
ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 1

ECE382N.23:
Embedded System Design and Modeling

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 10 – Mapping & Exploration

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 2

Lecture 10: Outline

• Hardware/software co-design

• Separate partitioning & scheduling definitions

• Traditional partitioning & scheduling algorithms

• System-level design

• Combined partitioning & scheduling

• MPSoC mapping algorithms

• Design space exploration

• Multi-objective optimization

• Exploration algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 2

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 3

Partitioning

• The partitioning problem is to assign n objects
O = {o1, ..., on} to m blocks (also called partitions)
P = {p1, ..., pm}, such that

• p1 p2  ... pm = O

• pi  pj = { }  i,j: i j and

• cost c(P) is minimized

 In system-level design:

• oi = processes/actors

• pj = processing elements (hardware/software processors)

• c(P) = ∑ cost of processor pj (zero if unused) and/or
communication cost between partitions

• Constrain processor load and/or number of partitions

 Bin packing and/or graph partitioning (both NP-hard)
Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 4

Scheduling

V1 V2 V4V3

t

G=(V,E)

Dt



• Assume that we are given a specification graph G=(V,E)

• A schedule  of G is a mapping V  Dt of a set of tasks V
to start times from domain Dt, such that none overlap

 In system-level design:
• Static vs. dynamic vs. quasi-static (static order)
• Preemptive vs. non-preemptive (atomic)
• Optimize throughput (rate of G), latency (makespan of G)
• Resource, real-time (deadline) constraints
 Implicit or explicit multi-processor partitioning (NP-hard)

Source: P. Marwedel

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 3

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 5

Traditional Hardware/Software Co-Design

 Limited target architecture model

• Single CPU plus N hardware accelerators/co-processors

• Often limited to single optimization objective
– Minimize cost under performance constraints

– Maximize performance under resource constraints

 Classical approaches for partitioning & scheduling

HW

Software

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 6

Hardware/Software Partitioning

• Constructive heuristics

• Hierarchical clustering
– Minimize notion of communication cost between partitions

• Iterative heuristics

• Kernighan-Lin (min-cut)
– Minimize notion of communication cost between partitions

• Meta-heuristics

• Simulated annealing
– Generic optimization approach

Extends to multi-processor system-level design

• …

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 4

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 7

Hardware/Software Scheduling

• Uni-processor scheduling

• General-purpose OS schedulers
– Balance average performance, fairness, responsiveness

• Exact real-time scheduling methods
– Throughput/makespan fixed, minimize response (= meet deadlines)

– Analytical cost models based on estimated task execution times

EDD, RMS, EDF for independent periodic real-time task sets

 LDF, EDF* for dependent task graphs

• KPN, SDF scheduling of generalized task graphs
– Buffer/code sizing, completeness, ..

• Uni-processor extensions

• Hardware accelerators as special cases

• Extensions for (homogeneous) multi-cores

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture
10

© 2022 A. Gerstlauer 8

Multi-Processor Systems-on-Chip (MPSoCs)

• Multi-processor
• Heterogeneous
• Asymmetric multi-

processing (AMP)
• Distributed memory

& operating system

• Multi-core
• Heterogeneous or homogeneous or identical
• Symmetric multi-processing (SMP)
• Shared memory & operating system
Multi-core processors in a multi-processor system

• Many-core
• > 10 processors/cores …

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 5

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 9

MPSoC Mapping

• Partitioning
• Possible extensions of classical two-partition approaches

– Min-cut, clustering, annealing

 Truly parallel execution (not just accelerators)
– Need to consider effect on scheduling

• Scheduling
• Restricted multi-core scheduling

– Periodic, independent tasks
– Homogeneous processors/cores
Real-time extensions [G-EDF, P-Fair, …]

• General multi-processor scheduling
– General task graphs
– Heterogeneous processors
Schedule & partitioning inter-dependent!

