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Lecture 10: Outline

* Hardware/software co-design
» Separate partitioning & scheduling definitions
+ Traditional partitioning & scheduling algorithms

+ System-level design
« Combined partitioning & scheduling
* MPSoC mapping algorithms

* Design space exploration
» Multi-objective optimization
* Exploration algorithms
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Partitioning

* The partitioning problem is to assign n objects
O ={o,, ..., 0.} to m blocks (also called partitions)
P ={p, ..., p,}, such that

s p,Up,U...up, =0
* pinp;={} Vij:izjand
 cost ¢(P) is minimized

» In system-level design:
* 0, = processes/actors
* p; = processing elements (hardware/software processors)

* ¢(P) = X cost of processor p;(zero if unused) and/or
communication cost between partitions

» Constrain processor load and/or number of partitions

» Bin packing and/or graph partitioning (both NP-hard)

Source: L. Thiele
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Scheduling

+ Assume that we are given a specification graph G=(V,E)

* A schedule 7 of G is a mapping V' — D, of a set of tasks V'
to start times from domain D, such that none overlap

G=(VE) @\@

T

\ Sy
\ el \
D B PR P t

t

» In system-level design:
« Static vs. dynamic vs. quasi-static (static order)
* Preemptive vs. non-preemptive (atomic)
» Optimize throughput (rate of G), latency (makespan of G)
* Resource, real-time (deadline) constraints
> Implicit or explicit multi-processor partitioning (NP-hard)

Source: P_Marwedel
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Traditional Hardware/Software Co-Design

 Software

HW MEMORY
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» Limited target architecture model

» Single CPU plus N hardware accelerators/co-processors

» Often limited to single optimization objective
— Minimize cost under performance constraints
— Maximize performance under resource constraints

» Classical approaches for partitioning & scheduling
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Hardware/Software Partitioning

» Constructive heuristics
 Hierarchical clustering
— Minimize notion of communication cost between partitions

* Iterative heuristics
+ Kernighan-Lin (min-cut)
— Minimize notion of communication cost between partitions

* Meta-heuristics

+ Simulated annealing
— Generic optimization approach
» Extends to multi-processor system-level design
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Hardware/Software Scheduling

* Uni-processor scheduling
» General-purpose OS schedulers
— Balance average performance, fairness, responsiveness

» Exact real-time scheduling methods
— Throughput/makespan fixed, minimize response (= meet deadlines)
— Analytical cost models based on estimated task execution times
» EDD, RMS, EDF for independent periodic real-time task sets
» LDF, EDF* for dependent task graphs

+ KPN, SDF scheduling of generalized task graphs
— Buffer/code sizing, completeness, ..

* Uni-processor extensions
» Hardware accelerators as special cases
» Extensions for (homogeneous) multi-cores
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Multi-Processor Systems-on-Chip (MPSoCs)

* Multi-processor CPU
« Heterogeneous Mem DsP
* Asymmetric multi- 05D o5+
processing (AMP) CPU Bus 3 .@ DSP Busi -
m

 Distributed memory

& operating system
P gsy HW Router 1P

* Multi-core
» Heterogeneous or homogeneous or identical
* Symmetric multi-processing (SMP)
+ Shared memory & operating system
» Multi-core processors in a multi-processor system

* Many-core
» > 10 processors/cores ...
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MPSoC Mapping

* Partitioning
» Possible extensions of classical two-partition approaches
— Min-cut, clustering, annealing
» Truly parallel execution (not just accelerators)
— Need to consider effect on scheduling

* Scheduling
* Restricted multi-core scheduling
— Periodic, independent tasks
— Homogeneous processors/cores
» Real-time extensions [G-EDF, P-Fair, ...]
* General multi-processor scheduling
— General task graphs
— Heterogeneous processors
» Schedule & partitioning inter-dependent!

