
ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 1

ECE382N.23:
Embedded System Design and Modeling

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 2 – System Specification

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 2

Lecture 2: Outline

• System specification
• Essential issues
• Specification modeling guidelines
• Formal models

• Models of Computation (MoCs)

• Models for reactive systems

• Concurrency & communication

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 2

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 3

System Specification

• Desired system behavior
• Pure functionality
• Untimed

• System constraints
• Non-functional requirements

Synthesis

Specification Model

Refinement
Decision
Making

ConstraintsBehavior

Implementation Model

QualityStructure

Application
Model

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 4

Essential Issues in Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author, Courtesy of: R. Doemer

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 3

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 5

Specification Modeling

• Executable

• Simulate for functional validation

• Pure behavior: functional, no absolute timing

• No structural or implementation information

 “Golden” reference model

• First functional model in the design flow

• All other models derived from and compared to this one

 High abstraction level

• No premature implementation details

• Unrestricted exploration of design space

 Formal

• Proof of correctness

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 6

Formal Model of a Design

• Most tools and designers describe the behavior of a
design as a relation between a set of inputs and a set of
outputs

• This relation may be informal, even expressed in natural
language

• Such informal, ambiguous specifications may result in
unnecessary redesigns…

• A formal model of a design should consist of the following
components:

• Functional specification

• Set of properties

• Set of performance indices

• Set of constraints on performance indices

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 4

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 7

Formal Model of a Design (2)

• A functional specification, given as a set of explicit or implicit relations
which involve inputs, outputs and possibly internal (state) information

• A set of properties that the design must satisfy

• A set of performance indices that evaluate the quality of the design in
terms of cost, reliability, speed, size, etc.

• A set of constraints on performance indices, specified as a set of
inequalities

Fully characterizes the operation of a systemFully characterizes the operation of a system

Bound the cost of a systemBound the cost of a system

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties are simpler / more abstract compared to the
functional specification.

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties are simpler / more abstract compared to the
functional specification.

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 8

Properties

• A property is an assertion about the behavior, rather than
a description of the behavior

• It is an abstraction of the behavior along a particular axis

• Examples:

• Liveness property: when designing a network protocol, one
may require that the design never deadlocks

• Fairness property: when designing a network protocol, one
may require that any request will eventually be satisfied

• Can include other non-functional requirements

• Timeliness: guarantees about meeting deadlines in the
worst case (real-time)

The above properties do not completely specify the behavior of the
protocol, they are instead properties we require the protocol to have

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 5

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 9

Properties & Models

• Properties can be classified in three groups:

1. Properties that are inherent to the model (i.e., that can be
shown formally to hold for all specifications described
using that model)

2. Properties that can be verified syntactically for a given
specification (i.e., that can be shown to hold with a simple,
usually polynomial-time analysis of the specification)

3. Properties that must be verified semantically for a given
specification (i.e., that can be shown to hold by executing,
at least implicitly, the specification for all inputs that can
occur)

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 10

Model Validation

• By construction

• property is inherent

• By verification

• property is provable syntactically

• By simulation

• check behavior for all inputs

• By intuition

• property is true, I just know it is…

better be higher
in this list…

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 6

Model Validation Example

• Determinate Behavior Property: the fact that the output of
a system depends only on its inputs and not on some
internal, hidden choice

• Any design described by a dataflow network is
determinate, and hence this property is inherent (that is,
need not be checked)

• If the design is represented by a network of FSMs,
determinacy can be assessed by inspection of the state
transition function, and hence the property can be verified
syntactically

• In the discrete event models embodied in Verilog and
VHDL determinacy is difficult to prove, it must be checked
by exhaustive simulation, and thus the property requires
semantic verification

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 11

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 12

Models of Computation (MoCs)

• A MoC is a framework in which to express what actions
must be taken to complete a computation

• Objects and their relationships

• MoCs need to

• Be powerful/expressive enough for the application domain

• Have appropriate synthesis and validation semantics

• Why different models?

• Different models  different properties

• Turing complete models are too powerful!

