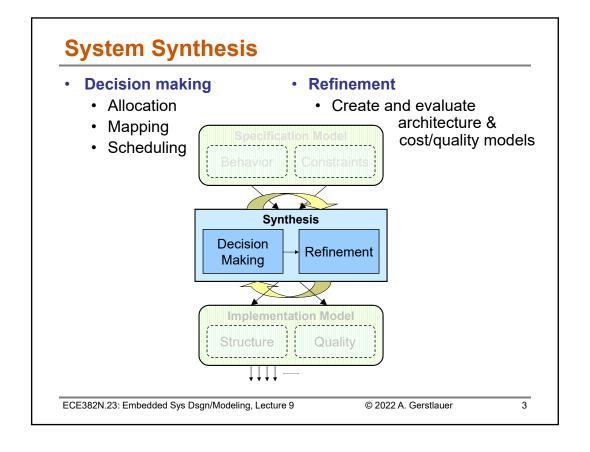
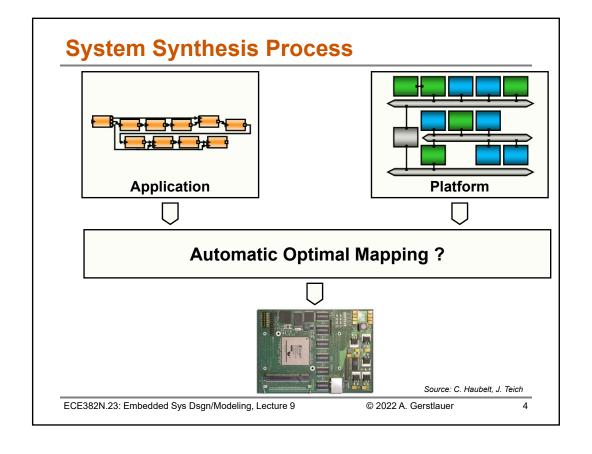
ECE382N.23: Embedded System Design and Modeling

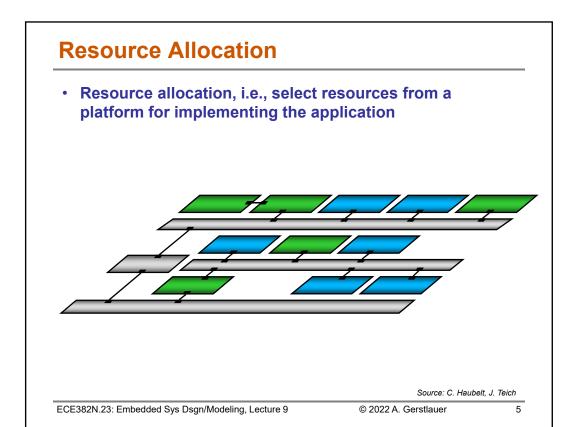
Lecture 9 – System Synthesis & Decision Making

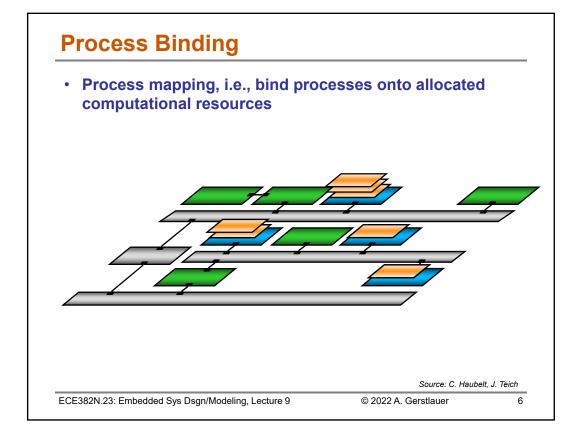
Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin

gerstl@ece.utexas.edu

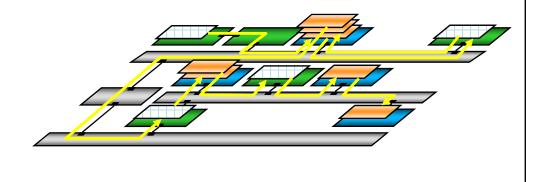

Lecture 9: Outline


- · Automated decision making
 - Overview
- Mapping process
 - Allocation
 - Partitioning
 - Scheduling
- Optimization process
 - · Optimization formulation
 - Optimization methods


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9


© 2022 A. Gerstlauer

2



Channel Routing

 Channel mapping, i.e., assign channels to paths over busses and address spaces

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

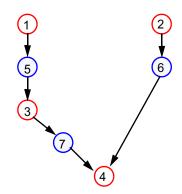
© 2022 A. Gerstlauer

7

Automated Decision Making

- Map specification onto architecture
 - Functionality + constraints ⇒ structure + metrics
- Synthesis tasks
 - Allocation
 - Select resources from a platform/architecture template (database)
 - Binding
 - Map processes onto allocated computational resources
 - Map variables onto allocated storage units
 - Route channels over busses, gateways and address spaces
 - Scheduling
 - Determine order of processes bound to the same resource
 - Determine order of transaction routed over the same (arbitration)
 - Partitioning = (allocation +) binding
 - Mapping = (allocation +) binding + scheduling
- > Formalize & automate the decision making process

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9


© 2022 A. Gerstlauer

8

Example (1)