> Integrated (allocation &) partitioning & scheduling
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Multi-Core Mapping

« Fixed job priority [G-EDF] T O@
* Dynamic [P-Fair] F

» Can not account for heterogeneity & dependencies

 Partitioned schedullng Partitioned queue (+ load balancing)
» Partition tasks to cores e o e
. . ReadyGlueuel
 Apply anl-processor scheduling 3 o]
ReadyvGiueue?
on (?ac core . > @@@
+ Optional load-balancing |
« Global scheduling Global queue (+ affinity)
d leed prlorltles [G'RMS] ReadyQueue ﬂ
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Multi-Processor Mapping (1)

* Models of computation
+ Set of tasks (processes/actors) { T}, T5, ... }
— Independent

— Task graph = data-flow/precedence graph (DFG/HSDF)
= directed, acylic graph (DAG)
— Generalized task models (KPN, SDF)
+ Timed models

— Arrival/release times g, (periods ¢,), soft/hard deadlines d; (=¢,)

* Models of Architecture
+ Set of processing elements (processors) { P, P,, ... }
— Number and type fixed, constrained, or flexible
— With or without migration, homogeneous or heterogeneous
+ Set of communication media (busses) { B, B,, ... }
— Shared, point-to-point, fully connected
+ Set of storage elements (memories) { M,, M,, ... }
— Shared, distributed
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Multi-Processor Mapping (2)

» Optimization problems

+ Cost models
— Analytical: execution times e, (best/worst/average?), real-time calc.
— Simulation (dynamic scheduling, timing variations)

» Objectives/constraints
— Latency: response time r; = finish time f; — q,, lateness I,=r, - d;
— Throughput: 1 / makespan (schedule length)
— Cost: chip area, code/memory size, ...

> Examples (all at least NP-complete):
* General job-shop scheduling
— Minimize makespan of independent task set on m processors
— Classical multi-processor scheduling: atomic jobs, no migration
» General task graph (DAG) scheduling
— Minimize makespan for dependent task graph on m resources
— Minimize resources under makespan constraint
— Pipelined variants for periodic task graph invocations
« KPN, SDF scheduling
— Optimize latency, throughput, buffers, cost, ... under x constraints
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Multi-Processor Mapping Approaches

+ Exact methods
* Integer linear programming (ILP)

e Constructive heuristics

* List schedulers to minimize latency/makespan
— Hu’s algorithm as optimal variant for uniform tasks & resources

* Force-directed schedulers to minimize resources

* Generic iterative heuristics
» Simulated annealing
» Set-based multi-objective DSE approaches

» Many of these adapted from other domains
* DAG/DFG scheduling in compilers & high-level synthesis
* Production planning, operations research, ...
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Multi-Processor Mapping Approaches

+ Exact methods
* Integer linear programming (ILP)
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Integer Linear Programming

* Linear expressions over integer variables

» Cost function C= Zaixl. witha, eR,x, e N (1)
x;eX
- Constraints VjeJ: Z;(bi,j x; 2c,withb, ,,c, € R (2)

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all x; are constrained to be either 0 or 1, the ILP problem said
to be a 0/1 (or binary) integer linear programming problem.

Source: L. Thiele
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Integer Linear Program for Partitioning (1)

* Inputs

* Taskst, 1<i<n

* Processors p,, 1 <k<m

« Costc;,, iftask #, is in processor p,
* Binary variables x;,

* x;; = 1: task ¢ in block p,

* x;; = 0: task #; not in block p,

* Integer linear program:
xi €01} 1<i<n1<k<m

m .
in,k =1 1<i<n

k=1
m n
minimize Y Y X Cix 1<k<m,1<i<n
k=li=1
Source: L. Thiele
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Integer Linear Program for Partitioning (2)

+ Additional constraints
+ example: maximum number of /4, objects in block &

n
in’k Shk 1<k<m
i=1

* Popular approach

» Various additional constraints can be added

+ If not solving to optimality, run times are acceptable and a
solution with a guaranteed quality can be determined

« Can provide reference to provide optimality bounds of
heuristic approaches

+ Finding the right equations to model the constraints is an
art... (but good starting point to understand a problem)

» Static scheduling can be integrated (SDFs)

Source: L. Thiele
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Integer Linear Program for Scheduling

* Inputs
* Task graph TG: tasks 7, 1 <i <n with edges (1)
+ Discrete time window: 0<¢<T,, .

* Decision variables
* s5;,€{0,1}: task 7, executes at time ¢

e Constraints

+ Single task execution: 28, =1, 1<i<n
« Sequential task execution: 28, <1, 0<t<T
« Task dependencies ¢, —1;: 2utsp =Y s, 1
. Objective Start time of task ¢,

* Minimize latency (task ¢, is sink): minimize }, ¢,

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 18
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Integer Linear Program for Scheduling (2)

* Inputs
* Task graph 7G: tasks 7, 1 <i <n with edges (7,)
+ Execution time ¢, of task ¢, 1 <i<n
* Discrete time window: 0<¢<T, .
+ Decision variables
* s5;, € {0,1}: task ¢, starts execution at time ¢
+ Constraints
+ Single task execution: 28, =1, 1<i<n
« Sequential task execution: ¥;¥i_; . 415,:<1, 0<¢<T
\—Y—)

Is task ¢, executing at time ¢ ? = Did it startin ¢, 1, ... ?