 Integrated (allocation &) partitioning & scheduling

Multi-Core Mapping

• Partitioned scheduling

• Partition tasks to cores

• Apply uni-processor scheduling
on each core

• Optional load-balancing

• Global scheduling

• Fixed priorities [G-RMS]

• Fixed job priority [G-EDF]

• Dynamic [P-Fair]

 Can not account for heterogeneity & dependencies

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 10

Global queue (+ affinity)

Partitioned queue (+ load balancing)

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 6

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 11

Multi-Processor Mapping (1)

• Models of computation
• Set of tasks (processes/actors) { T1, T2, … }

– Independent
– Task graph = data-flow/precedence graph (DFG/HSDF)

= directed, acylic graph (DAG)
– Generalized task models (KPN, SDF)

• Timed models
– Arrival/release times ai (periods ti), soft/hard deadlines di (= ti)

• Models of Architecture
• Set of processing elements (processors) { P1, P2, … }

– Number and type fixed, constrained, or flexible
– With or without migration, homogeneous or heterogeneous

• Set of communication media (busses) { B1, B2, … }
– Shared, point-to-point, fully connected

• Set of storage elements (memories) { M1, M2, … }
– Shared, distributed

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 12

Multi-Processor Mapping (2)

• Optimization problems
• Cost models

– Analytical: execution times ei (best/worst/average?), real-time calc.
– Simulation (dynamic scheduling, timing variations)

• Objectives/constraints
– Latency: response time ri = finish time fi – ai, lateness li = ri - di

– Throughput: 1 / makespan (schedule length)
– Cost: chip area, code/memory size, …

 Examples (all at least NP-complete):
• General job-shop scheduling

– Minimize makespan of independent task set on m processors
– Classical multi-processor scheduling: atomic jobs, no migration

• General task graph (DAG) scheduling
– Minimize makespan for dependent task graph on m resources
– Minimize resources under makespan constraint
– Pipelined variants for periodic task graph invocations

• KPN, SDF scheduling
– Optimize latency, throughput, buffers, cost, … under x constraints

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 7

Multi-Processor Mapping Approaches

• Exact methods

• Integer linear programming (ILP)

• Constructive heuristics

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Simulated annealing

• Set-based multi-objective DSE approaches

 Many of these adapted from other domains

• DAG/DFG scheduling in compilers & high-level synthesis

• Production planning, operations research, …

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 13

Multi-Processor Mapping Approaches

• Exact methods

• Integer linear programming (ILP)

• Constructive heuristics

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Simulated annealing

 Set-based multi-objective DSE approaches

 Many of these adapted from other domains

 DAG/DFG scheduling in compilers & high-level synthesis

 Production planning, operations research, …

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 14

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 8

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 15

Integer Linear Programming

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the ILP problem said
to be a 0/1 (or binary) integer linear programming problem.

)1(,with NxRaxaC i
Xx

iii

i

 


)2(,with: ,, RcbcxbJj
Xx

jjijiji

i

 


• Linear expressions over integer variables

• Cost function

• Constraints

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 16

Integer Linear Program for Partitioning (1)

• Inputs
• Tasks ti, 1 ≤ i ≤ n
• Processors pk, 1 ≤ k ≤ m
• Cost ci,k , if task ti is in processor pk

• Binary variables xi,k

• xi,k = 1: task ti in block pk

• xi,k = 0: task ti not in block pk

• Integer linear program:

 

nimkcx

nix

mknix

m

k

n

i
kiki

m

k
ki

ki







 



 



1,1minimize

11

1,11,0

1 1
,,

1
,

,

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 9

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 17

Integer Linear Program for Partitioning (2)

• Additional constraints
• example: maximum number of hk objects in block k

• Popular approach
• Various additional constraints can be added
• If not solving to optimality, run times are acceptable and a

solution with a guaranteed quality can be determined
• Can provide reference to provide optimality bounds of

heuristic approaches
• Finding the right equations to model the constraints is an

art… (but good starting point to understand a problem)
 Static scheduling can be integrated (SDFs)

mkhx
n

i
kki 


1

1
,

Source: L. Thiele

Integer Linear Program for Scheduling

• Inputs

• Task graph TG: tasks ti, 1 ≤ i ≤ n with edges (ti,tj)

