ECE382M.20: System-on-Chip (SoC) Design Lecture 9

ECE382M.20:
System-on-Chip (SoC) Design

Lecture 9 — HLS Operation Scheduling
Source: G. De Micheli, Integrated Systems Center, EPFL
“Synthesis and Optimization of Digital Circuits”, McGraw Hill, 2001.
Additional sources:

Notes by Kia Bazargan,
Notes by Rajesh Gupta, UCSD,

Andreas Gerstlauer
Electrical and Computer Engineering
The University of Texas at Austin
gerstl@ece.utexas.edu

The University of Texas at Austin
Chandra Department of Electrical

and Computer Engineering
Cockrell School of Engineering

Lecture 9: Outline

* The scheduling problem
+ Case analysis

* Unconstrained scheduling
» ASAP and ALAP schedules

» Resource constrained (RC) scheduling
* List scheduling

+ Time constrained (TC) scheduling
» Force-directed scheduling

+ Advanced scheduling problems
» Chaining
+ Pipelining

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 2

© 2023 A. Gerstlauer 1

ECE382M.20: System-on-Chip (SoC) Design

Scheduling

* Circuit model:
» Sequencing graph
» Cycle-time is given
» Operation delays expressed in cycles

* Scheduling:
» Determine the start times for the operations

 Satisfying all the sequencing (timing and resource)
constraint

* Goal:
» Determine area/latency trade-off

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

Example

No
,’(NOP k

zf 33

- - % AN S~
¢ n < 2 6 8 10
I’4
3 7

\,g

lNOPJ

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

© 2023 A. Gerstlauer

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Operation Scheduling

* Input:
» Sequencing graph G(V, E), with n vertices
* Cycletimet
* Operation delays D = {d;: i=0..n}
* Output:
+ Schedule ¢ determines start time ¢; of operation v,.
* Latency A =1¢, 1.
Goal: determine area / latency tradeoff
+ Classes:
* Non-hierarchical and unconstrained
» Latency constrained
* Resource constrained
* Hierarchical

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 5

Simplest Method

« All operations have bounded delays

» All delays are in cycles:
» Cycle-time is given

 No constraints — no bounds on area

+ Goal:
* Minimize latency

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 6

© 2023 A. Gerstlauer 3

ECE382M.20: System-on-Chip (SoC) Design

Min Latency Unconstrained Scheduling

+ Simplest case: no constraints, find min latency

* Given set of vertices V, delays D and a partial order > on
operations E,

+ find an integer labeling of operations ¢: V> Z* such that:
* 5=9(v)
° t126+d] V(Vj,vi)GE
e and A=t,—t,is minimum

> Solvable in polynomial time
» Bounds on latency for resource constrained problems
» ASAP algorithm used: topological order

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta

ASAP Schedules

+ Schedule v, at 1)=0
While (v, not scheduled)
« Select v; with all scheduled predecessors

* Schedule v; at 1;= max {/;+d;}, v; being a predecessor of v;

* Return t, ‘@
' ® ®
2 ¥ © ®© 9
s Q /S /)
g _/
RE]
ECE382M.20: SoC Design, Lecture 9 © R. Gupta

© 2023 A. Gerstlauer

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

ALAP Schedules

- Schedule v, at¢, =/
+ While (v, not scheduled)
« Select v; with all scheduled successors

* Schedule v; at 7;=min {#-d;}, v; being a succecessor of v,

@op
'® ®
AN
3 Q. ©®9Y 9
s, G ® 6
ke
ECE382M.20: SoC Design, Lecture 9 © R. Gupta 9

Remarks

« ALAP solves a latency-constrained problem
» Latency bound can be set to latency computed by ASAP
algorithm

* Mobility
» Defined for each operation
» Difference between ALAP and ASAP schedule

» Slack on the start time

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

© 2023 A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design

Example

Operations with zero mobility:
{v1,v2 V3, vg Vs }
Critical path

Operations with mobility one:
* {vevr}

Operations with mobility two:
o {vs V9, Vig, Vi1 }

// //
J / //
5 // //
TIME /)

~ . ~ /s

\\\y_\;/,/’/ = \\\\,_/://

opin Nogin

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 1

Lecture 9: Outline

ECE382M.20: SoC Design, Lecture 9

Resource constrained (RC) scheduling
» Exact formulations
- ILP
— Hu’s algorithm
Heuristic methods
— List scheduling

© G. De Micheli

© 2023 A. Gerstlauer

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Scheduling under Resource Constraints