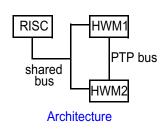
- Basic model with a task graph MoC and static scheduling
 - Task graph = homogeneous, acyclic SDF

Application task graph $G_P(V_P, E_P)$

Interpretation:

- V_P consists of functional nodes V_P^f (task, procedure) and communication nodes V_P^c.
- E_P represent data dependencies

Source: L. Thiele


ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

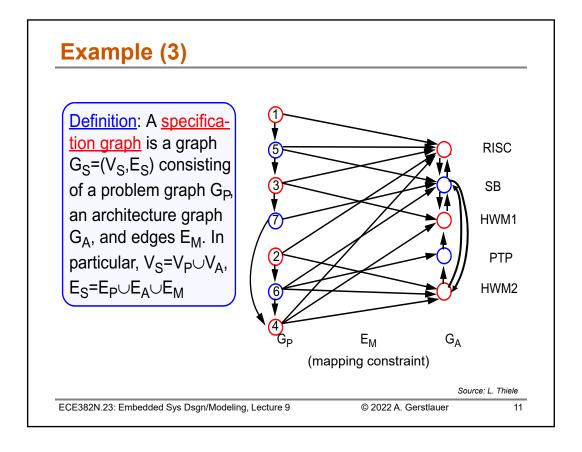
© 2022 A. Gerstlauer

ç

Example (2)

Architecture graph $G_A(V_A, E_A)$:

 V_A consists of functional resources V_A^f (RISC, ASIC) and bus resources V_A^c. These components are potentially allocatable.


• E_A model directed communication.

Source: L. Thiele

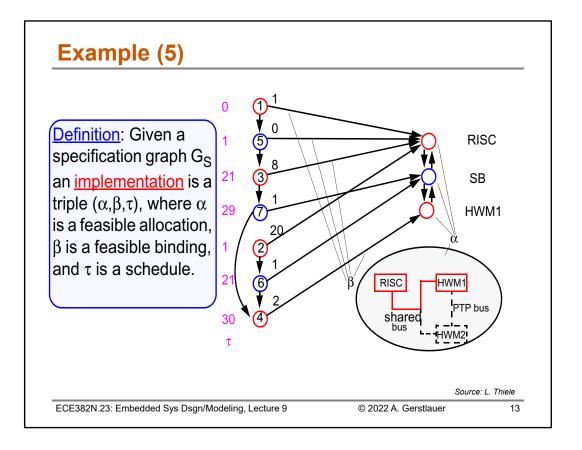
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2022 A. Gerstlauer

10

Example (4)

Three main tasks of synthesis:


- Allocation α is a subset of V_A .
- Binding β is a subset of E_M , i.e., a mapping of functional nodes of V_P onto resource nodes of V_A .
- Schedule τ is a function that assigns a number (start time) to each functional node.

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2022 A. Gerstlauer

12

Optimization Problems

Decision making under optimization objectives

- · Single- vs. multi-objective optimization
- · Couple with refinement for full synthesis

General optimization formulation

• Decision variables: $x \in Domain$

• Constraints: $g_i(x) \le G_i, h_j(x) = H_j$

• Objective function: f(x): Domain $\to \mathbb{R}$

• Single-objective optimization problem:

 $\min_{x} f(x)$ subject to $g_i(x) \le G_i$, $h_j(x) = H_j$

System-level optimization

- Allocation (α), binding (β), scheduling (τ) decisions
- Under functional and non-functional constraints/objectives
 - Architecture & mapping constraints (G_A, E_m)
 - Design quality constraints & objectives

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2022 A. Gerstlauer

14

Cost / Objective Functions

- Measure quality of a design point as optimization objective
 - May include

C ... system cost in [\$]

L ... latency in [sec]

P... power consumption in [W]

Example: linear weighted cost function with penalty

 $f(C, L, P) = k_1 \cdot h_C(C, C_{max}) + k_2 \cdot h_L(L, L_{max}) + k_3 \cdot h_P(P, P_{max})$

- h_C , h_L , h_P ... denote how strong C, L, P violate the design constraints C_{max} , L_{max} , P_{max}
- k_1 , k_2 , k_3 ... weighting and normalization
- Requires estimation and/or evaluation to find C, L, P
 - Refinement + simulation (evaluation, Lectures 5-6)
 - Analytical quality/cost models (estimation, Lectures 7-8)

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2022 A. Gerstlauer

15

Optimization Methods

- · Exact (optimal) methods
 - · Enumeration, exhaustive search
 - Convex optimizations
 - (Integer) linear programming
 - Prohibitive for intractable problems (large design spaces)
- Heuristics (non-optimal)
 - Constructive
 - Random assignment, list schedulers
 - Iterative
 - Random search, simulated annealing
 - Set-based iterative
 - Evolutionary/genetic Algorithms (EA/GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO)
 - > Multi-objective optimization (MOO), Design space exploration (DSE)
- > Exact & constructive methods imply analytical cost models

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2022 A. Gerstlauer

16

Lecture 9: Summary

- System-level synthesis
 - Automatic decision making + refinement
- Decision making
 - Allocation
 - Partitioning
 - Scheduling
- Optimization
 - Decision variables, objectives and constraints
 - Cost functions to quantify impact of decisions
 - Single- vs. multi-objective optimization

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2022 A. Gerstlauer

17