• Discrete time window: 0 ≤ t < Tmax

• Decision variables

• si,t ∈ {0,1}: task ti executes at time t

• Constraints

• Single task execution: ∑t si,t = 1, 1 ≤ i ≤ n

• Sequential task execution: ∑i si,t ≤ 1, 0 ≤ t < T

• Task dependencies ti →tj : ∑t tꞏsj,t ≥ ∑t tꞏsi,t + 1

• Objective

• Minimize latency (task tn is sink): minimize ∑t tꞏsn,t

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 18

Start time of task ti

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 10

Integer Linear Program for Scheduling (2)

• Inputs

• Task graph TG: tasks ti, 1 ≤ i ≤ n with edges (ti,tj)

• Execution time ei of task ti, 1 ≤ i ≤ n

• Discrete time window: 0 ≤ t < Tmax

• Decision variables

• si,t ∈ {0,1}: task ti starts execution at time t

• Constraints

• Single task execution: ∑t si,t = 1, 1 ≤ i ≤ n

• Sequential task execution: ∑ ∑ 𝑠௜,ఛ
௧
ఛୀ௧ି௘೔ାଵ ≤ 1௜ , 0 ≤ t < T

• Task dependencies ti →tj : ∑t tꞏsj,t ≥ ∑t tꞏsi,t + ei

• Objective

• Minimize latency (task tn is sink): minimize ∑t tꞏsn,t + en

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 19

Is task ti executing at time t ?  Did it start in t, t-1, … ?

ILP for Partitioning & Scheduling (1)

• Inputs

• Tasks ti, 1 ≤ i ≤ n, edges (ti,tj), time window: 0 ≤ t < Tmax

• Processors pk, 1 ≤ k ≤ m, cost ci,k if task ti in processor pk

• Execution time ei,k of task ti on processor pk

• Decision variables

• xi,k ∈ {0,1}: task ti mapped to processor pk

• si,t ∈ {0,1}: task ti starts execution at time t

• Constraints

• Unique task mapping: ∑k xi,k = 1, 1 ≤ k ≤ m

• Single task execution: ∑t si,t = 1, 1 ≤ i ≤ n

• Sequential task execution on each processor:
∑ ∑ 𝑥௜,௞ꞏ𝑠௜,ఛ

௧
ఛୀ௧ି௘೔ାଵ ≤ 1௜ , 0 ≤ t < T, 1 ≤ k ≤ m

• Task dependencies ti →tj : ∑t tꞏsj,t ≥ ∑t tꞏsi,t + ∑k xi,kꞏei,k

• Objective

• Weighted cost & latency: min w1 ∑k ∑i xi,kꞏci,k +w2(∑t tꞏsn,t + ∑k xn,kꞏen)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 20

Non-linear!

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 11

ILP for Partitioning & Scheduling (2)

• Inputs
• Tasks ti, 1 ≤ i ≤ n, edges (ti,tj), time window: 0 ≤ t < Tmax

• Processors pk, 1 ≤ k ≤ m, cost ci,k if task ti in processor pk

• Execution time ei,k of task ti on processor pk

• Decision variables
• si,k,t ∈ {0,1}: task ti starts at time t on processor pk

• Constraints
• Single & unique task mapping: ∑k∑t si,k,t = 1, 1 ≤ i ≤ n
• Sequential, non-overlapping execution on each processor:

∑ ∑ 𝑠௜,௞,ఛ
௧
ఛୀ௧ି௘೔,ೖାଵ ≤ 1௜ , 0 ≤ t < T, 1 ≤ k ≤ m

• Task dependencies ti →tj :
∑k∑t tꞏsj,k,t ≥ ∑k∑t tꞏsi,k,t + ∑k∑t si,k,t ꞏei,k

• Objective
• Weighted cost & latency:

minimize w1(∑k ∑i ∑t ci,k ꞏsi,k,t) + w2(∑k∑t tꞏsn,k,t+∑k∑t sn,k,t ꞏen,k)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 21