» Classical scheduling problem

» Fix area bound — minimize latency (ML-RCS)
— Minimum latency resource constrained scheduling

* The amount of available resources affects the achievable
latency

* Dual problem:

 Fix latency bound — minimize resources (MR-LCS)
— Minimum resources latency constrained scheduling

* Assumption:
 All delays bounded and known

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 13

ML-RCS

* Given
 a set of ops V with integer delays D
* a partial order on the operations E
* upper bounds { a;, k=1, 2,..., n,,s } ON resource usage

* Find an integer labeling ¢ : V— Z* such that:
* L=0(v)
* y,=t,+d; forallijs.t (v, v) € E,
* [{v|Tv)=kand;<I<t;+d;} |<a;
— for all types k= 1,2,...,n,.; and steps
» and ¢, is minimum

> Intractable problem

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 14

© 2023 A. Gerstlauer 7

ECE382M.20: System-on-Chip (SoC) Design

ILP Formulation

+ Binary decision variables
e X={x;, i=12..n (=12, A+1}

» x;is TRUE only when operation v; starts in step / of the

schedule (i.e./=¢)
« \is an upper bound on latency

+ Start time of operationv,;: X,/ x;

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

ILP Constraints

+ Operations start only once
Xx;=1 i=1,2,..,n

+ Sequencing relations must be satisfied
tzt+d > t-t-d;>0 forall (v, v) e E
Ll-xy-Xl-x;-d; =0 forall (v, v) e E

* Resource bounds must be satisfied
Simple case (unit delay)

Y, x;5a k=12..n,,; foralll
i:T(v)=k
ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 16

© 2023 A. Gerstlauer

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Start Time vs. Execution Time

+ For each operation v;, only one start time

* If d=1, then the following questions are the same:
» Does operation v, start at step /?
* Is operation v, running at step /?

- Butifd;>1, the two questions should be formulated as:

* Does operation v, start at step /?
— Does x; =1 hold?

* Is operation v, running at step /? ! ?
E x, =1

— Does the following hold?

m=l—d;+1

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 17

Operation v; Still Running at Step / ?

* Is vy running at step 6?
® |S x9,6+x9,5 +XQ,4:1 ’?

4 4
> 5 5 |V
6 fa) 6 [v
, 1
Xg5=1 Xg5=1 Xg4~1
* Note:

* Only one (if any) of the above three cases can happen

 To meet resource constraints, we have to ask the same
question for ALL steps, and ALL operations of that type

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 18

© 2023 A. Gerstlauer 9

ECE382M.20: System-on-Chip (SoC) Design

Operation v; Still Running at Step / ?

* Is v;running at step / ?
Cs oyttt X g =17

l-d+1 l-d+1 Ld+1 [

xi,lzl xi,l—lzl xi,l_di+1:1

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 19

ILP Formulation of ML-RCS

* Constraints:
« Unique start times: Zxﬂ =1, i=0l...»n
/
« Sequencing (dependency) relations must be satisfied

t,>t,+d, Mv,,v)eE=>1.x6,>> |.x,+d,
/ /
* Resource constraints

Z i'ximsak’ kzla'”:nmg, l=1,...,z—|—l

iT(v)=k m=l—d;+1

* Objective: min ¢t
« ¢t = start times vector, ¢ = cost weight (e.g., [0 0 ... 1])

© Whene=[00...1], ¢t = » [.x,,
/

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 20

© 2023 A. Gerstlauer

Lecture 9

10

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

ILP Example
- /'(N/O\P\Q
q /2 ? g g |
|
5 ,/ //
\\\\\\7’4/://
ory ™
* Resource constraints
» 2 ALUs; 2 Multipliers
* a;= 2; a= 2
« Single-cycle operation
e di=1 foralli
ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 21

ILP Example

« Assume A =4
* First, perform ASAP and ALAP

* (we can write the ILP without ASAP and ALAP, but using
ASAP and ALAP will simplify the inequalities)

P SN

: \ N
3@\/// 3@\@@@
N C 4 P © GRS

©

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 22

© 2023 A. Gerstlauer 11

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

ILP Example: Unique Start Times

* Without using ASAP and * Using ASAP and ALAP:

ALAP values:

X1 =
XX, +X5+x, =1 X =1

1 2.1

X HX, +X3+X, 4= X, =1

X3 =1

X5, =1

X +Xs =1
X, +X5=1
Xy + X +Xg5 =1
Xy +Xo 3+ 4 =1

X T X T X5 1X, =1

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 23

ILP Example: Dependency Constraints

» Using ASAP and ALAP, the non-trivial inequalities are:
(assuming unit delay for + and *)

