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Lecture 9: Outline

* The scheduling problem
+ Case analysis

* Unconstrained scheduling
» ASAP and ALAP schedules

» Resource constrained (RC) scheduling
* List scheduling

+ Time constrained (TC) scheduling
» Force-directed scheduling

+ Advanced scheduling problems
» Chaining
+ Pipelining

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 2

© 2023 A. Gerstlauer 1



ECE382M.20: System-on-Chip (SoC) Design

Scheduling

* Circuit model:
» Sequencing graph
» Cycle-time is given
» Operation delays expressed in cycles

* Scheduling:
» Determine the start times for the operations

 Satisfying all the sequencing (timing and resource)
constraint

* Goal:
» Determine area/latency trade-off
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Operation Scheduling

* Input:
» Sequencing graph G(V, E), with n vertices
* Cycletimet
* Operation delays D = {d;: i=0..n}
* Output:
+ Schedule ¢ determines start time ¢; of operation v,.
* Latency A =1¢, 1.
Goal: determine area / latency tradeoff
+ Classes:
* Non-hierarchical and unconstrained
» Latency constrained
* Resource constrained
* Hierarchical
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Simplest Method

« All operations have bounded delays

» All delays are in cycles:
» Cycle-time is given

 No constraints — no bounds on area

+ Goal:
* Minimize latency
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Min Latency Unconstrained Scheduling

+ Simplest case: no constraints, find min latency

* Given set of vertices V, delays D and a partial order > on
operations E,

+ find an integer labeling of operations ¢: V> Z* such that:
* 5=9(v)
° t126+d] V(Vj,vi)GE
e and A=t,—t,is minimum

> Solvable in polynomial time
» Bounds on latency for resource constrained problems
» ASAP algorithm used: topological order
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ASAP Schedules

+ Schedule v, at 1)=0
While (v, not scheduled)
« Select v; with all scheduled predecessors

* Schedule v; at 1;= max {/;+d;}, v; being a predecessor of v;

* Return t, ‘@
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ALAP Schedules

- Schedule v, at¢, =/
+ While (v, not scheduled)
« Select v; with all scheduled successors

* Schedule v; at 7;=min {#-d;}, v; being a succecessor of v,
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Remarks

« ALAP solves a latency-constrained problem
» Latency bound can be set to latency computed by ASAP
algorithm

* Mobility
» Defined for each operation
» Difference between ALAP and ASAP schedule

» Slack on the start time
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Example

Operations with zero mobility:
{v1,v2 V3, vg Vs }
Critical path

Operations with mobility one:
* {vevr}

Operations with mobility two:
o {vs V9, Vig, Vi1 }
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Lecture 9: Outline

ECE382M.20: SoC Design, Lecture 9

Resource constrained (RC) scheduling
» Exact formulations
- ILP
— Hu’s algorithm
Heuristic methods
— List scheduling
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Scheduling under Resource Constraints

» Classical scheduling problem

» Fix area bound — minimize latency (ML-RCS)
— Minimum latency resource constrained scheduling

* The amount of available resources affects the achievable
latency

* Dual problem:

 Fix latency bound — minimize resources (MR-LCS)
— Minimum resources latency constrained scheduling

* Assumption:
 All delays bounded and known

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 13

ML-RCS

* Given
 a set of ops V with integer delays D
* a partial order on the operations E
* upper bounds { a;, k=1, 2,..., n,,s } ON resource usage

* Find an integer labeling ¢ : V— Z* such that:
* L=0(v)
* y,=t,+d; forallijs.t (v, v) € E,
* [{v|Tv)=kand;<I<t;+d;} |<a;
— for all types k= 1,2,...,n,.; and steps
» and ¢, is minimum

> Intractable problem
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ILP Formulation

+ Binary decision variables
e X={x;, i=12..n (=12, A+1}

» x;is TRUE only when operation v; starts in step / of the

schedule (i.e./=¢)
« \is an upper bound on latency

+ Start time of operationv,;: X,/ x;
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ILP Constraints

+ Operations start only once
Xx;=1 i=1,2,..,n

+ Sequencing relations must be satisfied
tzt+d > t-t-d;>0 forall (v, v) e E
Ll-xy-Xl-x;-d; =0 forall (v, v) e E

* Resource bounds must be satisfied
Simple case (unit delay)

Y, x;5a k=12..n,,; foralll
i:T(v)=k
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Start Time vs. Execution Time

+ For each operation v;, only one start time

* If d=1, then the following questions are the same:
» Does operation v, start at step /?
* Is operation v, running at step /?

