to escape local optima

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 18© Lothar Thiele, ETH Zürich

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 10

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 19

Iterative Improvement (Hill Climbing)

• Simple greedy heuristic

• Until there is no improvement in cost: re-group a pair of
objects which leads to the largest gain in cost

v9

v2

v4
v5

v7

v1

v3v6

v8

Example: Cost = number of edges crossing the partitions
Before re-group: 5 ; after re-group: 4 ; gain = 1

© Lothar Thiele, ETH Zürich

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 20

Kernighan-Lin

• Problem

• Simple greedy heuristic can get stuck in a local minimum

• Kernighan-Lin algorithm

• As long as a better partition is found
– From all possible pairs of objects, virtually re-group the “best” (lowest

cost of the resulting partition)

– From the remaining not yet touched objects, virtually re-group the “best”
pair, etc.,

– Continue until all objects have been re-grouped

– From these n/2 partitions take the one with smallest cost and actually
perform the corresponding re-group operations. O(n2logn) complexity

• Still can get stuck in local minimum
– Among sequences of moves

 More complex strategies

• Randomize search, e.g. simulated annealing

© Lothar Thiele, ETH Zürich

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 11

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 21

Lecture 6: Outline

 HW/SW co-design tasks

 System mapping

 Partitioning

 Constructive heuristics

 Iterative heuristics

• Scheduling

• Uni-processor scheduling

• Task graph scheduling

• System-level design

• MPSoC synthesis

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 22

Margarida Jacome - UT Austin 22

Multiplexing HW/SW Modules

Call B

Return

Resume B

Resume B

Resume A

Resume A

A B A B A B

SUBROUTINES COROUTINES PROCESSES
Hierarchical Symmetric Symmetric

Sequential, static Sequential, static Concurrent, dynamic
Modularity
Complexity

© Margarida Jacome, UT Austin

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 12

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 23

Scheduling

V1 V2 V4V3

t

G=(V,E)

Dt

• A schedule is a mapping of a set of tasks to start times
such that none overlap
• Optimize throughput, latency (schedule length/makespan)
• Dependency, real-time (deadline) constraints

 Static scheduling

• Fixed start times or fixed order (semi-static)
 Dynamic scheduling

• Under control of an operating/runtime system

© Peter Marwedel, Dortmund Univ.

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 24

Uni-Processor Scheduling

 Trivial without deadlines

• Makespan is constant, throughput = 1 / makespan

• Aperiodic, independent task set

• Earliest Due Date (EDD) to minimize max. lateness

• Periodic, independent task set

• Maximize CPU utilization while meeting deadlines

• Rate Monotonic Scheduling (RMS) optimal w/ fixed priority

• Earliest Deadline First (EDF) optimal w/ dynamic priority

• Dependent task graph

• Latest Deadline First (LDF) to minimize max. lateness

• Modified EDF* for dynamic schedule

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 13

Dependent Tasks

• Task graph

 Periodic or aperiodic

• All tasks must have same period

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 25© Peter Marwedel, Dortmund Univ.

Simultaneous Arrival Times

• Latest Deadline First (LDF)

• Process task graph from sinks to sources

• Among tasks without successors, insert the ones with the
latest deadline into the schedule

• At runtime, process in generated static reverse order

 Optimal for uni-processor

• Non-preemptive

• If no local deadlines,
just topological sort

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 26© Peter Marwedel, Dortmund Univ.

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 14

Different Arrival Times

• Modified Earliest Deadline First (EDF*)

• Process graph from sinks to sources

• Propagate deadlines adjusted for execution times

• Under global time basis (adjusted for arrival times)

• At each node, deadline = min(original,propagated)

• Run from source to sinks in deadline order

 Optimal for uni-processor

• Preemptive

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 27

T1

T3

T2
E1 = 2
D1 = 14

E2 = 4
D2 = 10

E3 = 2
D3 = 14

T1

T3

T2
E1 = 2
D1 = 14

E2 = 4
D2 = 10

E3 = 2
D3 = 14

D21 = 10 - 4 = 6

D31 = 14 - 2 = 12

D1 = 6

Scheduling Considerations

• Special extensions
• HW accelerators (special task arrival/dependency models)
• Task execution times (worst-case + dynamic scheduling)
• Context switch overheads (fold into task execution times)
• Interrupt overhead (treat as high-priority tasks)

• What if your set of processes is unschedulable?
• Change deadlines in requirements
• Reduce execution times of processes
• Get a faster CPU
 Change the HW/SW partitioning!

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 28© Margarida Jacome, UT Austin

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 15

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 29

Lecture 6: Outline

 HW/SW co-design tasks

 System mapping

 Partitioning

 Constructive heuristics

 Iterative heuristics

 Scheduling

• Uni-processor scheduling

• Task graph scheduling

• System-level design

• MPSoC synthesis

Multi-Processor SoC (MPSoC)

• Heterogeneous, accelerator-rich SoC architectures
• Heterogeneous programmable processors

– Heterogenous CPUs, DSPs, GPUs

• Large number of accelerators
– ML/AI, audio, video, …

• Custom memories
– In-package DRAM, in-/near-memory computing

• Heterogeneous interconnect
– Networks-on-chip (NoCs), local bus hierarchies, interposers

• I/O

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 30

ECE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2023 A. Gerstlauer 16

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 31

Multi-Processor Mapping

• Partitioning & scheduling strongly interact

• Exploit parallelism

• Optimize and trade off throughput and latency

• NP-complete in general

• Multi-processor SoC (MPSoC) mapping heuristics

• For simple cases, partition first and schedule separately

• In general, solve partitioning & scheduling jointly

 Heuristics from high-level synthesis (see later lectures)

 Static scheduling

 MPSoC mapping heuristics

 Dynamic platform effects

© Margarida Jacome, UT Austin

ECE382M.20: SoC Design, Lecture 6 © 2023 A. Gerstlauer 32

MPSoC Synthesis

• Design space exploration (DSE)
• Parallel application models & multi-processor architectures
• Multi-objective, Pareto optimality
 Traditional HW/SW co-design approaches not sufficient

• Iterative heuristics
• Determine mapping

– Partitioning & scheduling

• Evaluate solutions
– Virtual platforms

• DSE approaches
• Simulated annealing
• Evolutionary algorithms
• Reinforcement learning

 ECE382N.23: Embedded System Design & Modeling

Application Architecture

Mapping

Estimation

Source: Lothar Thiele, ETH Zürich

