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Lecture 8: Outline

• Overview

• Predictive modeling dimensions

• Cross-layer prediction

• Micro-architecture & source level power prediction

• Cross-platform prediction

• CPU to CPU performance and power prediction

• Cross-temporal prediction

• Short-term & long-term workload forecasting
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Machine Learning for Modeling

• Learn rather than construct models

• Learn an abstract model from detailed observations

• Predict rather than simulate

• Replace detailed simulations with predictions

 Supervised learning

• Interpolate/extrapolate (complex) behavior

• From (a few) training samples

• Exploit inherent correlations

 Domain-specific feature selection & learning formulations
Can not afford deep learning from raw data
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Predictive System Modeling
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Cross-Layer Prediction
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• Power modeling example
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Cross-Layer Prediction

• Power modeling example

• Supervised learning setting

 Micro-architecture level prediction 

 Source level prediction
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Micro-Architecture Level Prediction

• Predict gate-level power from high-level CPU simulations

• Activity features from micro-architectural simulations
– Block-level I/O for key data vs. control signals

– Hamming distances & actual values

• Hierarchically compose micro-architecture block models
– Blocks -> Pipeline stages -> Core

– Include glue logic model at the whole core level

 Predict cycle- and block-level power up to complete CPU
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Source: A. K. Ananda Kumar,et al., “Machine Learning-Based Microarchitecture-Level Power Modeling of CPUs," IEEE TC, 2022.

• Apply advanced machine learning regressors

• Linear (LR), gradient boosting (GB)

• Random forest (RF), decision tree (DT)

 In-order and out-of-order RISC-V cores (RI5CY & BOOM)

• Training & cross-validation using micro-benchmarks

• Testing using full applications (CoreMark & FFT)

• Cycle-by-cycle power error vs. gate-level simulations

Learning Setup
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Cross-validation accuracy for different micro-architecture blocks, glue logic and full core
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Micro-Architecture Prediction Results

• Cycle-by-cycle / avg. power with 3.6% / less than 1% error
• MAE decreases exponentially with increasing averaging

• Very fast learning rate and low prediction overhead
• Models trained in less than 20k samples
• Models predict with a throughput of 4Mcycles/s

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 8 © 2022 A. Gerstlauer 9

Source-Level Prediction

• Custom hardware accelerator power modeling

• White / grey / black box hardware models

• Operation / block / I/O activity from C/C++ simulation

• Predict gate-level trace at cycle / block / invocation granularity

 Data-dependent, Fast
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Source: D. Lee, A. Gerstlauer, "Learning-Based, Fine-Grain Power Modeling of System-Level Hardware IPs," ACM TODAES, 23(3), 2018.
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Source-Level Prediction Flow
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Signal Trace

• Mapping & activity annotation
• White-box: operation-level
• Grey-box: basic block I/O
• Black-box: external I/O

Power Model Synthesis

• Learning- vs. library-based power model
• More accurate than library-based models (glue logic, etc.)
• One-time training overhead using gate-level simulation

 Apply state-of-the-art machine learning techniques
 Structural model decomposition & feature selection
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Power Model Synthesis
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• Single power model

• Decomposed model

• Only capture signals (features) utilized in each state

• Apply feature selection to further remove correlated signals

Power Model Decomposition
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• White-box: cycle-level, signal activity

• Black-box: invocation-level, I/O history

• White-box: decomposed model

• Black-box: ensemble model

PS1(t)= f1(HDa(t), …, HDf(t))
PS2(t)= f2(HDc(t),HDd(t),HDf(t),HDg(t),HDh(t),HDi(t))
PS3(t)= f3(HDg(t),HDh(t),HDi(t))

P(t)= fcycle(HDn(t)), n=a…i

P(t)= finvoc(HDn(t), HDn(t-1), HDn(t-2)), n=a…d

P(t)=avg(fS(i)(HDn(t), HDn(t-1), HDn(t-2))), n= a…d

XX

+

+

X

S1

S2

S3

a b c d
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Learning Formulation

• Dedicated, domain-specific learning formulations

• Structural model decomposition & feature selection

• Advanced, non-linear regression models

• Not deep learning (small training size)
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• L  : Linear regression
• DT: Decision Tree regression

• CD :  Cycle decomposed model
• BD :  Block decomposed model
• IE  :  Invocation ensemble model

Invocation-by-Invocation power model accuracy

Linear regression

Decision Tree
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Source-Level Prediction Results

• Pipelined 2D-DCT

• Pipelined HDR weight comp.

