
Embedded System Design and Modeling
ECE382N.23, Fall 2022

Homework #1
Models of Computation

Assigned: September 9, 2022
Due: September 23, 2022

Instructions:
• Please submit your solutions via Canvas. Submissions should include a single PDF with

the writeup and a single Zip or Tar archive for any supplementary files (e.g., source files,
which has to be compilable by simply running 'make' and should include a README with
instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 1.1: KPN
Given the following KPN model:

while True:
 in = iq.get()

 ...

 for i in range(N):
 qA.put(d[i])

 ...

 qC.put(p)

while True:
 d = qA.get()
 ...
 qB.put(r1)
 qB.put(r2)

while True:
 x = qC.get(p)

 ...

 for i in range(2*N):
 d[i] = qB.get()

 ...

 oq.put(out)

Reader Merge

qA qB

qC

oq

Conv

iq

(a) Show one possible schedule when executing this KPN using Park’s algorithm. Show the

schedule in terms of queue reads and writes made by each process. Is Park’s algorithm able to
run this model in a complete, bounded, and non-terminating manner? What is the buffer size
needed for each queue?

(b) Can this KPN be executed in smaller memory (queue sizes) than what Park’s requires? If not,
why not? If yes, show the schedule and associated memory requirements.

(c) Write a Python program that realizes and executes this KPN model with the bounded queue
sizes that you determined in the previous question(s) when N = 6. Your program must meet
the following requirements:

i. Expect one integer argument as input representing the number of elements that will
be sent on iq (note that the size of iq can be 1 regardless of this input value)

ECE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 2

ii. Simulate each KPN process as a different thread. Hint: Use Python’s Queue and
Thread classes.

iii. Queue sizes remain constant throughout the execution of the program
iv. Log every read and write operation in a different line (using print) with the format:

<task_name> <get/put> <queue_name> (e.g., Conv get qA)
(d) This KPN can be converted into an equivalent synchronous dataflow (SDF) model. Show the

converted model, its repetition vector and further conversion into an equivalent HSDF model.
What impact does the conversion have on memory requirements (buffer sizes)?

(e) Using your code from question (c) as a basis, write a Python program that realizes and executes
the SDF model that you proposed in question (d). Your program must meet the following
requirements:

i. Expect one integer argument as input representing the number of elements that will
be sent as inputs to the SDF

ii. Expose the full actor parallelism, i.e. do not implement a static schedule but provide
code that executes each actor as one thread converted from your original KPN

iii. Log an actor name every time it is fired (using print)

https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/threading.html

ECE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 3

Problem 1.2: HCFSM
Given in the following is the HCFSM model of an elevator control system for a two-story building.
The machine has 3 external inputs: req0 (for requesting elevator from floor #0), req1 (for
requesting elevator from floor #1), done (notification of mechanical system), 2 external outputs:
ascend and descend (commands for mechanical system), and 4 internal signals for communication
between state machines (up, down, at_one, at_zero). Unless specified otherwise, signals are by
default absent and states have implicit self-transitions.

F1

↓ ↑

F0

up/ascend

down/descend

down/
descend

up/
ascend

done/
at_one

done/
at_zero

/at_one

/at_zero

R01R0

S

R1 R10

req0/
down

req1/
up

req0/-

req1/-

at_zero/-

at_one/-

at_zero/-

at_one/-

req0/-

req0/-

req1/-

req1/-
(a) Demonstrate the operation of the elevator for answering a request from floor #1 and going

from floor #0 to floor #1. You can assume that the elevator starts at floor #0 (corresponding
to start states S and F0). Show the sequence of events and state transitions.

(b) Statecharts are a well-known and widely-used formalism for specifying state machines
following HCFSM semantics. Sismic is a Statechart library for Python. Use Sismic to model,
execute and validate your elevator HCFSM above. Define the state machine with YAML and
include it in your submission as hcfsm.yaml. Use the same signal names as shown in the figure
above. Follow these tips:

o Define input signals as events
o Validate your state machine with Python.

 Use interpreter.queue(<input_name>) to control the inputs
 Print the output of interpreter.execute() to observe state transitions
 Print interpreter.context to observe the value of signals and outputs

(c) Convert the HCFSM into an equivalent single, flat FSM. Define the flat FSM with Sismic and
show the new diagram. Hint: you can export the YAML to PlantUML format and create a
diagram with the online tool. Execute the flattened Sismic model and validate that it behaves
the same.

(d) The state machine has a bug that can make the elevator get stuck at a floor. Write a Python
script that uses your hcfsm.yaml model to show a trace of input events and transitions that
demonstrates the bug. Include the script as bug.py in your submission.

(e) Show how the original HCFSM and the flattened FSM need to be modified to remember at
least the second request. You can indicate changes in the graphs above or directly in the YAML
files. Execute the modified Sismic models to validate that the bug is fixed.

https://github.com/AlexandreDecan/sismic/
https://sismic.readthedocs.io/en/latest/format.html
https://sismic.readthedocs.io/en/latest/execution.html#using-interpreter
https://sismic.readthedocs.io/en/latest/visualization.html
http://www.plantuml.com/plantuml/uml/SyfFKj2rKt3CoKnELR1Io4ZDoSa70000

	Problem 1.1: KPN
	Problem 1.2: HCFSM

