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High-Level Synthesis Flow

• Expressions

• Parse tree

 Data-flow graph (DFG)

 Control/data-flow of 
basic blocks (CDFG) 
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Behavioral Optimization

• Data-flow transformations from software compilation

• Tree height reduction
– Balance expression tree, expose parallelism

• Constant and variable propagation (a = 1;  c = 2 * a; → c = 2;)

• Common sub-expression elimination (a=x+y; c=x+y; → c = a;)

• Dead-code elimination

• Operator strength reduction (e.g., *4 → << 2)

• Control-flow transformations for hardware

• Conditional expansion
– If (c) then x=A else x=B

 compute A and B in parallel, x=(C)?A:B

• Loop expansion/unrolling
– Instead of three iterations of a loop, replicate the loop body three times

A
B x

c

Source: R. Gupta
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Tree-Height Reduction

• Commutativity and associativity

• x = a + b * c + d → x = (a + d) + b * c

• Distributivity

• x = a * (b * c * d + e) → x = a * b * c * d + a * e;
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Architectural Synthesis

• Deals with “computational” behavioral descriptions
• Behavior as sequencing graph

(called dependency graph, or data flow graph DFG)
• Hardware resources as library elements

– Pipelined or non-pipelined
– Resource performance in terms of execution delay 

• Constraints on operation timing & clock period
• Constraints on hardware resource availability
• Storage as registers, data transfer using wires 

• Objective
• Generate a synchronous, single-phase clock circuit
• Might have multiple feasible solutions (explore tradeoff)
• Satisfy constraints, minimize objective:

– Maximize performance subject to area constraint
– Minimize area subject to performance constraints

Source: R. Gupta
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Synthesis in Temporal Domain

• Scheduling
• Schedule is a mapping of operations to time slots (cycles)
• Scheduled sequencing graph is a labeled graph
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Synthesis in Spatial Domain

• Resource binding and sharing
• Map each operation to a resource of the same type
• More than one serial operation bound to same resource
• Can be represented using hyperedges (vertex partition)
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How Is the Datapath Implemented?

• Assuming the following schedule and binding
• Wires between

modules?
• Input selection?
• How does binding/

scheduling affect
congestion?

• How does binding/
scheduling affect
steering logic?

+











+

<

-

-

1

2

3

4



ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 5

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 9

Scheduling and Binding

 Resource dominated

 Control dominated

• Resource constraints:
• Mapping of operations into resource types T(v2) = adder
• Number of resource instances of each type aadder = 2

• Scheduling:
• Labeled vertices f (v2)=1

• Binding:
• Hyperedges (or vertex partitions) b (v2)=adder1

• Cost:
• Number of resources ∑ ak  area
• Registers, steering logic (Muxes, busses), wiring, control unit

• Delay:
• Start time of the “sink” node f (vsink)
• Might be affected by steering logic and schedule (control)
 Resource-dominated vs. ctrl-dominated
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Architectural Optimization

• Optimization in view of design space flexibility

• A multi-criteria optimization problem
• Determine schedule f and binding b.
• Under area A, latency l and cycle time t objectives

• Find non-dominated points in solution space
• Solution space tradeoff curves
• Non-linear, discontinuous

• Evaluate (estimate) cost functions

 Unconstrained optimization problems
• Min area: solve for minimal A binding
• Min latency: solve for minimum l scheduling

 Single-objective optimization problems
• Minimize A under l constraint
• Minimize l under A (≈ resource) constraint
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Scheduling and Binding

• Cost l and A determined by both f and b
• Also affected by floorplan and detailed routing

• b affected by f:

• Resources cannot be shared among concurrent ops

• f affected by b:

• Resources cannot be shared among concurrent ops

• When register and steering logic delays added to 
execution delays, might violate cycle time

• Order?

• Apply either one (scheduling, binding) first