2, +3%, 5 =X, —2.X;,—120
2~x9,2 +3~x9,3 +4~x9,4 —X31 _23%,2 _3’x8,3 —1=0
2~)611,2 +3'x11,3 +4'x11,4 _xlo,l _23610,2 _33610,3 —1=0
4x;,—2x,,—3x,,—-1=20
5., 5 —2.x9,2 —3,x9,3 _4~X9,4 —1=0
S-Xn,s _23611,2 _3-x11,3 _4-x11,4 —1=0

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 24

© 2023 A. Gerstlauer 12

ECE382M.20: System-on-Chip (SoC) Design

ILP Example: Resource Constraints

X+, + X+ <2
Xyp Xy X0, + X, <2
X5 +Xg3 <2
Xy =2
Xoo +Xi0, +X1, <2
Xys3 X5 +Xg5+X 3 <2

X g TXg g +X4 = 2
Objective:

optimum, but we can use the following anyway:

Min X, + 2.xn,2 + 3.xn,3 + 4uxn, 4

ECE382M.20: SoC Design, Lecture 9

Resource constraints (assuming 2 adders and 2 multipliers)

+ Since A=4 and sink has no mobility, any feasible solution is

© K. Bazargan

25

ILP Example: Solution

/ Y}
_--{NoP Iy
T TN T

//,//// /,/’// / \ \\\\\\
1 2 // \
TIME 1 / \
/
NZ ‘
3

TIME 2 Q

. . =
- @@ O
/5

I
.
I
I
I
I
I
I
I
I
i
9 |
I
TIME 4 |
\ J
~ //

ECE382M.20: SoC Design, Lecture 9

© G. De Micheli

26

© 2023 A. Gerstlauer

13

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design

MR-LCS Dual ILP formulation

Minimize resource usage under latency constraint

Additional constraint

» Latency bound must be satisfied
o Xlx,<A+1

> Resource usage is unknown in the constraints
* Resource usage is the objective to minimize

ECE382M.20: SoC Design, Lecture 9

© G. De Micheli

27

MR-LCS ILP Example

jo!
5
TIME 4

Cost function h

- Multiplier area = 5
* ALU area =1

* Objective function: S5a; + a,

ECE382M.20: SoC Design, Lecture 9

© G. De Micheli 28

© 2023 A. Gerstlauer

14

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

ILP Solving

Use standard ILP packages

Transform into LP problem

Advantages
* Exact method
» Others constraints can be incorporated

+ Disadvantages
* Works well up to few thousand variables

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 29

Hu’s Algorithm

» Simple case of the scheduling problem
» Operations of unit delay
» Operations (and resources) of the same type

* Hu’s algorithm

» Greedy, polynomial and optimal (exact)

— Computes lower bound on number of resources for given latency

OR
Computes lower bound on latency subject to resource constraints

+ Basic idea
» Label operations based on their distances from the sink

» Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 30

© 2023 A. Gerstlauer 15

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Hu’s Algorithm with @ Resources

» Label operations with distance to sink
 Setstepl/=1

* Repeat until all ops are scheduled

» U= unscheduled vertices in
— Predecessors have been scheduled (or no predecessors)

» Select S < U resources with
- S<a
— Maximal labels

» Schedule the S operations at step /
* Incrementstep/=1/7+1

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 31

Hu’s Algorithm Example

« Assumptions

* One resource type only

+ All operations have unit delay
* Labels

+ Distance to sink

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 32

© 2023 A. Gerstlauer 16

ECE382M.20: System-on-Chip (SoC) Design

Hu’s Algorithm Example

Q9 0//

°
©

Step 1: Op 1,2,6 RO
Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

33

List Scheduling

e Heuristic method for:

* Min latency subject to resource bound (ML-RCS)
* Min resource subject to latency bound (MR-LCS)

* Greedy strategy (like Hu’s)
» Does not guarantee optimality (unlike Hu'’s)

* General graphs (unlike Hu’s)

* Resource constraints on different resource types
» Operations of arbitrary delay

 Priority list heuristics
+ Priority decided by criticality (similar to Hu'’s)
* Longest path to sink, longest path to timing constraint
* O(n) time complexity

