
Darknet Source Code Starter Guide

ECE382M.20, SoC Design

Dimitrios Gourounas

1) Important data structures

Darknet is exclusively written in C. Hence, instead of classes, structs are used for the network’s

various data structures. The most important of them can be found under include/darknet.h:

• struct layer: Also defined (in comments) in src/layer.h for convenience, this struct

contains all the information required to encapsulate a darknet layer. It can be of many

different types, such as convolutional, maxpool, dropout etc. This struct contains a lot of

information, but the fields you will most likely need the most are the weights pointer,

containing the layer’s weights and the outputs pointer. Each layer type has different

functions associated with it. The one that you should mostly look into is the forward()

function, since this lab focuses on inference and not training. Each layer type’s forward()

function is declared in the associated C file. For example, the convolutional layer’s

forward() function is in src/convolutional_layer.c, forward_convolutional_layer().

• struct network: Also defined (in comments) in src/network.h, this struct has, again, a lot

of information, but the most important one is the layers pointer. Upon initialization of the

network, each layer is properly allocated and each layer’s weights are loaded from the

trained weight values. Darknet generates the network architecture by parsing the

configuration file provided in the command line. In our case, we will be using tiny Yolo,

whose configuration file is under cfg/tiny-yolo.cfg.

• struct network_state: Struct that contains the struct network and its current state. The

most important fields are the input and workspace pointers. For example, the workspace

pointer will point to the array that holds each layer’s input data, as we traverse the network

during inference.

2) Inference flow in Darknet code

When running the darknet executable with the ‘detector’ option enabled, the run_detector()

function will get called. This function is located in src/detector.c and will eventually call the

function test_detector() in the same file, when the ‘test’ argument is given in the command line.

The test_detector() function will firstly load all the network weights (hint: this might be a good

place to pre-load any modified weights you created, e.g. weights converted to fixed-point) from

the input files (e.g. yolov3-tiny.weights) and then iterate over all the images and call the

network_predict() function, which runs inference on each image across the network’s layers.

After inference completes, runtime is reported and the draw_detections_v3() function is called to

draw the boundary boxes in the image.

The network_predict() function is located in src/network.c, and calls the forward_network()

function, which in turn iterates over all the network’s layers and calls each layer’s associated

forward() function.

As you will notice by your profiling, the most time consuming function is gemm(), which will get

called by the convolutional layer’s forward() function. Spend some time to understand the flow

of the forward_convolutional_layer() function in src/convolutional_layer.c. Notice where the

convolution matrices are referenced and how the im2col_cpu_ext() (located in src/im2col.c)

function is called before gemm() is called, in order to transform the input images and to convert

the convolution operation into a matrix-multiplication (as we saw in lecture and homework). The

gemm() function is where the primary focus of your work will be, located in src/gemm.c.