 > 90-97% accuracy @ 1-10Mcycles/s speed
• 2,000-10,000x faster than gate-level, 100x-500x faster than RTL

• Cycle-by-cycle trace
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• Invocation-by-invocation trace

• Invocation-by-invocation trace• Cycle-by-cycle trace
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Cross-Layer Prediction Questions

• Training time and training set

• Time to collect training 
samples and train model 
less than time to simulate

 Deep learning not an option!

• Need for accurate reference model

• Modeling effort 

• Unless real hardware is available
• May defeat the purpose of modeling
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Cross-Platform Prediction

• Power & performance prediction

• CPU->CPU, GPU->GPU, CPU->FPGA
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CPU-to-CPU Prediction

• Predict on target CPU while running on host CPU

• Using hardware counters on host as features

• Predict target performance and power

• At program phase level

 Instrumentation-based

• Compiler-based instrumentation at basic block granularity

• Collect features and train/call model every N basic blocks

 Sampling-based

• Source-oblivious at binary level using timer interrupts

• Sample alignment during training
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Hardware Counters as Features

• Correlation of host counter events with target timing

• ARM target [GEM5] vs. counters on host [PAPI]
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Intel Core i7 920 AMD Phenom II

Instrumentation-Based Prediction

• Every N number of basic blocks (BBs)
• Collect host counters and target metrics during training
• Collect host counters and call model during prediction
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Source: X. Zheng, L. John, A. Gerstlauer, “LACross: Learning-Based Analytical Cross-Platform Performance and Power Prediction," IJPP, 45(6), 2017.
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Sampling-Based Prediction
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• Source-oblivious, binary-level prediction
• Transparent background prediction on timer interrupt
• Arbitrary library, OS and system code

Source: X. Zheng, et al., “Sampling-Based Binary-Level Cross-Platform Performance Estimation," DATE, 2017.

Learning Formulation

• Given training set (xi, yi)

• xi  ℝd: d-dimensional counter feature vector from host

• yi  ℝ:  reference performance/power on target

• Want to find function F(xi) ≈ yi

• Fundamentally non-linear

 Locally linear approximation Ft (xt) at input xt

Ft (xt) = θt
T xt

• Around neighborhood of xt

• LASSO regression to solve for θt
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CPU-to-CPU Prediction Setup

• Platforms
• Target: Samsung ARM A9/A15 Exynos
• Host: Intel Core i7 / AMD Phenom II

• Host counters
• Instrumentation-based: 14 / 8 counters
• Sampling-based: 6 counters

• Learning formulation
• Phase-level localized LASSO regression

• Training set
• 157-284 programs of ACM-ICPC competition

• Test set
• 7 programs from MiBench and 8 programs from SD-VBS 
• 19 programs from SPEC CPU 2006 
• 13 Java & Python benchmarks from DaCapo/PyBench
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Instrumentation-Based Prediction Results
• Performance & power prediction

• 90-95% per-phase accuracy @ 500-600 MIPS throughput
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• Accuracy & speed vs. phase granularity

• Finer granularity requires more prediction overhead

• But: more & better training data w/ finer granularity
– Phase similarity: number of unique phases decreases linearly

• Runtime also limited by hardware counter support on host
– Multiple runs needed to collect all counters

Instrumentation-Based Speed & Accuracy
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[SPEC 2006]

Sampling-Based Results
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• Speed & accuracy increase with coarser host sampling T
• Better alignment, until lack of training data (T > 500ms)

•

 96% accuracy @ 3 GIPS (T = 500 ms)
• No instrumentation overhead (6x faster)

– Fewer counters, coarser granularity, but requires more training

• 2x faster than running native on ARM target
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Cross-Platform Prediction Questions

• Host/target pairs

• ARM from x86, x86-to-x86

• From simple to complex?

• Prediction features

• Which counters?

• Other information?

• Training set

• Larger granularity requires 
larger training set

• Optimal training set?