- Butifd;>1, the two questions should be formulated as:

* Does operation v, start at step /?
— Does x; =1 hold?

* Is operation v, running at step /? ! ?
E x, =1

— Does the following hold?

m=l—d;+1

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 17

Operation v; Still Running at Step / ?

* Is vy running at step 6?
® |S x9,6+x9,5 +XQ,4:1 ’?

4 4
> 5 5 |V
6 fa) 6 [v
, 1
Xg5=1 Xg5=1 Xg4~1
* Note:

* Only one (if any) of the above three cases can happen

 To meet resource constraints, we have to ask the same
question for ALL steps, and ALL operations of that type
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Operation v; Still Running at Step / ?

* Is v;running at step / ?
Cs oyttt X g =17

l-d+1 l-d+1 Ld+1 [

xi,lzl xi,l—lzl xi,l_di+1:1
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ILP Formulation of ML-RCS

* Constraints:
« Unique start times: Zxﬂ =1, i=0l...»n
/
« Sequencing (dependency) relations must be satisfied

t,>t,+d, Mv,,v)eE=>1.x6,>> |.x,+d,
/ /
* Resource constraints

Z i'ximsak’ kzla'”:nmg, l=1,...,z—|—l

iT(v)=k m=l—d;+1

* Objective: min ¢t
« ¢t = start times vector, ¢ = cost weight (e.g., [0 0 ... 1])

© Whene=[00...1], ¢t = » [.x,,
/
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ILP Example
- /'(N/O\P\Q
q /2 ? g g |
|
5 ,/ //
\\\\\\7’4/://
ory ™
* Resource constraints
» 2 ALUs; 2 Multipliers
* a;= 2; a= 2
« Single-cycle operation
e di=1 foralli
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ILP Example

« Assume A =4
* First, perform ASAP and ALAP

* (we can write the ILP without ASAP and ALAP, but using
ASAP and ALAP will simplify the inequalities)

P SN

: \ N
3@\/// 3@\@@@
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©
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ILP Example: Unique Start Times

* Without using ASAP and * Using ASAP and ALAP:

ALAP values:

X1 =
XX, +X5+x, =1 X =1

1 2.1

X HX, +X3+X, 4= X, =1

X3 =1

X5, =1

X +Xs =1
X, +X5=1
Xy + X +Xg5 =1
Xy +Xo 3+ 4 =1

X T X T X5 1X, =1
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ILP Example: Dependency Constraints

» Using ASAP and ALAP, the non-trivial inequalities are:
(assuming unit delay for + and *)

2, +3%, 5 =X, —2.X;,—120
2~x9,2 +3~x9,3 +4~x9,4 —X31 _23%,2 _3’x8,3 —1=0
2~)611,2 +3'x11,3 +4'x11,4 _xlo,l _23610,2 _33610,3 —1=0
4x;,—2x,,—3x,,—-1=20
5., 5 —2.x9,2 —3,x9,3 _4~X9,4 —1=0
S-Xn,s _23611,2 _3-x11,3 _4-x11,4 —1=0
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ILP Example: Resource Constraints

X+, + X+ <2
Xyp Xy X0, + X, <2
X5 +Xg3 <2
Xy =2
Xoo +Xi0, +X1, <2
Xys3 X5 +Xg5+X 3 <2

X g TXg g +X4 = 2
Objective:

optimum, but we can use the following anyway:

Min X, + 2.xn,2 + 3.xn,3 + 4uxn, 4

ECE382M.20: SoC Design, Lecture 9

Resource constraints (assuming 2 adders and 2 multipliers)

+ Since A=4 and sink has no mobility, any feasible solution is

© K. Bazargan
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ILP Example: Solution
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MR-LCS Dual ILP formulation

Minimize resource usage under latency constraint

Additional constraint

» Latency bound must be satisfied
o Xlx,<A+1

> Resource usage is unknown in the constraints
* Resource usage is the objective to minimize

