
Embedded System Design and Modeling
ECE382N.23, Fall 2022

Homework #2
Design Languages & Architecture Modeling

Assigned: October 13, 2022
Due: October 28, 2022 November 4, 2022

Instructions:
• Please submit your solutions via Canvas. Submissions should include a single PDF with

the writeup and a single Zip or Tar archive for any supplementary files (e.g., source files,
which has to be compilable by simply running 'make' and should include a README with
instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 2.1: Discrete-Event Semantics
For each of the following code examples, what is the value of myB at the end of execution and at
what simulated time does the program terminate. You are free to run the code on top of the
SystemC simulator and observe the program output, but you need to provide an explanation and
reasoning of why the program is behaving as it is (e.g. sequence of events happening during
simulation):

(a) (b) (c)

void M::A(void)
{
 myB = 10;
};

void M::B(void)
{
 myB = 42;
};

SC_MODULE(M)
{
int myB;

 void A(void);
 void B(void);

SC_CTOR(M) {
 SC_THREAD(A);
 SC_THREAD(B);
 }
};

void M::A(void) {
 myB = 10;
 wait(42, SC_NS);
};

void M::B(void) {
 wait(10, SC_NS);
 myB = 42;
};

SC_MODULE(M)
{

int myB;

 void A(void);
 void B(void);

SC_CTOR(M) {
 SC_THREAD(A);
 SC_THREAD(B);
 }
};

void M::A(void) {
 wait(42, SC_NS);
 myB = 10;
};

void M::B(void)
{
 myB = 42;
};

SC_MODULE(M)
{

int myB;

 void A(void);
 void B(void);

SC_CTOR(M) {
 SC_THREAD(A);
 SC_THREAD(B);
 }
};

ECE382N.23: Embedded Sys Dsgn/Modeling, Homework #2 2

 (d) (e)

(f) What code has to be inserted at the beginning of M::B (line 12) in (e) to change the output of

the program? What must not appear there for the program not to deadlock?

void M::A(void)
{
 myA = 10;

e.notify();
myA = 11;
e.notify();

 wait(10, SC_NS);
};

void M::B(void)
{

wait(e);
 myB = myA;
};

SC_MODULE(M)
{

int myA;
int myB;
sc_event e;

 void A(void);
 void B(void);

SC_CTOR(M) {
 SC_THREAD(A);
 SC_THREAD(B);
 }
};

void M::A(void)
{
 myA = 10;

e.notify();
 wait(10, SC_NS);

myA = 11;
e.notify();

};

void M::B(void)
{

wait(e);
 myB = myA;
};

SC_MODULE(M)
{

int myA;
int myB;
sc_event e;

 void A(void);
 void B(void);

SC_CTOR(M) {
 SC_THREAD(A);
 SC_THREAD(B);
 }
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ECE382N.23: Embedded Sys Dsgn/Modeling, Homework #2 3

Problem 2.2: Architecture Modeling
In this problem, you will use the SystemC C++ library to refine a KPN into a proper architecture
model. Follow the SystemC setup guide and tutorial posted on the class page at:

http://www.ece.utexas.edu/~gerstl/ece382n_f22/docs/SystemC_setup.pdf
to setup the environment and get familiar with it. To get you started for this problem, download a
private copy of the repository located at:

https://github.com/esalcort/KPN-Refinement
(a) The kpn-arch folder contains a kpn-arch.cpp file that models a KPN with three processes, A,

B, and C, mapped onto an SoC architecture with two processing elements, PE1 and PE2. Since
A and B are mapped to the same PE1, we need to implement an OS that switches between the
two. The repository that we have given you includes an os_api.h file with an incomplete
implementation of an OS. Extend the code to complete the implementation. Note that the
interface should not be modified, you should only modify the channel implementation (line 30
and below). Additionally, note that wait() statements with annotated execution delays have
been overloaded in kpn-arch.cpp with OS time_wait() methods to model preemption. Compile
and simulate the model, and validate that the simulation using your OS model implementation
executes as expected. How long does it take to simulate the code (in wall-clock time)? What
is the total simulated time? Report the simulation log and your changes to os_api.h. Assume
that “C2” produces the outputs of this model. What is the latency and throughput of the model?

(b) To further refine our KPN, we need a bus model that simulates the communication between
PE1 and PE2. For this purpose, we will use a simple hardware bus protocol with address, data
and control. A detailed, pin-accurate implementation and a transaction-level model (TLM) of
this bus protocol is provided in the HWBus.h file. The pin-accurate bus model defines physical
layer realizations for bus wires and a protocol-level implementation for master
(MasterHardwareBus) and slave (SlaveHardwareBus) sides. The transaction-level model
(HardwareBusProtocolTLM) replaces wires and physical layer protocol state machines with
plain variables and events to model bus communication semantics and delays. In addition,
media access (MAC) channels (named [Master|Slave]HardwareBusLinkAccess) show the
methods of how to access the bus.

i. Refine the model from part (a) into a transaction-level model (TLM) at an
abstracted level, where PE1 is the bus master and PE2 is the bus slave. For this, the
bus is modeled by a single instance of the HardwareBusProtocolTLM channel in
HWBus.h. Create a kpn-TLM.cpp file where you refine the existing kpn-arch.cpp
architecture model of the system into a TLM-based communication model. The
model refinement is achieved by creating a master driver on PE1 and a slave driver
on PE2 that service the write() or read() requests from the application processes by
translating them into bus communication (accessing the MAC channels). See Fig.
1 for reference. Note that as part of this process, you may have to add
synchronization from slave to master (to let the master know that a slave is ready
to accept a transaction), which can be done by instantiating sc_mutex or
sc_semaphore channels as appropriate at this abstract TLM level. Run your
simulation and report any changes in simulated time. Have the latency and
throughput changed? How long does it take to simulate the code (in wall-clock
time) and how does that compare to the simulation time of the architecture model?

http://www.ece.utexas.edu/%7Egerstl/ece382n_f22/docs/SystemC_setup.pdf
https://github.com/esalcort/KPN-Refinement

ECE382N.23: Embedded Sys Dsgn/Modeling, Homework #2 4

PE2

C

Sl
av

eD
riv

er

B

A

PE1

RTOS

M
as

te
rD

riv
er

M
as

te
rM

AC

Bu
sT

LM

Sl
av

eM
AC

Figure 1. Transaction-level model (TLM)

ii. (Extra credit) Next, we are going to replace the transaction-level model of the
system with a pin-accurate model (PAM),. Create a copy of your kpn-arch.cpp file
and name it kpn-PAM.cpp to complete this task. Such a PAM has a similar structure
as the TLM, but the TLM bus channel is replaced with instances of physical layers
and wires that will transfer the data following the bus protocol state machines. See
Fig. 2 for reference. Does your PAM reach the same accuracy (in measured
latencies and throughput) as the TLM? Why? Measure the wall-clock simulation
time. How does it differ from the TLM? Discuss any trade-offs you find between
the PAM and TLM models.

B

A

PE1 PE2

C

RTOS

M
as

te
rD

riv
er

M
as

te
rM

AC

M
as

te
rP

ro
to

co
l

Sl
av

eP
ro

to
co

l

Sl
av

eM
AC

Sl
av

eD
riv

er

data[31:0]

addr[15:0]

control

Figure 2. Pin-accurate model (PAM)

	Problem 2.1: Discrete-Event Semantics
	Problem 2.2: Architecture Modeling

