
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
ECE445M/ECE380L.12, Spring 2023

Final Exam
Date: April 28, 2023

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book, open notes and open web.
• No electronic devices other than your laptop/PC (cell phones off and stowed away).
• You are allowed to access any resource on the internet, but no electronic communication

other than with instructors.
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 10

Problem 2 20

Problem 3 30

Problem 4 15

Problem 5 25

Total 100

ECE445M/ECE380L.12, Spring 2023 Final Exam 2
Name:

Problem 1 (10 points): Miscellaneous
a) Suppose you are asked to design a new robot car using your RTOS and a PID controller. How

would you define the error-term for your PID controller?

b) What are two things you could do to minimize the impact of noise when using the
GP2Y0A21YK IR sensors with your robot car?

ECE445M/ECE380L.12, Spring 2023 Final Exam 3
Name:

Problem 2 (20 points): OS Kernel
Below is the SVC_Handler, OS_Kill(), and OS_AddThread() in a multithreaded, round-robin
RTOS with spinlock semaphores and dynamic process loading via a heap, where applications
running on the OS trigger calls to OS_Id(), OS_Kill(), OS_Sleep(), OS_Time() and
OS_AddThread() via SVC traps. Assume that allocateTCB() and allocateStack() do all the proper
allocations and initializations associated with thread TCB and stack creation. If unsure, write down
any of your assumptions.

SVC_Handler
 LDR R12,[SP, #24]
 LDRH R12,[R12,#-2]
 BIC R12, #0xFF00
 LDM SP, {R0-R3}

 PUSH {LR}
 LDR LR, =Return
 CMP R12, #0
 BEQ OS_Id
 CMP R12, #1
 BEQ OS_Kill
 CMP R12, #2
 BEQ OS_Sleep
 CMP R12, #3
 BEQ OS_Time
 CMP R12, #4
 BEQ OS_AddThread

Return
 POP {LR}
 STR R0, [SP]
 BX LR

// Kill thread
OS_Kill() {
 OS_bWait(&mutex); // lock OS kernel

 // Decrement threads in process
 PCB_t* parent = runPt->pcb;
 parent->numThreads--;
 if (!parent->numThreads){
 // Kill process if last thread is killed
 Heap_Free(parent->data);
 parent->id = -1; // Mark parent as unused
 }

 // Remove thread from list
 runPt->prev->next = runPt->next;
 runPt->next->prev = runPt->prev;

 OS_Signal(&mutex);
 OS_Suspend();
}

// Add thread, return 0 if unsuccessful
int OS_AddThread(void(*task)(void), uint32_t stackSize) {
 OS_bWait(&mutex); // lock OS kernel
 TCB_t *tcb = allocateTCB();
 If (tcb == NULL) {
 OS_bSignal(&mutex);
 return 0;
 }
 uint32_t *sp = allocateStack(task);
 if (sp == NULL) {
 OS_bSignal(&mutex);
 return 0;
 }
 enqueue(runPt, tcb); // Place TCB in running linked list

 OS_bSignal(&mutex);
 return 1;
}

ECE445M/ECE380L.12, Spring 2023 Final Exam 4
Name:

There may be bugs associated with the code above. Please list all bugs, if any, and how they might
be fixed. If there are multiple different solutions, list all possible ways to fix a bug.

ECE445M/ECE380L.12, Spring 2023 Final Exam 5
Name:

Problem 3 (30 points): Heap
a) Assume a 512 byte heap implemented using the algorithm

discussed in class, in the lecture notes and book, consisting
of blocks with headers and tails for each block indicating
the block size and negative sizes indicating free space.
Memory is 4-byte word aligned. Given the sequence of
Heap_Malloc() and Heap_Free() calls on the right, show
the final state of the heap at the end of the sequence for
each allocation scheme.

Initial Heap
-126

…

-126

First Fit

…

Best Fit

…

Worst Fit

…

a = Heap_Malloc(14);
b = Heap_Malloc(4);
c = Heap_Malloc(3);
e = Heap_Malloc(3);
Heap_Free(a);
Heap_Free(c);
d = Heap_Malloc(4);

ECE445M/ECE380L.12, Spring 2023 Final Exam 6
Name:

b) Now assume that the 512 byte heap is implemented using the Knuth’s Buddy Allocation
algorithm with the smallest allocation size of 4 bytes. Given the following heap state (where
grey are allocated blocks and white are free ones), list a sequence of Heap_Malloc/Heap_Free
commands that could result in this heap.

0 32 48 64 128 192 256 512

c) What would Knuth’s Buddy Allocation Algorithm final heap state look like for the sequence
from a)? You can assume that the algorithm stores necessary meta-data to keep track of heap
state outside of the heap array. Not accounting for meta-data overhead, which implementation
or allocation scheme has the most and least amount of internal or external fragmentation?

0 512

ECE445M/ECE380L.12, Spring 2023 Final Exam 7
Name:

Problem 4 (15 points): File System
a) For an SD Card with 64 GiB of memory, how many 512-byte blocks would you need to store

the FAT?

b) The FAT on the right was recovered for a SD Card, but the
directory was corrupted. Fill in the directory with the starting
blocks and the lengths of each file and the free blocks list. You
can assume that the free block list is larger than any file.

Directory:
File Name Starting Block File Size (in blocks)

Free

FAT:
0 X
1 X
2 4
3 10
4 8
5 12
6 14
7 21
8 -
9 -
10 -
11 -
12 13
13 20
14 17
15 9
16 7
17 18
18 19
19 24
20 11
21 22
22 23
23 31
24 25
25 26
26 27
27 28
28 29
29 30
30 -
31 -

ECE445M/ECE380L.12, Spring 2023 Final Exam 8
Name:

Problem 5 (25 points): System Design
a) Assuming you have a round robin scheduler with a time slice of 2 ms with 5 tasks. Suppose

you want to log data to your SD card in Task 1. The amount of data to log is 24 MB and it
takes 6000 time slices of running Task 1 to collect the data. The data is not written to disk by
Task 1 until all 24 MB have been collected. Assuming a disk with 512 byte blocks and an SPI
bus running at a clock rate of 4 MHz using single-block transfers only, what is the amount of
time needed to finish logging (i.e. collecting and writing) the data in ms? Assume zero
command-response delay (NCR=0). Please show your work.

b) Now assume that we want to do remote logging to a second TM4C connected via Ethernet.
After collecting the data, the first TM4C sends the log via the network and the second TM4C
writes it to their SD card. The receiver TM4C first buffers all data before writing it to disk.
Assuming your SPI is running at 4 MHz and an Ethernet physical layer baud rate of 10 Mbits/s,
what is the total time needed to log the data? You can assume that there are no other machines
on the Ethernet network and zero SPI command response delay. Please show your work.

ECE445M/ECE380L.12, Spring 2023 Final Exam 9
Name:

c) What is the total time needed to log the data if we change from Ethernet to using a CAN
running at 1Mbit/s with 11 bit IDs assuming no stuffing is needed. Please show your work.

d) Now assume that the first TM4C can start collecting the next batch of data as soon as it is
finished sending the previous one. What is the maximum rate at which data can be logged
using Ethernet versus CAN? What is the maximum rate at which data can be logged assuming
DMA is used on both TM4Cs to send and receive data, i.e. to copy the data from memory to
the Ethernet or CAN controller and vice versa?

	Problem 1 (10 points): Miscellaneous
	Problem 2 (20 points): OS Kernel
	Problem 3 (30 points): Heap
	Problem 4 (15 points): File System
	Problem 5 (25 points): System Design