ECE382M.20: SoC Design, Lecture 9
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MR-LCS ILP Example

jo!
5
TIME 4

Cost function h

- Multiplier area = 5
* ALU area =1

* Objective function: S5a; + a,

ECE382M.20: SoC Design, Lecture 9
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ILP Solving

Use standard ILP packages

Transform into LP problem

Advantages
* Exact method
» Others constraints can be incorporated

+ Disadvantages
* Works well up to few thousand variables

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 29

Hu’s Algorithm

» Simple case of the scheduling problem
» Operations of unit delay
» Operations (and resources) of the same type

* Hu’s algorithm

» Greedy, polynomial and optimal (exact)

— Computes lower bound on number of resources for given latency

OR
Computes lower bound on latency subject to resource constraints

+ Basic idea
» Label operations based on their distances from the sink

» Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 30
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Hu’s Algorithm with @ Resources

» Label operations with distance to sink
 Setstepl/=1

* Repeat until all ops are scheduled

» U= unscheduled vertices in
— Predecessors have been scheduled (or no predecessors)

» Select S < U resources with
- S<a
— Maximal labels

» Schedule the S operations at step /
* Incrementstep/=1/7+1
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Hu’s Algorithm Example

« Assumptions

* One resource type only

+ All operations have unit delay
* Labels

+ Distance to sink

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 32
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Hu’s Algorithm Example

Q9 0//

°
©

Step 1: Op 1,2,6 RO
Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli
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List Scheduling

e Heuristic method for:

* Min latency subject to resource bound (ML-RCS)
* Min resource subject to latency bound (MR-LCS)

* Greedy strategy (like Hu’s)
» Does not guarantee optimality (unlike Hu'’s)

* General graphs (unlike Hu’s)

* Resource constraints on different resource types
» Operations of arbitrary delay

 Priority list heuristics
+ Priority decided by criticality (similar to Hu'’s)
* Longest path to sink, longest path to timing constraint
* O(n) time complexity

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan
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List Scheduling for Minimum Latency

LIST_L( G(V, E), a) {
[=1;
repeat {
for each resource type k=1, 2, ...,n,, {
Determine ready operations U, ,;
Determine unfinished operations 7;,;
Select S, c Uj, vertices, s.t. |S;| +|T,| <a,;
Schedule the S, operations at step /;
}
I=1+1;
}
until (v, is scheduled) ;
return (z);

}

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 35

List Scheduling Example
/(Nopo P
Pl / ,//:/(No'i\o
& B A

TIME 1 \ \ 2 /\6 \\\\ Om
TIME 2 \/ \\ ‘"

e r s

(No,,,n % TIME 3 |

TIME 4 Q i

TIME 5 N :}

Resource bounds i

/ |

3 multipliers with delay 2 e bf’ '}

1 ALU with delay 1 s Og
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Lecture 9: Outline

* Time constrained (TC) scheduling

v/ Exact methods
v" ILP formulations
v Hu’s algorithm
* Heuristics
— List scheduling
— Force-directed scheduling

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 37

List Scheduling for Minimum Resources

LIST_R( G(V, E), 1) {
a=1;
Compute the latest possible start times /- by ALAP ( G(V, E), 1);
if (t, < 0)
return (9);
I=1;
repeat {
for each resource type k=1,2,...,n,, {
Determine rea&y operations U, ;;
Compute the slacks {s;=¢,—1 for all v, e U,};
Schedule candidate operations with zero slack and update a;
Schedule candidate operations not needing addt’l resources;
}
I=1+1;
}
until (v, is scheduled) ;
return (t, a);

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 38
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List Scheduling Example

! NOP,‘Q

Step 1

Seta, =

Step 3

Schedule ALU 4
Step 4

Set a,=2
\ Schedule ALU 5,9
\’N/OP‘ n

Assumptions

TIME 1 Q Q
* Unit-delay resources

Schedule ALU 11

Schedule Mult 7,8

Two multlpllcatlons on CP

Schedule Mult 1,2

Schedule ALU 10
Step 2

Schedule Mult 3, 6

; 10
/ \‘\ @
! \
6 |
TIVE 2 @ @ \\ é !
\
. \ |
Maximum latency = 4 4 L @s |
. TIME 3
Start with 7 i
. = 1 multiplier bs ég !
TIME 4 |
a,=1ALUs S >
~~_n -~ P —
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Force-Directed Scheduling (FDS)