SDF Partitioning & Scheduling
• Inputs

• Actors ai, 1 ≤ i ≤ n, channels (ai,aj), time window: 0 ≤ t < Tmax

• Production, consumption, initial rates/tokens on (ai,aj): ci,j, pi,j, oi,j

• Repetitions for actor ai: ri

• Processors pk, 1 ≤ k ≤ m, cost ci,k if actor ai in processor pk

• Execution time ei,k of actor ai on processor pk

• Decision variables
• si,k,t ∈ {0,1}: actor ti starts at time t on processor pk

• Constraints
• Single & unique actor mapping: ∑k∑t si,k,t = ri, 1 ≤ i ≤ n
• Sequential, non-overlapping execution on each processor:

∑ ∑ 𝑠௜,௞,ఛ
௧
ఛୀ௧ି௘೔,ೖାଵ ≤ 1௜ , 0 ≤ t < T, 1 ≤ k ≤ m

• Token balance equations for each channel ai→aj :
∑ ∑ 𝑐௜,௝ · 𝑠௝,௞,ఛ

௧
ఛୀ଴ ௞ ൑ ∑ ∑ 𝑝௜,௝ · 𝑠௜,௞,ఛ

௧ି௘೔,ೖ
ఛୀ଴ ௞ ൅ 𝑜௜,௝, 0 ≤ t < T

• Objective
• Weighted cost & latency (unique sink an with rn = 1):

minimize w1(∑k ∑i ci,k ꞏ I{∑t si,k,t>0}) + w2(∑k∑t tꞏsn,k,t+∑k∑t sn,k,t ꞏen,k)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 22
Indicator function

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 12

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 23

• Allocation and partitioning
• Resource sharing

• Static scheduling
• Pipelining

Throughput = 1 / Period
Latency = (End of the n-th exec. of sink) – (Start of the n-th exec. of source)

Pipelined Scheduling

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 24

Pipelined Scheduling ILP

• Multi-objective cost function
• Minimize: w1ꞏThroughput + w2ꞏLatency + w3ꞏCost

• Decision variables
• Actor to processor binding for time window (period)
• Actor start times within time window (period)

• Constraints
• Execution precedence according to SDF semantics
• Single & unique actor mapping
• Sequential execution on each processor
• Stable periodic phase

 Optimize partition and schedule simultaneously
 Incorporate communication mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11

J. Lin, A. Gerstlauer, B. Evans, “Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ JSPS’12

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 13

Multi-Processor Mapping Approaches

• Exact methods

• Exhaustive search

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Random search

• Iterative improvement/hill climbing

• Simulated annealing

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 25

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 26

Constructive Methods – List Scheduling
• Greedy heuristic

• Process graph in topology order (source to sink)

• Process ready nodes in order of priority (criticality)

 List scheduling variants only differ in priority function
– Highest level first (HLF), i.e. distance to the sink

– Critical path, i.e. longest path to the sink

• Widely used scheduling heuristic

• Operation scheduling in compilation & high-level synthesis
• Hu’s algorithm for uniform delay/resources (HLF, optimal)

• Iterative modulo scheduling for software pipelining

• Job-shop/multi-processor scheduling
• Graham’s algorithm (optimal online algorithm for ≤ 3 processors)

• Heterogeneous earliest-finish time first (HEFT)

 Natural fit for minimizing makespan/latency
O(n) complexity

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 14

Constructive Methods – List Scheduling

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 27

l = 0;

i = 0…n: pi ← Idle;

Ready ← Initial tasks (no dependencies);

while (!empty(Ready)) {

forall pi: status(pi) == Idle {

t = first(Ready, pi); // by priority

pi ← (t, l, l + exec_time(t));

}

l = min(l + 1, finish_time(pi));

forall pi: finish_time(pi) == l {

Ready ← successors(current(pi));

pi ← Idle;

}

}

Multi-Processor Mapping Approaches

• Exact methods

• Exhaustive search

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Random search

• Iterative improvement/hill climbing

• Simulated annealing

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 28

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 15

Iterative Methods

• Basic principle

• Start with some initial configuration (e.g. random)

• Repeatedly search neighborhood (similar configuration)
– Select neighbor as candidate (make a move)