« Task dependencies 1,—t;: 3, s, 23,05, t e
* Objective
* Minimize latency (task ¢, is sink): minimize ), ¢s,, + ¢,
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ILP for Partitioning & Scheduling (1)

* Inputs
+ Tasks 4, 1 <i<n, edges (¢,¢), time window: 0<7<T,,,
* Processors p,, 1 <k<m, costc,, if task ¢, in processor p,
+ Execution time ¢, , of task ¢, on processor p,
+ Decision variables
* x;; € {0,1}: task #, mapped to processor p,
+ s;,€ {0,1}: task ¢ starts execution at time ¢
+ Constraints

* Unique task mapping: YiXpp=1 1<k<m
+ Single task execution: 285 =1, 1<i<n
» Sequential task execution on each processor:
i Yot X1, 0<t<T 1<k<m
* Task dependencies ¢, —1;: 2ulSi 28t X e,

* Objective Non-linear!
* Weighted cost & latency: minw, 3, > x, ¢, WO, 5, + 20X, 1€,)
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ILP for Partitioning & Scheduling (2)

* Inputs
* Tasks ¢, 1 <i<n, edges (1,1), time window: 0<¢<T,,,
* Processors p,, 1 <k<m, cost ¢;, if task ¢, in processor p,
- Execution time e, of task 7, on processor p,
+ Decision variables
s;r. € 10,1} task ¢, starts at time 7 on processor p,
+ Constraints
« Single & unique task mapping: > >, s,,, =1, 1<i<n
» Sequential, non-overlapping execution on each processor:
i Yeoe- elk+1SlkT<1 0<t<T, 1<k<m

+ Task dependencies ¢, —t,;:

Zk LS ikt = Zk Skt + ZkZzSi,k,z €k

» Objective
» Weighted cost & latency:
minimize w3, 2 2 € Sine) T WA Ui 2h2os Snks Cn)
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SDF Partitioning & Scheduling

* Inputs

* Actors a;, 1 <i<n, channels (a,a,), time window: 0<¢<T,,,

* Production, consumption, initial rates/tokens on (a,a): ¢;; p;; 0

+ Repetitions for actor a;: r;

* Processors p;, 1 <k<m, cost c;, if actor a, in processor p,

* Execution time ¢;, of actor g; on processor p,
» Decision variables

* s, € {0,1}: actor ¢, starts at time 7 on processor p,
+ Constraints

+ Single & unique actor mapping: 3,3, s,,, =7, 1<i<n

» Sequential, non-overlapping execution on each processor:

2 Z’L’ t— elk+1slkr<1 0<t<T 1<k<m
» Token balance equations for each channel a; —a;
ZRZT—OCL,] Sjkt = ZkZ ELkpl] *Sik,T + ol]l 0<t<T

* Objective

+ Weighted cost & latency (unique sink a, with r, = 1):

minimize w2 X €t 2851708, Wody 8, 0t a2 Sukee €nic)

ECE382N.23: Embedded Sys Dsgn/Mo . ' . © 2022 A. Gerstlauer 22
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Pipelined Scheduling

* Allocation and partitioning
* Resource sharing

+ Static scheduling
* Pipelining e Y
L e e [
ARM ! Ll I’ | ¢ ]s I [ P 5]
FPGA | | | 2! 3113737 2’ 3%[3°]3¢ 2 37[3%]3° 2 3133
P
T T T O B
time O 1" " operiod 1 " period2 " 'period 3
N startup phase T stable periodic phase -

Throughput =1/ Period
Latency = (End of the n-th exec. of sink) — (Start of the n-th exec. of source)
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Pipelined Scheduling ILP

* Multi-objective cost function
* Minimize: w,:Throughput + w,:Latency + w-Cost

 Decision variables

 Actor to processor binding for time window (period)
 Actor start times within time window (period)

+ Constraints
» Execution precedence according to SDF semantics
+ Single & unique actor mapping
» Sequential execution on each processor
» Stable periodic phase

» Optimize partition and schedule simultaneously
» Incorporate communication mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
J. Lin, A. Gerstlauer, B. Evans, “Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ JSPS’12
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Multi-Processor Mapping Approaches

