ECE382N.23: Embedded System Design and Modeling

Lecture 4 - State-Based MoCs

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 4: Outline

- State-based Models of Computation (MoCs)
 - · Finite state machines
 - Hierarchical, concurrent state machines
 - Process state machines
 - Hybrid models

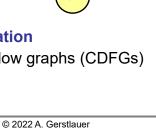
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

2

State-Based Models

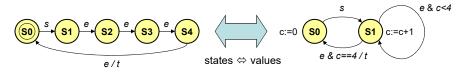
- Control flow, automata
 - State and event-driven reactivity
- **Explicit enumeration of computational states**
 - State represents captured history
- Explicit flow of control
 - · Transitions in reaction to events
- > Stepwise operation of a machine
 - Cycle-by-cycle hardware behavior
 - Finite number of states
 - > Not really Turing complete
- State-oriented imperative representation
 - Imperative models as control/data flow graphs (CDFGs)
- Formal analysis
 - Reachability, equivalence, ...

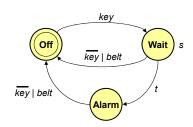

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

3

Finite State Machines

- Finite State Machine (FSM) model
 - Synchronous semantics, zero-delay assumption
 - Operational cycle: detect inputs, transition, emit outputs in zero time
 - States S, inputs/outputs I/O, and state transitions
 - FSM: <S, I, O, f, h>
 - Next state function $f: S \times I \rightarrow S$
 - Non-deterministic: f is multi-valued
 - Output function h
 - Mealy-type (input-based), $h: S \times I \rightarrow O$
 - Moore-type (state-based), h: S → O
 - > Convert Mealy to Moore by splitting states per output
- Finite State Machine with Data (FSMD)
- - FSM plus variables V
 - FSMD: <S, I, O, V, f, h>
 - − Next state function $f: S \times V \times I \rightarrow S \times V$
 - Output function *h*: $S \times V \times I \rightarrow O$
 - Computation as control and expressions
 - Controller and datapath of RTL processors


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4


Reducing Complexity

- FSM with Data (FSMD) / Extended FSM (EFSM)
 - Mealy counter

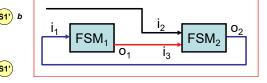
▶ Implicit self-loops on \bar{e} (absence), $f: S \times V \times 2^l \rightarrow S \times V$, $h: S \times V \times 2^l \rightarrow 2^O$

- Non-Deterministic FSM (NFSM)
 - Choice in control
 - Implicit self-loops for unspecified conditions? Usually!
 - > Wait: belt & t?
 - ➤ Multiple arcs for same condition?
 - Incomplete specification (undecided), unknown behavior (don't care)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

FSM₄


5

FSM'

FSM₂

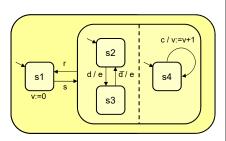
Communicating FSMs

- FSM composition
 - FSM': <S',I',O',f',h'>
 - S' = $S_1 \times S_2 = \{..., (Sn_1, Sm_2),...\}$
 - $l' \subseteq l_1 \cup l_2$
 - $O' \subseteq O_1 \cup O_2$
 - $\ f' \hbox{:} \ S_1 \hbox{\times} S_2 \hbox{\times} I' \to S_1 \hbox{\times} S_2, \ s.t. \ f' \in f_1 \hbox{\times} f_2$
 - $\ h'\text{:}\ S_1 \!\!\times\! S_2 \!\times\! I' \to O',\ s.t.\ h' \in h_1 \!\!\times\! h_2$
 - Connectivity constraints
 - Mapping of outputs to inputs: $f_i(s_i, ..., h_i(s_i, i_i), ...), h_i(s_i, ..., h_i(s_i, i_i), ...)$
 - Synchronous hypothesis
 - > Simultaneous, instantaneous: lock step, zero delay [Synchronous-Reactive]
- Composability
 - Moore
 - Delayed
 - ➤ Well-defined
 - Mealy
 - > Instantaneous
 - Cycles: consistency?

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

6

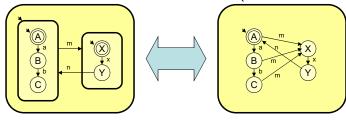

Source: M. Jacome, UT Austin.

© 2022 A. Gerstlauer

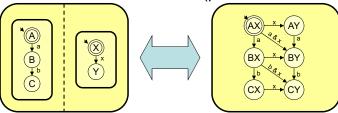
3

Hierarchical & Concurrent State Machines

- Superstate FSM with Data (SFSMD)
 - Hierarchy to organize and reduce complexity
 - Superstates that contain complete state machines each
 - Enter into one and exit from any substate
- Hierarchical Concurrent FSM (HCFSM) [Harel'87]
 - Hierarchical and parallel state composition
 - Lock-step concurrent composition and execution
 - Communication through global variables, signals and events
 - Graphical notation [StateCharts]


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

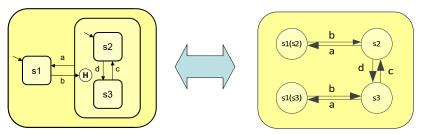
© 2022 A. Gerstlauer


7

Managing Complexity and State Explosion

- Hierarchy (OR state)
 - · Reduce the number of transitions (reset behavior)

- Concurrency (AND state)
 - Reduce the number of states (product state machine)