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan

34

© 2023 A. Gerstlauer

Lecture 9

17

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

List Scheduling for Minimum Latency

LIST_L(G(V, E), a) {
[=1;
repeat {
for each resource type k=1, 2, ...,n,, {
Determine ready operations U, ,;
Determine unfinished operations 7;,;
Select S, c Uj, vertices, s.t. |S;| +|T,| <a,;
Schedule the S, operations at step /;
}
I=1+1;
}
until (v, is scheduled) ;
return (z);

}

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 35

List Scheduling Example
/(Nopo P
Pl / ,//:/(No'i\o
& B A

TIME 1 \ \ 2 /\6 \\\\ Om
TIME 2 \/ \\ ‘"

e r s

(No,,,n % TIME 3 |

TIME 4 Q i

TIME 5 N :}

Resource bounds i

/ |

3 multipliers with delay 2 e bf’ '}

1 ALU with delay 1 s Og
ECE382M.20: SoC Design, Lecture 9 ({C;/';/‘//i///’ ?

© 2023 A. Gerstlauer 18

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Lecture 9: Outline

* Time constrained (TC) scheduling

v/ Exact methods
v" ILP formulations
v Hu’s algorithm
* Heuristics
— List scheduling
— Force-directed scheduling

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 37

List Scheduling for Minimum Resources

LIST_R(G(V, E), 1) {
a=1;
Compute the latest possible start times /- by ALAP (G(V, E), 1);
if (t, < 0)
return (9);
I=1;
repeat {
for each resource type k=1,2,...,n,, {
Determine rea&y operations U, ;;
Compute the slacks {s;=¢,—1 for all v, e U,};
Schedule candidate operations with zero slack and update a;
Schedule candidate operations not needing addt’l resources;
}
I=1+1;
}
until (v, is scheduled) ;
return (t, a);

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 38

© 2023 A. Gerstlauer 19

© 2023 A. Gerstlauer

ECE382M.20: System-on-Chip (SoC) Design

List Scheduling Example

! NOP,‘Q

Step 1

Seta, =

Step 3

Schedule ALU 4
Step 4

Set a,=2
\ Schedule ALU 5,9
\’N/OP‘ n

Assumptions

TIME 1 Q Q
* Unit-delay resources

Schedule ALU 11

Schedule Mult 7,8

Two multlpllcatlons on CP

Schedule Mult 1,2

Schedule ALU 10
Step 2

Schedule Mult 3, 6

; 10
/ \‘\ @
! \
6 |
TIVE 2 @ @ \\ é !
\
. \ |
Maximum latency = 4 4 L @s |
. TIME 3
Start with 7 i
. = 1 multiplier bs ég !
TIME 4 |
a,=1ALUs S >
~~_n -~ P —
ECE382M.20: SoC Design, Lecture 9 \,N’O\P, - 39

Force-Directed Scheduling (FDS)

Heuristic, similar to list scheduling
* Can handle ML-RCS and MR-LCS
» For ML-RCS, schedules step-by-step

* ldea [Paulin]

« Find the mobility x; =¢*

» Try to flatten the operation type distributions

Definition: operation probability density
« p;(1)=Pr{v;,executesin step/}

* Assume uniform distribution'p =

forle|

7
ECE382M.20: SoC Design, Lecture 9

» BUT, selection of the operations tries to find the globally
best set of operations

—¢5 of operations (ALAP-ASAP)
* Look at the operation type probability distributions

t,t]

© R. Gupta

40

20

Lecture 9

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Force-Directed Scheduling: Definitions

* Operation probabilities over control steps
2 {pi 0),)2 @,... 'z (n}

* Operation-type distribution
(sum of operation probabilities for each type)

- q.D= > p®
iT(v)=k
» Distribution graph of type & over all steps

* 14.(0), ¢, (D, .. .q,(n)}

* g5 (/) can be thought of as expected operator cost for
implementing operations of type & at step /

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 41

Force-Directed Scheduling Example

Q Q=0 L"{* i1
- ® @ 9 ||}

Il e/ /S

' 4 ‘6\/ 0

R

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 42

' ® ®

© 2023 A. Gerstlauer 21

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Force-Directed Scheduling Example

1 1 1
1 1.1 111
Gaaa(2) 33 3 7 @) 1+2+ >*3 2.33
1 1 1 _
D=1+—+—+—=2 1 1
qadd(4)=1+§+§=1.66 Gy =0

_|0.33 1 & ®

1

6 2.83

p) \@‘(@ @ /@ 2.33
] sa /S /7 B
1.66 4 ‘Gj\ ,/ 0
T

ECE382M.20: SoC Design, Lecture 9 © K. Bazargan 43

Force-Directed Scheduling Algorithm

* Very similar to LIST_L(G(V,E), a)
» Compute mobility of operations using ASAP and ALAP
» Computer operation probabilities and type distributions
» Select and schedule operation
« Update operation probabilities and type distributions
* Go to next step/operation