 Generate synthetic training 
set (Genesys) [SAMOS’16]
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@ 500 blocks@ 500,000 blocks

Other Cross-Platform Approaches

• GPU performance models (Intel/UC Riverside, P. Brisk)

• GPU-to-GPU prediction using performance counters 

• Commercial GPUs to predict pre-silicon hardware

• FPGA high-level synthesis models (UC Riverside, P. Brisk)

• Predict FPGA performance of code regions of interest

• Running on host CPU, using hardware counters

• Heterogeneous ISA models for OSs (UCSD, D. Tullsen)

• Predict performance on different CPU cores

• Use prediction to make OS scheduling decisions

• CPU benchmark performance models (Harvard, D. Brooks)

• Predict benchmark performance from CPU specifications
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Cross-Temporal Prediction

• Dynamic program behavior prediction

• Programs go through phases and repetitive patterns

• Learn patterns

• Predict future short- and long-term behavior

 Proactive vs. reactive runtime optimizations
– Voltage/frequency scaling, cache reconfiguration, etc.
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Phases Short-term 
patterns

Snippet of nab’s CPI trace

Cross-Temporal Prediction

• Predict future workload & system performance/load

• Short-term phase-aware forecasting

• Long-term phase classification & prediction

• Combined long- and short-term prediction
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Short-Term Forecasting

• Basic workload forecasting formulation

𝒚𝒕 𝟏, … ,𝒚𝒕 𝒌 𝒎𝒘 𝑼𝒕 𝒉 𝟏, … ,𝑼𝒕

• 𝑈 : observation of a vector of hardware counters at time 𝑡
• 𝑦 : counter variable of interest, e.g., CPI, at time 𝑡
• 𝑦 : prediction of 𝑦 made at time 𝑡
• 𝑚 : model function with given model parameters 𝑤
• ℎ: input history size

• 𝑘: forecast horizon

 Time series forecasting problem
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Time Series Forecasting Models

• Support Vector Machines (SVM)

• Minimizes an error bound instead of residuals

• Commonly used with non-linear transformations

• Long-Short Term Memory (LSTM)

• Recurrent neural network

• Popular for handling time-dependent data

• Dynamic Linear Model (DLM)*

• Dynamically regressive, handles non-stationary data

• State-space model representation similar to Kalman filter

• Matrix Profile (MP)*

• Finds a subsequence in time series history closest to the most 
recent window

• Predicts history repeats exactly the same

32

* Not used for CPU workload forecasting in the past
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Experimental Setup

• Data collection
• SPEC CPU 2017
• Platform: Intel Xeon
• Performance monitoring 

counters
• Period: 10 ms
• Variable of interest: CPI
• Train-test split: 70%-30%

– Validation: 50%-20% split 
of training set

• Models
• SVM: scikit-learn, DLM: 

PyDLM, LSTM: Keras, MP: 
PySCAMP

• Phase-aware (PA) variants 
using Oracle phase 
prediction

Benchmark Samples No. of 
phases

Avg. 
ph. 
length

Phase 
behavior

cactuBSSN 202,179 5 167 abrupt 
transitions

mcf 52,673 5 599 hard to 
predict

nab 170,251 5 231 uniform 
pattern

perlbench 16,462 1 - single phase

xz 126,669 4 7,037 long phases

Workload 
characteristics

Performance monitoring 
counters

Memory boundedness L2 accesses, L2 hits, L3 misses

Control flow Total and mis-predicted branches

Operation mix Retired FP operations

Other resources Stall cycles, micro-operations 
count

33ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 8 © 2022 A. Gerstlauer

Short-Term Forecasting Results

-PA reduced 
error by 14% 
across 
benchmarks and 
models

Best:
MP-PA

Best: 
LSTM-PA

Best:
MP-PA

Best: 
LSTM/
LSTM-PA

Best: 
LSTM-PA
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Best on 
average: 
LSTM-PA

All -PA reduced 
error across 
benchmarks 
that go through 
phases
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Long-Term Phase Classification & Prediction

• Phase classification
• Periods of execution 

w/ similar behaviors
 Unsupervised clustering

• Phase prediction
• Learns phase patterns
Window-based time series forecasting
 Phase-change prediction (phase duration & next phase)

Best combinations of phase classifier and predictor

• Adopt existing classifiers to use hardware counters

• Explore advanced ML models not studied for phase 
prediction before
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Phase Classification & Prediction Results

• Discarding manual, 2kmeans is the best classifier for 13 out of 15 predictors

• Simple table based classifier tends to have worst EFP values

• Phase change predictor always better than a window predictor across all classifiers

• Global history table (GHT) next phase prediction shows the highest EFP values

 Discarding manual, best combination is 2kmeans with SVM phase change models
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Prediction Demo with nab Workload
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Lecture 8: Summary

• ML for modeling

• Learn, not model

• Predict, not simulate

• Long history of learning-based modeling approaches

• Various forms of regression

• Most problems are not linear

• Advanced machine-learning to capture complex relations

• Cross-layer

• Cross-platform

• Cross-temporal


