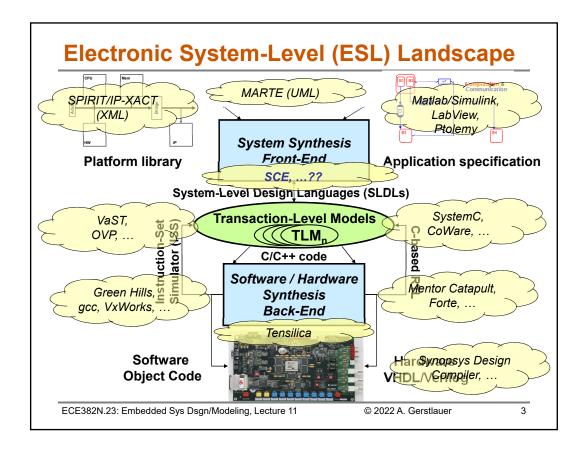
ECE382N.23: Embedded System Design and Modeling

Lecture 11 – System-Level Design Tools

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

The University of Texas at Austin
Electrical and Computer Engineering
Cockrell School of Engineering


Lecture 11: Outline

- System-level design tools
 - Tool landscape
 - · Commercial & academic tools
- Outlook
 - Beyond system-level design
 - · Network-level design

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

2

ESL Tools

- Electronic System-Level (ESL) terminology misused
 - Often single hardware unit only (high-level HW synthesis)
- System-level has to span across hardware and software
 - System-level frontend
 - · Hardware and software synthesis backend
- ➤ Commercial tools for modeling and simulation
 - Algorithmic modeling (MoC) [UML, Matlab/Simulink, Labview]
 - Virtual system prototyping (TLM) [Coware, VaST, Virtutech]
 - > Only horizontal integration across models / components
- > Academic tools for synthesis and verification
 - MPSoC synthesis [SCE, Metropolis, SCD, PeaCE, Deadalus]
 - > Vertical integration for path to implementation

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

4

Commercial Tools (1)

- CoFluent (now Intel)
 - SystemC-based modeling and simulation
 - Networks of timed processes
 - Communication through queues, events, variables
 - Early, high-level interactive design space exploration
 - Graphical application, architecture and mapping capture
 - Fast TLM simulation with estimated timing
- Space Codesign
 - Graphical application, architecture and mapping capture (Eclipse)
 - Process network with message-passing or shared-memory channels
 - SystemC TLM simulation
 - Annotated, host-compiled or cycle-accurate ISS models
 - FPGA-based prototyping
 - Cross-compilation and third-party hardware synthesis (Forte/Catapult)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

5

Commercial Tools (2)

- CoWare (now Synopsys)
 - Virtual platforms
 - SystemC TLM capture, modeling and simulation
 - Extensive library of IP, processor and bus models
 - Application-specific processor ISS models (LISAtek acquisition)
 - Proprietary SystemC simulation framework
 - Optimized SystemC kernel
 - Graphical debugging, visualization and analysis capabilities
- Soc Designer (Carbon Design Systems)
 - Proprietary, C++ based modeling and simulation
 - Fast, statically scheduled cycle-accurate simulation
 - Special cycle-callable component models
- VaST (now Synopys), Simics (Virtutech, now Intel), OVP
 - Proprietary SW-centric virtual platform modeling/simulation
 - Fast, cycle-approximate binary translated or compiled ISS + peripherals
 - SystemC wrappers

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

6

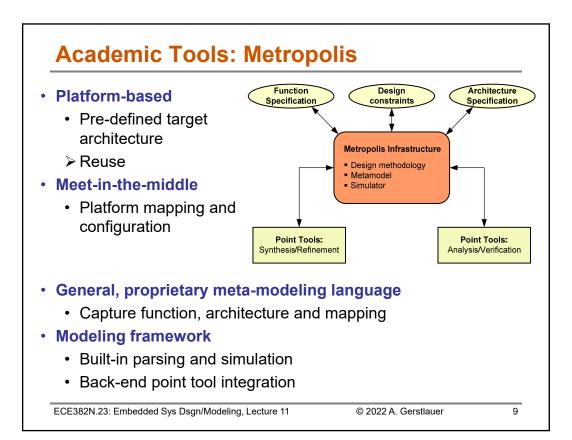
Commercial Tools (3)