» Difference with list scheduling in selecting operations
» Select operations with least force
* O(n?) time complexity due to pair-wise force computations

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 44

© 2023 A. Gerstlauer 22

ECE382M.20: System-on-Chip (SoC) Design

Force

+ Used as priority function

* Force is related to concurrency
» Sort operations for least force

* Mechanical analogy (spring)

* Force = constant x displacement
— Constant = operation-type distribution
— Displacement = change in probability

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

45

Two Types of Forces

» Self-force
» Sum of forces to feasible schedule steps
» Self-force for operation v; in step /
— Sum over type distribution % delta probability

z m in interval qk(m) (5lm 7p1(m))
— Higher self-force indicates higher mobility

* Predecessor/successor-force

* Related to the predecessors/successors

— Fixing an operation timeframe restricts timeframe of
predecessors/successors

— Ex: Delaying an operation implies delaying its successors
— Computed by changes in self-forces of neighbors

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

46

© 2023 A. Gerstlauer

Lecture 9

23

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Example: Schedule Operation v,

,—’(NOP)\

1 2
3

/ e
// L
/ 4

5 / e
;s
/

< s

S~. Vi

S~ L s
¥ <
(Nop) M

» Distribution graphs for multiplier and ALU
0 1 2 3 0 1 2 3
HEERERE AREREEN
1

]
2 I
3 I
4 IS

AW N =

+ Operation v, can be scheduled in step 1 or step 2

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 47

Example: Operation v

* Op v, can be scheduled in the first two steps
*p(1)=05p(2)=05p(3)=0;p(4)=0

* Distribution
cg(1)=28;¢q(2)=23

» Assign v, to step 1
 Variation in probability 1 — 0.5 = 0.5 for step 1
 Variation in probability 0 — 0.5 = -0.5 for step 2
» Self-force
« 28-05-23+0.5=+0.25
* No successor force
» Total force = 0.25

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 48

© 2023 A. Gerstlauer 24

ECE382M.20: System-on-Chip (SoC) Design

Example: Operation vy

+ Assign v to step 2
* variation in probability 0 — 0.5 = -0.5 for step 1
* variation in probability 1 — 0.5 = 0.5 for step 2

Self-force
e -28+05+23+05=-0.25

» Successor-force
» Operation v, assigned to step 3
» Succ. forceis2.3(0-05)+08(1-05)=-.75

Total force = -1

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

49

Example: Operation v,

* Total force in step 1=+ 0.25
* Total force in step 2 = -1

» Conclusion:
» Least force is for step 2
+ Assigning v to step 2 reduces concurrency

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli

50

© 2023 A. Gerstlauer

Lecture 9

25

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

FDS for Minimum Resources
FDS (G(V,E), 1)
{
repeat {
Compute/update the time-frames;
Compute the operation and type probabilities;
Compute the self-forces, p/s-forces and total forces;
Schedule the op. with least force;
}
until (all operations are scheduled)
return (¢);
}
ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 51

Scheduling Generalizations

Detailed timing constraints

» Protocol and interface synthesis
— Bounds on start time differences
— Forward & backward edges for min/max constraints

Operation generalizations

* Unbounded delay operations (e.g. synchronization)
— Relative scheduling w.r. to anchors and combine

+ Conditional operations
* Resource generalizations
* Multi-cycling and chaining
» Pipelined resources
Model generalizations
+ Hierarchy
* Pipelining
* Loops

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 52

© 2023 A. Gerstlauer 26

ECE382M.20: System-on-Chip (SoC) Design

Multi-Cycling and Chaining

+ Consider delays of resources not in terms of cycles

» Use scheduling to chain multiple operations in the same
control step

» Use scheduling to multi-cycle an operation across more
than one control step

» Useful techniques to explore effect of cycle-time on
areallatency trade-off

+ Algorithms
« ILP
+ ALAP/ASAP
« List scheduling

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 53

Chaining Example

0
()
/// \\

// \\
() (o)
(o)

(10)°

/ 7

(2]

~ P

* Cycle-time: 50

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 54

© 2023 A. Gerstlauer

Lecture 9

27

ECE382M.20: System-on-Chip (SoC) Design

Pipelining

* Two levels of data pipelining

 Structural pipelining
— Pipelined resources or datapath
— Non-pipelined model

* Functional pipelining
— Non-pipelined resources
— Pipelined model

« Control pipelining
* Pipelined control logic

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta

55

Structural Pipelining

* Resources characterized by
* Execution delay
» Data introduction interval: DIl

* Implications

(always)