Heuristic, similar to list scheduling
* Can handle ML-RCS and MR-LCS
» For ML-RCS, schedules step-by-step

* ldea [Paulin]

« Find the mobility x; =¢*

» Try to flatten the operation type distributions

Definition: operation probability density
« p;(1)=Pr{v;,executesin step/}

* Assume uniform distribution'p =

forle|

7
ECE382M.20: SoC Design, Lecture 9

» BUT, selection of the operations tries to find the globally
best set of operations

—¢5 of operations (ALAP-ASAP)
* Look at the operation type probability distributions

t,t]

© R. Gupta
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Force-Directed Scheduling: Definitions

* Operation probabilities over control steps
2 {pi 0), )2 @,... 'z (n}

* Operation-type distribution
(sum of operation probabilities for each type)

- q.D= > p®
iT(v)=k
» Distribution graph of type & over all steps

* 14.(0), ¢, (D, .. .q,(n)}

* g5 (/) can be thought of as expected operator cost for
implementing operations of type & at step /

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 41

Force-Directed Scheduling Example

Q Q=0 L"{* i1
- ® @ 9 ||}

Il e/ /S

' 4 ‘6\/ 0

R
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Force-Directed Scheduling Example

1 1 1
1 1.1 111
Gaaa(2) 33 3 7 @) 1+2+ >*3 2.33
1 1 1 _
D=1+—+—+—=2 1 1
qadd(4)=1+§+§=1.66 Gy =0

_|0.33 1 & ®

1

6 2.83

p) \@‘( @ @ /@ 2.33
] sa /S /7 B
1.66 4 ‘Gj\ ,/ 0
T
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Force-Directed Scheduling Algorithm

* Very similar to LIST_L(G(V,E), a)
» Compute mobility of operations using ASAP and ALAP
» Computer operation probabilities and type distributions
» Select and schedule operation
« Update operation probabilities and type distributions
* Go to next step/operation

» Difference with list scheduling in selecting operations
» Select operations with least force
* O(n?) time complexity due to pair-wise force computations

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 44
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Force

+ Used as priority function

* Force is related to concurrency
» Sort operations for least force

* Mechanical analogy (spring)

* Force = constant x displacement
— Constant = operation-type distribution
— Displacement = change in probability

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli
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Two Types of Forces

» Self-force
» Sum of forces to feasible schedule steps
» Self-force for operation v; in step /
— Sum over type distribution % delta probability

z m in interval qk(m) (5lm 7p1(m))
— Higher self-force indicates higher mobility

* Predecessor/successor-force

* Related to the predecessors/successors

— Fixing an operation timeframe restricts timeframe of
predecessors/successors

— Ex: Delaying an operation implies delaying its successors
— Computed by changes in self-forces of neighbors

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

46

© 2023 A. Gerstlauer

Lecture 9

23



ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Example: Schedule Operation v,

,—’( NOP)\

1 2
3

/ e
// L
/ 4

5 / e
;s
/

< s

S~. Vi

S~ L s
¥ <
(Nop ) M

» Distribution graphs for multiplier and ALU
0 1 2 3 0 1 2 3
HEERERE AREREEN
1

]
2 I
3 I
4 IS

AW N =

+ Operation v, can be scheduled in step 1 or step 2

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 47

Example: Operation v

* Op v, can be scheduled in the first two steps
*p(1)=05p(2)=05p(3)=0;p(4)=0

* Distribution
cg(1)=28;¢q(2)=23

» Assign v, to step 1
 Variation in probability 1 — 0.5 = 0.5 for step 1
 Variation in probability 0 — 0.5 = -0.5 for step 2
» Self-force
« 28-05-23+0.5=+0.25
* No successor force
» Total force = 0.25

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 48
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Example: Operation vy

+ Assign v to step 2
* variation in probability 0 — 0.5 = -0.5 for step 1
* variation in probability 1 — 0.5 = 0.5 for step 2

Self-force
e -28+05+23+05=-0.25

» Successor-force
» Operation v, assigned to step 3
» Succ. forceis2.3(0-05)+08(1-05)=-.75

Total force = -1

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli
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Example: Operation v,