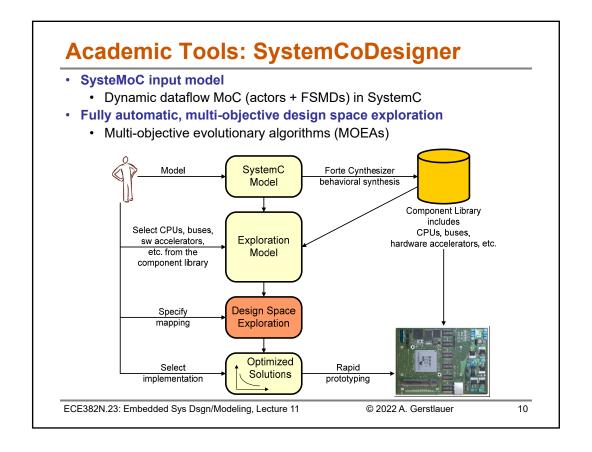
- Software tools
 - · Cross-compilers, debuggers, IDEs
 - Eclipse, GreenHills, Esterel SCADE, Mathworks, UML/SysML, ...
 - · Real-time operating systems
 - uCOS, VxWorks, RTLinux, ...
 - Timing analysis
 - alT/AbsInt [Saarland Univ.], SymTA/S [Univ. Braunschweig]
- Hardware tools
 - High-level synthesis
 - Xilinx Vivado [UCLA], Mentor Catapult, Bluespec [MIT], ...
 - Application-specific instruction-set processor (ASIP) design
 - Tensilica Xtensa, Synopsys ASIP Designer/LISA [RWTH Aachen]

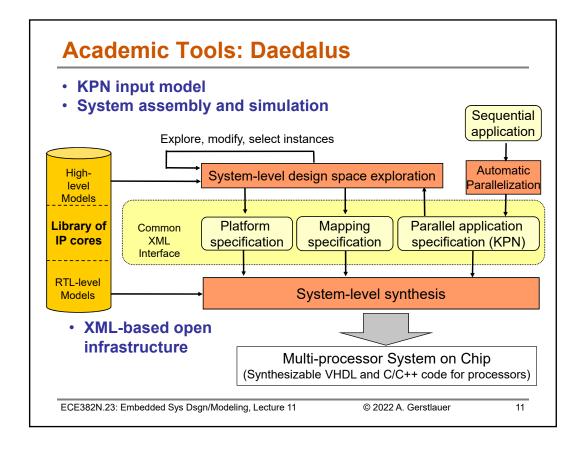
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

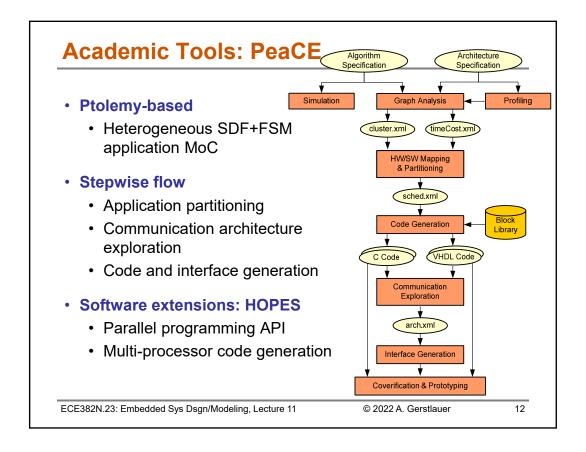
© 2022 A. Gerstlauer

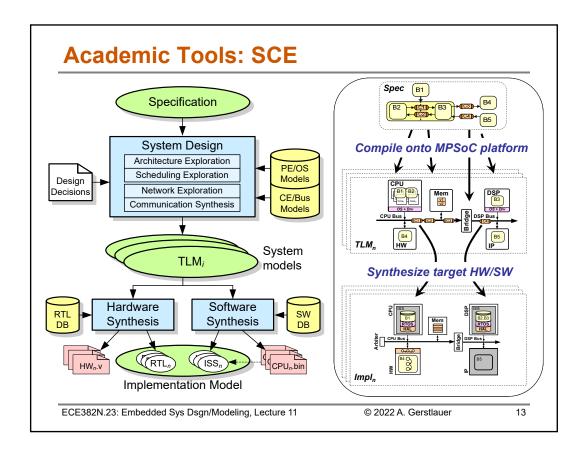
7


Academic Tools


- Metropolis
 - Platform-based design (PBD)
- SystemCoDesigner
 - · Dynamic dataflow MoC
 - Automated design space exploration
- Daedalus
 - KPN MoC for streaming, multi-media applications
 - IP-based MPSoC assembly
- PeaCE
 - "Ptolemy extension as a Codesign Environment"
 - Recent extensions for software development (HoPES)
- SCE
 - SpecC-based "System-on-Chip Environment"
 - Successive, stepwise Specify-Explore-Refine methodology


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11


© 2022 A. Gerstlauer


8

Academic MPSoC Design Tools

Approach	DSE	Comp. decision	Comm. decision	Comp. refine	Comm. refine
Daedalus			0		0
Koski			0		0
Metropolis		0		0	
PeaCE/HoPES	0	0		•	0
SCE					
SystemCoDesigner					

