
ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 1

ECE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 8 – High-Level Synthesis Algorithms
Sources:

Rajesh Gupta, UC San Diego

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 2

Lex

Parse

Compilation
front-end

Behavioral
Optimization

Intermediate
form

Arch synth
Logic synth

Lib Binding
HLS backend

x = a + b  c + d

+

+


a b c d

+

+ 

a d b c

Source: R. Gupta

High-Level Synthesis Flow

• Expressions

• Parse tree

 Data-flow graph (DFG)

 Control/data-flow of 
basic blocks (CDFG) 



ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 2

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 3

Behavioral Optimization

• Data-flow transformations from software compilation

• Tree height reduction
– Balance expression tree, expose parallelism

• Constant and variable propagation (a = 1;  c = 2 * a; → c = 2;)

• Common sub-expression elimination (a=x+y; c=x+y; → c = a;)

• Dead-code elimination

• Operator strength reduction (e.g., *4 → << 2)

• Control-flow transformations for hardware

• Conditional expansion
– If (c) then x=A else x=B

 compute A and B in parallel, x=(C)?A:B

• Loop expansion/unrolling
– Instead of three iterations of a loop, replicate the loop body three times

A
B x

c

Source: R. Gupta

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 4

Tree-Height Reduction

• Commutativity and associativity

• x = a + b * c + d → x = (a + d) + b * c

• Distributivity

• x = a * (b * c * d + e) → x = a * b * c * d + a * e;

+

+

*

a b c d

*+

+

a b cd

*

+

*

*

a b c d e

+

* *

* *

a b c d ea



ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 3

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 5

Architectural Synthesis

• Deals with “computational” behavioral descriptions
• Behavior as sequencing graph

(called dependency graph, or data flow graph DFG)
• Hardware resources as library elements

– Pipelined or non-pipelined
– Resource performance in terms of execution delay 

• Constraints on operation timing & clock period
• Constraints on hardware resource availability
• Storage as registers, data transfer using wires 

• Objective
• Generate a synchronous, single-phase clock circuit
• Might have multiple feasible solutions (explore tradeoff)
• Satisfy constraints, minimize objective:

– Maximize performance subject to area constraint
– Minimize area subject to performance constraints

Source: R. Gupta

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 6

Synthesis in Temporal Domain

• Scheduling
• Schedule is a mapping of operations to time slots (cycles)
• Scheduled sequencing graph is a labeled graph

+

NOP



  + <
-

-
NOP

1

2
3

4

+

NOP











+

<
-

-

NOP

1

2
3

4

Source: R. Gupta



ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 4

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 7

Synthesis in Spatial Domain

• Resource binding and sharing
• Map each operation to a resource of the same type
• More than one serial operation bound to same resource
• Can be represented using hyperedges (vertex partition)

+

NOP



  + <

-

-

NOP

1

2

3

4

Source: R. Gupta

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 8

How Is the Datapath Implemented?

• Assuming the following schedule and binding
• Wires between

modules?
• Input selection?
• How does binding/

scheduling affect
congestion?

• How does binding/
scheduling affect
steering logic?

+











+

<

-

-

1

2

3

4



ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 5

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 9

Scheduling and Binding

 Resource dominated

 Control dominated

• Resource constraints:
• Mapping of operations into resource types T(v2) = adder
• Number of resource instances of each type aadder = 2

• Scheduling:
• Labeled vertices f (v2)=1

• Binding:
• Hyperedges (or vertex partitions) b (v2)=adder1

• Cost:
• Number of resources ∑ ak  area
• Registers, steering logic (Muxes, busses), wiring, control unit

• Delay:
• Start time of the “sink” node f (vsink)
• Might be affected by steering logic and schedule (control)
 Resource-dominated vs. ctrl-dominated

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 10

Architectural Optimization

• Optimization in view of design space flexibility

• A multi-criteria optimization problem
• Determine schedule f and binding b.
• Under area A, latency l and cycle time t objectives

• Find non-dominated points in solution space
• Solution space tradeoff curves
• Non-linear, discontinuous

• Evaluate (estimate) cost functions

 Unconstrained optimization problems
• Min area: solve for minimal A binding
• Min latency: solve for minimum l scheduling

 Single-objective optimization problems
• Minimize A under l constraint
• Minimize l under A (≈ resource) constraint



ECE382M.20: System-on-Chip (SoC) Design Lecture 8

© 2023 A. Gerstlauer 6

ECE382M.20: SoC Design, Lecture 8 © 2023 A. Gerstlauer 11

Scheduling and Binding

• Cost l and A determined by both f and b
• Also affected by floorplan and detailed routing

• b affected by f:

• Resources cannot be shared among concurrent ops

• f affected by b:

• Resources cannot be shared among concurrent ops

• When register and steering logic delays added to 
execution delays, might violate cycle time

• Order?

• Apply either one (scheduling, binding) first