• Existing programming models are poor match

 Domain-specific models

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 7

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 13

MoCs for Reactive Systems

• Consider essential aspects of reactive systems:
• Concurrency
• Order/synchronization
• Heterogeneity

• Classify models based on
• How to specify behavior (computation)
• How to specify communication
• Implementability
• Composability
• Availability of tools for validation and synthesis

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 14

Lecture 2: Outline

 System specification
Essential issues
Specification modeling guidelines
Formal models

• Models of Computation (MoCs)

• Models for reactive systems

• Concurrency & communication

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 8

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 15

Reactive System Model

• Concurrent processes
• Simultaenous processing of multiple inputs and outputs
 Block diagram as graphical representation

 Execute (simulate) and synthesize
• Semantics of a block diagram?
• Concurrency and time (order)?

f()

f()

f()

Models of Time (Order)

• Untimed

• Partial order based on causality only
– No ordering in time, explicit dependencies only

 Free of implementation (purely behavioral)

• Logical

• Discrete time, partial order
– Discrete instants of time (time tags t0 < t1 < ... tk < ...), nothing in between

– Unspecified interleaving of events with same time tag

 Freedom of implementation

• Physical

• Continuous time, total order
– Physical components naturally interleaved in (very fine) time

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 16

 Simulation & execution, Design languages

 Specification & programming, Models of computation

Differential equations, Hybrid models

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 9

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 17

Concurrency
• Events/actions happening “at the same time”

• Undefined, unspecified or unknown order
– Implementation will determine actual interleaving

• Communication/synchronization establishes order
• Partial order, causal dependencies

– Behavior/functionality

• Fundamental issues: communication semantics
 Non-determinism, causality loops
 Deadlocks

f()

f()

f()

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 18

Determinism

• Deterministic: same inputs always produce same results

• Random: probability of certain behavior

• Non-deterministic: undefined behavior (for some inputs)

• Undefined execution order
– Statement evaluation in imperative languages: f(a++, a++)

– Process & thread race conditions:

 Can be desired or undesired

 How to ensure correctness?
 Many possible behaviors, large verification space

 Simulator will pick one behavior, not sufficient for verification

 But: over-specification?
 Leave freedom of implementation choice (concurrency)

x = a;
y = b;

a = 1;
b = 2;

x = ?, y = ?

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 10

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 19

Deadlocks

• Circular chain of 2 or more processes which each hold a
shared resource that the next one is waiting for

• Circular dependency through shared resources

 Prevent chain by using the same precedence

 Use timeouts (and retry), but: livelock

 Dependency can be created when resources are shared

 Side effects, e.g. when blocking on filled queues/buffers

m2.lock();
m1.lock();
…
m1.unlock();
m2.unlock();

m1.lock();
m2.lock();
…
m2.unlock();
m1.unlock();

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 20

Models of Computation (MoCs)

• Conceptual ways of describing system behavior

• Semantics of behavioral models
• Concurrency and time (order)

• Computation and communication

• Decomposition into objects and their relationship
• Composition rules

• Data and control flow

• Unambiguous, formal definition and semantics
• Analysis, synthesis, verification

 Formally validate functional correctness of specification

 Analyzability vs. expressiveness of specification models

 Fundamental tradeoffs between the two

 Implementability & predictability

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 11

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 21

Models vs. Languages

• Computation models describe system behavior
• Conceptual notion, e.g., recipe, sequential program

• Languages capture models
• Concrete form, e.g., English, C

• Variety of languages can capture one model
• E.g., sequential program model  C,C++, Java

• One language can capture variety of models
• E.g., C++ → sequential program model, object-oriented

model, state machine model
• Certain languages better at capturing certain models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 22

MoC Examples

• Programming models
• Imperative [C] or declarative [Lisp, Prolog]
 Transformative not reactive, no concurrency

• Parallel programming models
• Threads/processes, multi-tasking/-threading [any (RT)OS]
 Non-determinism, race conditions, deadlocks
 Best effort only, incomprehensible to humans/tools [Lee’06]

• Control and logic design
• Finite state machines (FSMs), synchronous reactive (SR)
 Synchronous, fine granularity of concurrency

• Hardware description languages (HDLs)
• Discrete event (DE)
 Global time, simulation but not synthesis

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2022 A. Gerstlauer 12

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 23

MoCs for System Specification

• Process-based models

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• …

• State-based models

• Hierarchical, Concurrent State Machines (HCFSM)

• Petri Nets

• …

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2022 A. Gerstlauer 24

Lecture 2: Summary

• System specification

• „Golden“ input to design flow

• Specification modeling guidelines
• Hierarchy, concurrency, communication

• Unambiguous, formal definition
• Intended system behavior

• Analysis and synthesis

 How to soundly capture concurrency & order?
 Formal Models of Computation (MoCs)