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11 © 2022 A. Gerstlauer 14

Lecture 11: Outline

- System-level design tools
 - Tool landscape
 - · Commercial & academic tools
- Outlook
 - · Beyond system-level design
 - · Network-level design

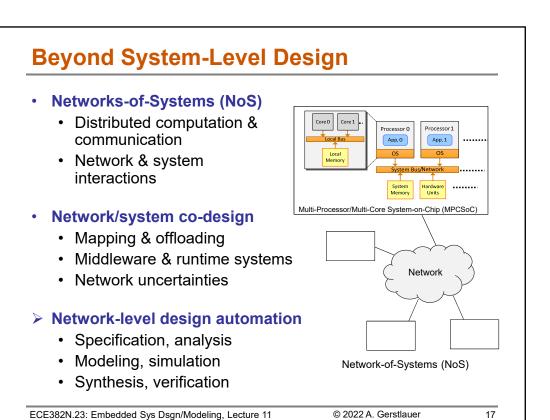
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

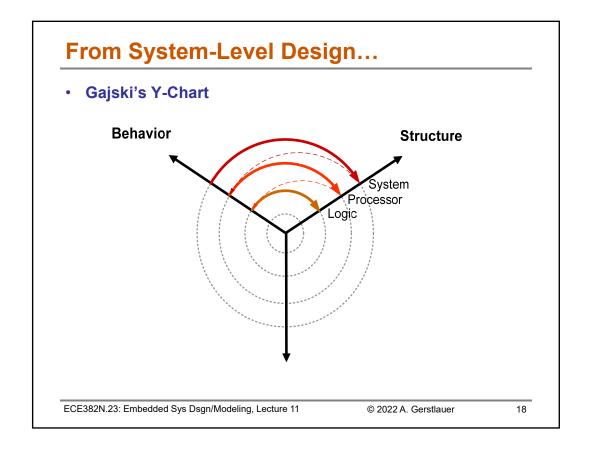
© 2022 A. Gerstlauer

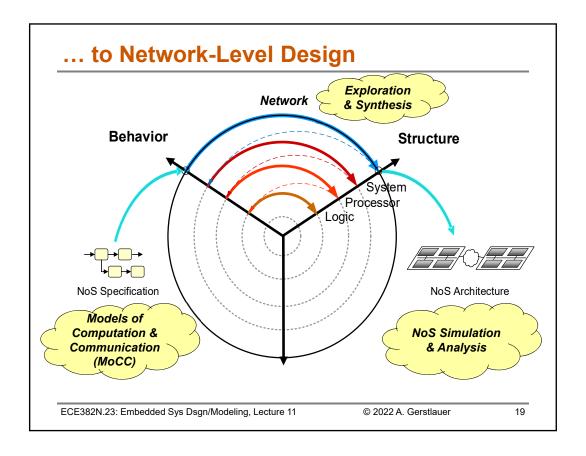
15

Outlook

- Embedded systems increasingly networked
 - Application-specific
 - Resource-constrained
 - Heterogeneous
 - Distributed
- Cyber-physical systems (CPS)
 - · Real-time sensing & acting
 - · Interact with physical world
- Internet-of-things (IoT)
 - Edge computing at/near sink/source
 - Open public networks

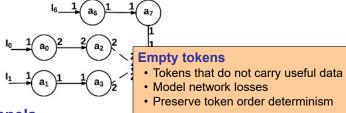

Access Point Fields of camera views


Access Gateway


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2029 A. Gerstlauer

16



Reactive and Adaptive Data Flow (RADF)

- Dataflow basis
 - · Streaming applications, e.g. based on SDF
- Extended by two channel types
 - Lossless (solid) and lossy (dashed) channels

- Lossy channels
 - May replace tokens with empty ones: [* ··· *] → [* ··· Ø ··· *]
- Actor variants
 - Based on firing rules of empty/non-empty tokens

Source: S. Francis, A. Gerstlauer, "A Reactive and Adaptive Data Flow Model For Network-of-System Specification," IEEE ESL, 9(4), 2017.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

20

NoSSim

- System simulation model
 - SystemC-based host-compiled device model
 - Capture system-wide interactions between application, OS and underlying hardware components
- Network simulation backplane
 - OMNeT++/INET network simulation framework

Source: Z.Zhao, V. Tsoutsouras, D. Soudris, A. Gerstlauer, "Network/System Co-Simulation for Design Space Exploration of IoT Applications," SAMOS'17.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

21

Lecture 11: Summary

- System-level design tools
 - Commercial focus still only on modeling and simulation
 - Academic approaches towards true system-level design
 - Emerging commercial backend HW/SW synthesis
 - Complete, automated system design flow
 - > From specification to implementation
- Network-level design
 - · Beyond system-level design
 - Distributed and networked embedded systems
 - Network uncertainties

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 11

© 2022 A. Gerstlauer

22