* Total force in step 1=+ 0.25
* Total force in step 2 = -1

» Conclusion:
» Least force is for step 2
+ Assigning v to step 2 reduces concurrency

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli
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FDS for Minimum Resources
FDS (G(V,E), 1)
{
repeat {
Compute/update the time-frames;
Compute the operation and type probabilities;
Compute the self-forces, p/s-forces and total forces;
Schedule the op. with least force;
}
until (all operations are scheduled)
return (¢);
}
ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 51

Scheduling Generalizations

Detailed timing constraints

» Protocol and interface synthesis
— Bounds on start time differences
— Forward & backward edges for min/max constraints

Operation generalizations

* Unbounded delay operations (e.g. synchronization)
— Relative scheduling w.r. to anchors and combine

+ Conditional operations
* Resource generalizations
* Multi-cycling and chaining
» Pipelined resources
Model generalizations
+ Hierarchy
* Pipelining
* Loops

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 52
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Multi-Cycling and Chaining

+ Consider delays of resources not in terms of cycles

» Use scheduling to chain multiple operations in the same
control step

» Use scheduling to multi-cycle an operation across more
than one control step

» Useful techniques to explore effect of cycle-time on
areallatency trade-off

+ Algorithms
« ILP
+ ALAP/ASAP
« List scheduling

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 53

Chaining Example

0
()
/// \\

// \\
() (o)
(o)

(10)°

/ 7

(2]

~ P

* Cycle-time: 50
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Pipelining

* Two levels of data pipelining

 Structural pipelining
— Pipelined resources or datapath
— Non-pipelined model

* Functional pipelining
— Non-pipelined resources
— Pipelined model

« Control pipelining
* Pipelined control logic

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta
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Structural Pipelining

* Resources characterized by
* Execution delay
» Data introduction interval: DIl

* Implications

(always)

» Solution using list scheduling
» Relax criteria for selection of vertices

* Non-pipelined model using pipelined resources

» Operations sharing a pipelined resource are serialized

» Operations do not have data dependency

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta
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Structural Pipelining Example

|
—(]]
ho!
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Functional (Loop) Pipelining

* Pipelined model, non-pipelined resources
« Assume non-hierarchical graphs
* Model characterized by
» Latency
* Initiation interval, 11
* Restart source before completing sink
* Implicit loop
» Limited by loop-carried dependencies

> Solutions using ILP or heuristics

concurrency
» List or force-directed methods

* |LP resource constraints modified to include increased
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Lecture 9

Loop Pipelining Example
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6 multipliers and 3 ALUs (in this example)
+ Trade off latency for resources under equal throughput (/)
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Loop Pipelining Example
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Loop Pipelining and Concurrency

» II determines resource usage

« Smaller /I leads to larger overlaps, higher resource
requirements
min{a,} = n,, for II=1 (all n, operations are concurrent)

- [n
* Ingeneral, a;=|-%
i

» Concurrent operations
+ Operations v, and v, are executing concurrently at control
step /, if
rem{ ¢/l } =rem{ /1l } =1
» Affects the design of the controller circuitry
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Loop Scheduling

« Exploit potential parallelism across loop invocations

» Single loops
» Sequential execution

» Loop unrolling (known iteration count)
— Merge multiple iterations into one to provide scheduling opportunities

* Loop pipelining (iteration count might be unknown)
— Start next iteration while current one is still running
— Depends on dependencies across iterations
» Functional pipelining

* Merging of multiple loops
* Run different loops in parallel (no dependencies)
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Loop Unrolling

Example
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Loop Scheduling Summary

+ Sequential

* |teration count = N

* Pipeline loop iterations with I7 <\
8 » Latency of the pipelined loop

1 2 3 4 5 6 7 8
* Unrolled
1,2,3 4,5,6 7,89
* Pipelined
1 3 5 7 « Loop latency = N - A
2 4 6

— N-II + overhead
— Overhead = |/, 1
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Lecture 9: Summary

Scheduling determines area/latency trade-off

Intractable problem in general
* Heuristic algorithms
 ILP formulation (small-case problems)

Several heuristic formulations
+ List scheduling is the fastest and most used
» Force-directed scheduling tends to yield good results

+ Several extensions
+ Chaining and multi-cycling
* Pipelining
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