
The University of Texas at Austin
Department of Electrical and Computer Engineering

Real-Time Systems / Real-Time Operating Systems
ECE445M/ECE380L.12, Spring 2023

Midterm Exam
Date: March 2, 2023

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will
you help others to cheat on this exam:

Signature:

Instructions:

• Open book, open notes and open web.
• No electronic devices other than your laptop/PC (cell phones off and stowed away).
• You are allowed to access any resource on the internet, but no electronic communication

other than with instructors.
• Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Problem 1 20

Problem 2 20

Problem 3 20

Problem 4 25

Problem 5 15

Total 100

ECE445M/ECE380L.12, Spring 2023 Midterm 2
Name:

Problem 1 (20 points): Miscellaneous
a) What are two advantages of preemptive schedulers over cooperative schedulers? What are

some advantages of cooperative schedulers?

b) Describe what happens in your Lab 2/Lab 3 OS when you call OS_Sleep() from a background
thread.

c) Describe what happens when you call OS_Wait() from a background thread with spinlock
semaphores? What about with blocking semaphores?

d) There are several ways to make critical sections atomic. What is the difference between using
Disable/EnableInterrupts, Start/EndCritical, and semaphores for synchronization?

ECE445M/ECE380L.12, Spring 2023 Midterm 3
Name:

Problem 2 (20 points): Context Switching
Given the following TCB structure:
typedef struct TCB TCB_t;
struct TCB {
 uint32_t id; /* thread ID */
 uint32_t* sp; /* stack pointer */
 TCB_t* next; /* pointer to the next TCB */
 TCB_t* previous; /* pointer to the previous TCB */
};
TCB_t RunPt;

a) Write assembly code for a context switch not done in an interrupt handler (i.e. not using
PendSV or any other interrupt) using the TCB defined above assuming a round-robin scheduler.

ContextSwitch

ECE445M/ECE380L.12, Spring 2023 Midterm 4
Name:

b) Write assembly code for a context switch in the PendSV Handler using the TCB defined above
assuming a round-robin scheduler.

PendSV_Handler

ECE445M/ECE380L.12, Spring 2023 Midterm 5
Name:

Problem 3 (20 points): Synchronization
Given the application below that runs on an OS using a strict priority scheduler with blocking
sempahores:

uint32_t Count1 = 0;
uint32_t Count2 = 0;
uint32_t Count3 = 0;

sema_t mutex;
sema_t lock;

void Thread1(void) {
 OS_Sleep(50);
 while(1){
 OS_Wait(&mutex);
 OS_Wait(&lock);
 Count1++;
 OS_Sleep(10);
 OS_Signal(&lock);
 OS_Signal(&mutex);
 }
}

void Thread2(void) {
 while(1) {
 OS_Wait(&lock);
 OS_Wait(&mutex);
 Count2++;
 OS_Sleep(50);
 OS_Signal(&mutex);
 OS_Signal(&lock);
 }
}

void Thread3(void) {
 OS_Sleep(10);
 while(1) {
 Count3++;
 }
}

void Idle(void) {
 while(1) {
 WaitforInterrupt();
}

main {
 OS_Init()
 OS_InitSemaphore(&mutex, 1);
 OS_InitSemaphore(&lock, 1);
 OS_AddThread(Thread1,0);
 OS_AddThread(Thread2,2);
 OS_AddThread(Thread3,1);
 OS_AddThread(Idle,3); // lowest prio
 OS_Launch(2MS_TIME);
}

a) The code above has a bug. Find and describe the bug, and describe possible solutions.

ECE445M/ECE380L.12, Spring 2023 Midterm 6
Name:

b) Now assume that a student removes Thread3. This code still has a bug. Explain what issue
remains and how it might be fixed. Is there any solution that fixes both a) and b) without
changing the application?

Problem 4 (25 points): Scheduling
You are given a system with 3 tasks listed below.

Task Execution Time Period
T1 2ms 5ms
T2 3ms 10ms
T3 4ms 15ms

a) What is the CPU utilization running these tasks? Is a system with this CPU utilization
guaranteed to be schedulable by RMS and/or EDF?

ECE445M/ECE380L.12, Spring 2023 Midterm 7
Name:

b) Show the EDF schedule on the diagram below. Is this task set schedulable by EDF? If so, what
is the maximum overhead that context switching can take. If not, specify what deadline is
missed.

 T1

 T2

 T3

c) Show the RMS schedule on the diagram below. Is this task set schedulable by RMS? If so,
what is the maximum overhead that context switching can take. If not, specify what deadline
is missed.

 T1

 T2

 T3

Time

Time

ECE445M/ECE380L.12, Spring 2023 Midterm 8
Name:

Problem 5 (15 points): Semaphores
a) Implement a spinlock semaphore that will call OS_DeadlockResart after a certain amount of

time (DEAD_LOCK_TIME, given in ms) if the semaphore can not be acquired before. You
may call OS_MsTime, which returns the system time in ms counting up. Multiple threads can
call OS_Wait on the same or different semaphores. Do not add anything to the TCB.

void OS_Wait(Sema4Type *semaPt) {

}

ECE445M/ECE380L.12, Spring 2023 Midterm 9
Name:

b) What would you need to do to implement a similar deadlock checker for a blocking
semaphore? Assume that the blocking semaphore functions are implemented using a linked
list per semaphore. (You do not need to code this, but simply explain/write some pseudo code.)

	Problem 1 (20 points): Miscellaneous
	Problem 2 (20 points): Context Switching
	Problem 3 (20 points): Synchronization
	Problem 4 (25 points): Scheduling
	Problem 5 (15 points): Semaphores