» Solution using list scheduling
» Relax criteria for selection of vertices

* Non-pipelined model using pipelined resources

» Operations sharing a pipelined resource are serialized

» Operations do not have data dependency

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta

56

© 2023 A. Gerstlauer

Lecture 9

28

ECE382M.20: System-on-Chip (SoC) Design

Structural Pipelining Example

|
—(]]
ho!
=)
H)==(x)
W)

* 3 multipliers w/ 2 cycle delay and DII =1

<"->E____ur_2J

ECE382M.20: SoC Design, Lecture 9 © R. Gupta

57

Functional (Loop) Pipelining

* Pipelined model, non-pipelined resources
« Assume non-hierarchical graphs
* Model characterized by
» Latency
* Initiation interval, 11
* Restart source before completing sink
* Implicit loop
» Limited by loop-carried dependencies

> Solutions using ILP or heuristics

concurrency
» List or force-directed methods

* |LP resource constraints modified to include increased

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta

58

© 2023 A. Gerstlauer

Lecture 9

29

ECE382M.20: System-on-Chip (SoC) Design

Lecture 9

Loop Pipelining Example

*

J

>

\J

(D)

()
b
/

*
@ [\J/ @ @
O \J @ A
© O \/
O |
e LooplIli=1

6 multipliers and 3 ALUs (in this example)
+ Trade off latency for resources under equal throughput (/)

ECE382M.20: SoC Design, Lecture 9

© R. Gupta

59

Loop Pipelining Example

\J

C

=+

()
\J
/

)
L/

X
< =

.

)
=/

N

e LoopII=3

* 3 multipliers and 2 ALUs

>

@‘Ca«-

o)

W

ECE382M.20: SoC Design, Lecture 9

© R. Gupta

60

© 2023 A. Gerstlauer

30

ECE382M.20: System-on-Chip (SoC) Design Lecture 9

Loop Pipelining and Concurrency

» II determines resource usage

« Smaller /I leads to larger overlaps, higher resource
requirements
min{a,} = n,, for II=1 (all n, operations are concurrent)

- [n
* Ingeneral, a;=|-%
i

» Concurrent operations
+ Operations v, and v, are executing concurrently at control
step /, if
rem{ ¢/l } =rem{ /1l } =1
» Affects the design of the controller circuitry

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 61

Loop Scheduling

« Exploit potential parallelism across loop invocations

» Single loops
» Sequential execution

» Loop unrolling (known iteration count)
— Merge multiple iterations into one to provide scheduling opportunities

* Loop pipelining (iteration count might be unknown)
— Start next iteration while current one is still running
— Depends on dependencies across iterations
» Functional pipelining

* Merging of multiple loops
* Run different loops in parallel (no dependencies)

ECE382M.20: SoC Design, Lecture 9 ©R. Gupta 62

© 2023 A. Gerstlauer 31

ECE382M.20: System-on-Chip (SoC) Design

Loop Unrolling

Example

me

@@—@TL
, * <
* U

)1
'*CD
S~

l

C

!
\1J
!

‘\

7
) /
o S y/
TN
)

* *

/

* Loop unroll factor

—

(52

of 2

ECE382M.20: SoC Design, Lecture 9

© R. Gupta

63

Loop Scheduling Summary

+ Sequential

* |teration count = N

* Pipeline loop iterations with I7 <\
8 » Latency of the pipelined loop

1 2 3 4 5 6 7 8
* Unrolled
1,2,3 4,5,6 7,89
* Pipelined
1 3 5 7 « Loop latency = N - A
2 4 6

— N-II + overhead
— Overhead = |/, 1

ECE382M.20: SoC Design, Lecture 9

© R. Gupta

64

© 2023 A. Gerstlauer

Lecture 9

32

ECE382M.20: System-on-Chip (SoC) Design

Lecture 9: Summary

Scheduling determines area/latency trade-off

Intractable problem in general
* Heuristic algorithms
 ILP formulation (small-case problems)

Several heuristic formulations
+ List scheduling is the fastest and most used
» Force-directed scheduling tends to yield good results

+ Several extensions
+ Chaining and multi-cycling
* Pipelining

ECE382M.20: SoC Design, Lecture 9 © G. De Micheli 65

© 2023 A. Gerstlauer

Lecture 9

33