• Evaluate fitness (cost function) of candidate
– Accept candidate under some rule, select another neighbor

• Stop if quality is sufficient, no improvement, or end time

• Ingredients

• Way to create an initial configuration

• Function to find a neighbor as next candidate (make move)

• Cost function (single objective)
– Analytical or simulation

• Acceptance rule, stop criterion

 No other insight into problem needed
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 29

Source: L. Thiele

Iterative Improvement

• Greedy “hill climbing” approach

• Always and only accept if cost is lower (fitness is higher)

• Stop when no more neighbor (move) with lower cost

• Disadvantages

• Can get trapped in local optimum as best result
– Highly dependent on initial configuration

• Generally no upper bound on iteration length

 How to cope with disadvantages?

• Repeat with many different initial configurations

• Retain information gathered in previous runs

• Use a more complex strategy to avoid local optima

 Random moves & accept cost increase with probability > 0

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 30

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 16

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture
10

© 2022 A. Gerstlauer 31

Iterative Methods - Simulated Annealing

• From Physics
• Metal and gas take on a minimal-energy state during

cooling down (under certain constraints)
– At each temperature, the system reaches a thermodynamic

equilibrium
– Temperature is decreased (sufficiently) slowly

• Probability that a particle “jumps” to a higher-energy state:

• Application to combinatorial optimization
• Energy = cost of a solution (cost function)

– Can use simulation or any other evaluation/estimation model

• Iteratively decrease temperature
– In each temperature step, perform random moves until equilibrium
– Increases in cost are accepted with certain probability

(depending on cost difference and “temperature”)

Tk

ee

ii
B

ii

eTeeP

1

),,(1



 

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture
10

© 2022 A. Gerstlauer 32

Iterative Methods - Simulated Annealing

temp = temp_start;

cost = c(P);

while (Frozen() == FALSE) {

while (Equilibrium() == FALSE) {

P’ = RandomMove(P);

cost’ = c(P’);

deltacost = cost’ - cost;

if (Accept(deltacost, temp) > random[0,1)) {

P = P’;

cost = cost’;

}

}

temp = DecreaseTemp (temp);

}

tempk

deltacost

etempdeltacost 


),Accept(

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 17

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture
10

© 2022 A. Gerstlauer 33

Iterative Methods - Simulated Annealing

• Random moves: RandomMove(P)
• Choose a random solution in the neighborhood of P

• Cooling Down: DecreaseTemp(), Frozen()
• Initialize: temp_start = 1.0
• DecreaseTemp: temp =  • temp (typical: 0.8    0.99)
• Terminate (frozen): temp < temp_min or no improvement

• Equilibrium: Equilibrium()

• After defined number of iterations or when there is no more
improvement

 Complexity

• From exponential to constant, depending on the
implementation of the cooling down/equilibrium functions

• The longer the runtime, the better the quality of results
Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 34

Lecture 10: Outline

 Partitioning & scheduling

Problem definitions

 Hardware/software co-design

Traditional partitioning & scheduling algorithms

 System-level design

MPSoC mapping algorithms

• Design space exploration

• Multi-objective optimization

• Exploration algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 18

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 35

Multi-Objective Exploration

• Multi-objective optimization (MOO)
• Implementations are optimized with respect to many

(conflicting) objectives
• Several optimal solutions exist with different tradeoffs

among properties

• Exact, constructive methods are prohibitive
• Large design space, dynamic behavior

• Iterative single-objective methods
• Only return a single solution

 Set-based iterative approaches (EA, ACO, PSO)
 Randomized, problem independent (black box)
 Often inspired by processes in nature

(evolution, ant colonies, diffusion)
Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 36