» Constructive heuristics
* Random mapping
 List schedulers to minimize latency/makespan
— Hu’s algorithm as optimal variant for uniform tasks & resources
* Force-directed schedulers to minimize resources
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Constructive Methods — List Scheduling

* Greedy heuristic

» Process graph in topology order (source to sink)
» Process ready nodes in order of priority (criticality)
» List scheduling variants only differ in priority function

— Highest level first (HLF), i.e. distance to the sink
— Critical path, i.e. longest path to the sink

* Widely used scheduling heuristic
» Operation scheduling in compilation & high-level synthesis
* Hu’s algorithm for uniform delay/resources (HLF, optimal)
+ Iterative modulo scheduling for software pipelining
» Job-shop/multi-processor scheduling

» Graham'’s algorithm (optimal online algorithm for < 3 processors)
» Heterogeneous earliest-finish time first (HEFT)

» Natural fit for minimizing makespan/latency
» O(n) complexity

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 26
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Constructive Methods — List Scheduling

1 =0;
i = 0..n: p;, « Idle;
Ready « Initial tasks (no dependencies);
while (!empty (Ready)) {
forall p;: status(p;) == Idle {
t = first(Ready, p;); // by priority
p; « (t, 1, 1 + exec time(t));

}
1 =min(l + 1, finish time(p;)):’
forall p,: finish time(p;) == 1 {
Ready « successors (current (p;));
}
}
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 27

Multi-Processor Mapping Approaches

* Generic iterative heuristics
* Random search
* lterative improvement/hill climbing
+ Simulated annealing

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer
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Iterative Methods

* Basic principle
« Start with some initial configuration (e.g. random)

* Repeatedly search neighborhood (similar configuration)
— Select neighbor as candidate (make a move)

« Evaluate fitness (cost function) of candidate
— Accept candidate under some rule, select another neighbor
 Stop if quality is sufficient, no improvement, or end time

* Ingredients
+ Way to create an initial configuration
» Function to find a neighbor as next candidate (make move)

+ Cost function (single objective)
— Analytical or simulation

» Acceptance rule, stop criterion
> No other insight into problem needed Sourcer L. Thiele
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Iterative Improvement

* Greedy “hill climbing” approach
» Always and only accept if cost is lower (fitness is higher)
» Stop when no more neighbor (move) with lower cost

+ Disadvantages

» Can get trapped in local optimum as best result
— Highly dependent on initial configuration

» Generally no upper bound on iteration length

» How to cope with disadvantages?
» Repeat with many different initial configurations
» Retain information gathered in previous runs
» Use a more complex strategy to avoid local optima
» Random moves & accept cost increase with probability > 0

Source: L. Thiele
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Iterative Methods - Simulated Annealing

* From Physics
* Metal and gas take on a minimal-energy state during
cooling down (under certain constraints)
— At each temperature, the system reaches a thermodynamic
equilibrium
— Temperature is decreased (sufficiently) slowly
» Probability that a particle “jumps” to a higher-energy state:

€i—€ivl
P(e;, e 1, T)=e kpT
* Application to combinatorial optimization
» Energy = cost of a solution (cost function)
— Can use simulation or any other evaluation/estimation model

* lteratively decrease temperature
— In each temperature step, perform random moves until equilibrium

— Increases in cost are accepted with certain probability
(depending on cost difference and “temperature”)

Source: L. Thiele
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10

Iterative Methods - Simulated Annealing

temp = temp start;
cost = c(P);
while (Frozen() == FALSE) {
while (Equilibrium() == FALSE) {
P’ = RandomMove (P) ;
cost’ = c(P’);
deltacost = cost’ - cost;
if (Accept(deltacost, temp) > random[0,1)) {
P =P;
cost = cost’; _deltacost
} Accept(deltacost,temp) =e  K1emP
}
temp = DecreaseTemp (temp);
}
Source: L. Thiele
© 2022 A. Gerstlauer 32
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Iterative Methods - Simulated Annealing

+ Random moves: RandomMove (P)
» Choose a random solution in the neighborhood of P

* Cooling Down: DecreaseTemp (), Frozen ()
* Initialize: temp_start=1.0
+ DecreaseTemp: temp = a *temp (typical: 0.8 < o <0.99)
+ Terminate (frozen): temp < temp_min or no improvement

* Equilibrium: Equilibrium()

» After defined number of iterations or when there is no more
improvement

» Complexity
+ From exponential to constant, depending on the
implementation of the cooling down/equilibrium functions
» The longer the runtime, the better the quality of results