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

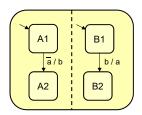
© 2022 A. Gerstlauer

8

Additional HCFSM Concepts

- History
 - · Interrupt behavior

- Timers
 - Timeout if no other event after a certain time


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

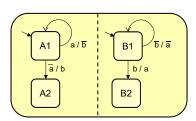
9

HCFSM Semantics (1)

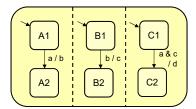
- Communication between state machines?
 - Simultaneous, instantaneous: zero time, broadcast (Mealy)

- Cycles?
 - Grandfather paradox (inconsistency)
 - Multiple choices (non-determinism)
- > Synchronous reactive (SR) model
 - ➤ Reject all cycles [Argos]
 - Require unique fixed-point [SyncCharts]
- Two-level model of "time" [StateCharts/Statemate]
 - *N* micro-steps (internal signals) per macro-step (transition)
 - Events posted in next and only in next micro step (values in next step)
 - > "Synchronous": micro = macro step: transition in every step/event (Moore)
 - ➤ "Asynchronous": internal event propagations (Mealy-like, but not truly)
 - Not compositional, but deterministic
 - > Together with other rules, e.g. priority of conflicting transitions/accesses

 Source: "Statemate Course," K. Baukus


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer


10

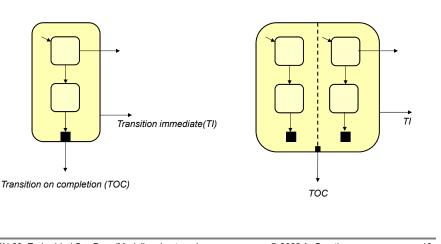
HCFSM Semantics (2)

Synchronous-Reactive vs. Statemate (async. micro-steps)

- SR: reject model, error
- Statemate: endless micro-step loop

- SR: output d
- Statemate: event validity?
 - One micro-step only: no output
 - Globally in macro-step: output d

Source: "Statemate Course," K. Baukus


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

11

HCFSM Extensions

- Transition on completion [UML, SpecCharts]
 - Final state (completion) of a superstate
 - Transition when all final states have been reached

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

12

The Esterel Language

- Synchronous-reactive, imperative language [Berry'83]
 - Structural hierarchy
 - module <name> end module
 - input <ports>, output <ports>
 - Behavior
 - Sequential: ; <q>
 - Concurrent: || <q>
 - Multiform time
 - Sequence of logical instants (cycles)
 - Statements take zero time (same instant) or de
 - Delay for one cycle: pause
 - Broadcast signals (valued or unvalued end
 - Present or absent in each instant (default to absent in each new cycle)
 - emit <s>(<v>): Make signal <s> present in current instant (optional value)
 - Control (branch, loop, exceptions)
 - present <s> then else <q> end (in current instant)
 - loop end / loop each <s> (restart when <s> is present)
 - trap <s> in end (use exit <s> inside), suspend when <s>

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

module ABRO:

loop

each R

input A, B, R;
output O;

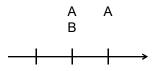
Shortcut for:

pause;

end loop

trap T in

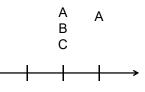
[await A || await B];


present A then exit T end

13

Esterel Semantics

- Instantaneous communication
 - Signal emitted in a cycle is visible immediately


```
[
  pause; emit A; pause; emit A
||
  pause; present A then emit B end
]
```


- Bi-directional communication
 - Can communicate back and forth in same cycle

```
pause; emit A; present B then emit C end;
pause; emit A

| |
pause; present A then emit B end
]
```


Source: S. Edwards, Columbia

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

14

Esterel Semantics

- Signal coherence
 - Signals can not be both absent and present
 - Writers run before readers do

```
present A else emit A;
```

- Causality
 - No contradictory or non-deterministic programs (cycles)

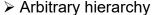
```
present S1 else emit S2 end;
present S2 else emit S1 end;
```

- Instantaneous loops
 - Loops must have at least one statement with delay

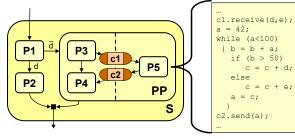
```
loop emit A end
```

- Erroneous programs, rejected by compiler
 - > Statically verified, guaranteed deterministic

Source: S. Edwards, Columbia


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer


15

Process and State Based Models

- From synchronous to asynchronous compositions...
 - Asynchronous concurrency in HCFSMs [UML]
 - Explicit event queues, deadlock analysis [PetriNet]
 - Processes are state machines
 - Globally asynchronous, locally synchronous (GALS) systems
 - Co-design Finite State Machines (CFSM) [Polis]: mailbox (1-deep buffer)
 - FSMs communicating via unbounded FIFOs [SDL]
 - States are processes
 - FSMs controlling continuous process networks [*Charts, FunState]
 - Imperative leaf states, Program State Machine (PSM) [SpecCharts]

- Process State Machine (PSM) [SpecC]
- Heterogeneous MoCs [Ptolemy]

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

16

Lecture 4: Summary

- Models of Computation (MoCs)
 - · Formally express behavior
- State-based models: FSM(D), HCFSM
 - States (history, storage) & transitions (reactions)
 - Synchronous concurrency & composition
 - · Hierarchy to manage complexity
 - > Control flow dominated, reactive
- > Hybrid models
 - > Combination of process and state (data and control flow)
 - > Behavior from specification down to implementation

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4

© 2022 A. Gerstlauer

17