Objective Space

la
te

nc
y

cost

◈

◈
◈

◈
◈

◈

◈ ◈

◈

◈

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 19

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 37

incomparable

incomparable

is
dominated

dominates

Pareto Dominance

• Given: two decision vectors x1 and x2

• x1≻≻x2 (strongly dominates) if ∀i: fi(x1)<fi(x2)
• x1≻x2 (dominates) if ∀i: fi(x1)≤fi(x2) ∧ ∃j: fj(x1)<fj(x2)
• x1~x2 (indifferent) if ∀i: fi(x1)=fi(x2)
• x1||x2 (incomparable) if ∃i,j: fi(x1)<fi(x2) ∧ fj(x2)<fj(x1)

ob
je

ct
iv

e
2

objective 1

◈

◈
◈

◈
◈

◈

◈

◈

◈
◈

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 38

Pareto Optimality

• Set of all solutions X

• A decision vector x ∊ X is said to be Pareto-optimal
if ∄y ∊ X: y ≻ x

ob
je

ct
iv

e
2

objective 1

◈

◈
◈

◈
◈

◈

◈

◈

◈
◈

Pareto front

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 20

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 39

Optimization Goals

• Find Pareto-optimal solutions (Pareto front)

• Or a good approximation (convergence, diversity)

• With a minimal number of iterations

ob
je

ct
iv

e
2

objective 1

◈

◈
◈

◈
◈

◈

◈

◈

◈
◈

Source: C. Haubelt, J. Teich

Design Space Exploration (DSE)

• Search space vs. decision space vs. design space

• Encoding of decisions defines search space
– Focus on observable decisions, hardcode unobservable ones

• Functional & architecture constraints define decision space
– Quickly prune & reject infeasible decisions

• Quality constraints restrict objective space
– Invalid solutions outside of valid quality range

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 40

Valid Region

Feasible Region

Search Space Decision Space Objective Space

decisions

Decoding
and setting of
unobservable

Functional Constraints Non-Functional Constraints

Evaluation

Encoding of
decisions

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 21

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 41

Evolutionary Algorithms (EAs)

• Multi-objective evolutionary algorithms (MOEAs)

• Capable to explore the search space very fast, i.e., they
can find some good solutions after a few iterations
(generations)

• Explore high dimensional search spaces

• Can solve variety of problems (discrete, continuous, …)

• Work on a population of individuals in parallel

• Black box optimization (generic evaluation model)

• Fitness evaluation

• Simulation, analysis or hybrid
– Tradeoff between accuracy and speed

• Hierarchical optimization
– Combination with second-level optimization

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture
10

© 2022 A. Gerstlauer 42

Init Population

Fitness
assignment

selection

Recombination

Begin

End ?No Problem Solved 

Multi-Objective Evolutionary Algorithm

x1

x2

x2

x1

f(x1,x2)

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 22

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 43

Fitness Selection

1

2 3
4

• Pareto ranking

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 44

Recombination

Optimized
solutions
Optimized
solutions

MOEAMOEA

Crossover

Mutation

ModelModel

◈
◈◈

◈◈

◈
◈

◈
◈◈

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 23

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 45

Hierarchical Optimization

• SDF mapping heuristics

• Multi-objective evolutionary algorithm (MOEA) + ILP
– Partitioning + scheduling

Select

Cross-over

Mutate

Evolutionary Algorithm Evaluation

Performance metrics

Mapping solutions

Analysis/
Simulation

P
ar

ti
ti

o
n

in
g

ILP
Solver

S
ta

ti
c

sc
h

ed
u

lin
g

D
yn

am
ic

 s
ch

ed
u

lin
g

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture
10

© 2022 A. Gerstlauer 46

SDF Mapping Results

• Design space exploration for an MP3 decoder

• Convergence to Pareto front

• Within 10-6 of optimum

• 12x better runtime
– <1 hour execution time

J. Lin, A. Gerstlauer, B. Evans, “Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ JSPS’12

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 10

© 2022 A. Gerstlauer 24

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2022 A. Gerstlauer 47

Lecture 10: Summary

• System-level synthesis & decision making
• Formalization as a basis for automation
• Partitioning (allocation, binding) & scheduling

• Classical HW/SW co-design approaches
• Single processor + co-processors

• Multi-processor mapping heuristics
• ILPs, list scheduling, simulated annealing

• Design space exploration (DSE)
• Multi-objective optimization, MOEAs

 Machine-learning based methods
Reinforcement learning (robotics, game play)