Source: L. Thiele
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Lecture 10: Outline

* Design space exploration
* Multi-objective optimization
» Exploration algorithms
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Multi-Objective Exploration

* Multi-objective optimization (MOO)
* Implementations are optimized with respect to many

(conflicting) objectives
» Several optimal solutions exist with different tradeoffs

among properties
Exact, constructive methods are prohibitive
» Large design space, dynamic behavior

Iterative single-objective methods
* Only return a single solution
> Set-based iterative approaches (EA, ACO, PSO)
» Randomized, problem independent (black box)

» Often inspired by processes in nature

(evolution, ant colonies, diffusion)
Source: C. Haubelt, J. Teich
35
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Objective Space
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Source: C. Haubelt, J. Teich
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Pareto Dominance

incomparable

objective 2

dominated

dominates

® @

%comparable

+ Given: two decision vectors x, and x,
* X4>>X, (strongly dominates) if

°* Xy>Xy (dominates) if
* X4~Xy (indifferent) if
* X4l|%s (incomparable) if

objective 1

Vi fi(xq)<fi(xy)

vii fi(xq)=fi(xz) A 3j: fi(x4)<fi(x2)
vi: fi(x)=fi(xy)

3i,j: fi(xq)<fi(xz) A fi(xz)<fi(x1)

Source: C. Haubelt, J. Teich
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Pareto Optimality

+ Set of all solutions X

ifAye X:y>x

objective 2

* A decision vector x € X is said to be Pareto-optimal

Pareto front

objective 1
Source: C. Haubelt, J. Teich
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Optimization Goals

Find Pareto-optimal solutions (Pareto front)

Or a good approximation (convergence, diversity)
With a minimal number of iterations

objective 2

objective 1

Source: C. Haubelt, J. Teich
© 2022 A. Gerstlauer 39
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Design Space Exploration (DSE)

nctional Constraints Non-Functional Constraints
ifeasible invalid L ~e /T

Evaluation

Encoding of ¢  and setting of
decisions unobservable
decisions

Search Space

Decision Space

Objective Space

Search space vs. decision space vs. design space
» Encoding of decisions defines search space
— Focus on observable decisions, hardcode unobservable ones

* Functional & architecture constraints define decision space
— Quickly prune & reject infeasible decisions

* Quality constraints restrict objective space
— Invalid solutions outside of valid quality range

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10
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Evolutionary Algorithms (EAs)

* Multi-objective evolutionary algorithms (MOEAs)

Capable to explore the search space very fast, i.e., they
can find some good solutions after a few iterations
(generations)

Explore high dimensional search spaces

Can solve variety of problems (discrete, continuous, ...)
Work on a population of individuals in parallel

Black box optimization (generic evaluation model)

e Fitness evaluation

Simulation, analysis or hybrid

— Tradeoff between accuracy and speed
Hierarchical optimization

— Combination with second-level optimization

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10
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Multi-Objective Evolutionary Algorithm

f(x1,x2)

7

X2

“-
S
N

SN

N
S

S

Problem Solved ©

Source: C. Haubelt, J. Teich

10
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Fitness Selection
* Pareto ranking
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Recombination

MOEA

Crossover

Optimized
solutions

Source: C. Haubelt, J. Teich
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Hierarchical Optimization

Evolutionary Algorithm Evaluation

Performance metrics

-
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Partitioning

.......................................
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Static scheduling
Dynamic scheduling

Mapping solutions

+ SDF mapping heuristics

 Multi-objective evolutionary algorithm (MOEA) + ILP
— Partitioning + scheduling
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SDF Mapping Results

» Design space exploration for an MP3 decoder
Reqo e0rder?
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Reducion o

Reql _ Stereo
ReOrder

* Convergence to Pareto front
* Within 106 of optimum
* 12x better runtime

— <1 hour execution time

Solution of global ILP
with Ay = 0.8 and 1, = 0.2
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J. Lin, A. Gerstlauer, B. Evans, “Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ JSPS’12
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Lecture 10: Summary

+ System-level synthesis & decision making
* Formalization as a basis for automation
+ Partitioning (allocation, binding) & scheduling

» Classical HW/SW co-design approaches
» Single processor + co-processors

* Multi-processor mapping heuristics
 ILPs, list scheduling, simulated annealing

* Design space exploration (DSE)
» Multi-objective optimization, MOEAs

» Machine-learning based methods
» Reinforcement learning (robotics, game play)
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