
Instruction list and brief description

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB   
aby unsigned add RegY=RegY+RegB 
adca 8-bit add with carry to RegA  
adcb 8-bit add with carry to RegB  
adda 8-bit add to RegA 
addb 8-bit add to RegB  
addd 16-bit add to RegD  
anda 8-bit logical and to RegA 
andb 8-bit logical and to RegB 
andcc 8-bit logical and to RegCC 
asl/lsl   8-bit left shift Memory 
asla/lsla 8-bit left shift RegA 
aslb/lslb 8-bit arith left shift RegB 
asld/lsld 16-bit left shift RegD 
asr 8-bit arith right shift Memory 
asra 8-bit arith right shift to RegA 
asrb 8-bit arith right shift to RegB 
bcc branch if carry clear
bclr bit clear in memory 
         bclr PTT,#$01
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR 
bitb 8-bit and with RegB, sets CCR 
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear
         brclr PTT,#$01,loop 
brn branch never
brset branch if bits are set 
         brset PTT,#$01,loop 
bset bit set clear in memory 
         bset PTT,#$04
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit memory clear   
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory 
cmpb 8-bit compare RegB with memory 
com 8-bit logical complement to memory 
coma 8-bit logical complement to RegA 
comb 8-bit logical complement to RegB 

cpd 16-bit compare RegD with memory 
cpx 16-bit compare RegX with memory 
cpy 16-bit compare RegY with memory 
daa 8-bit decimal adjust accumulator 
dbeq decrement and branch if result=0
         dbeq Y,loop
dbne decrement and branch if result≠0
         dbne A,loop
dec 8-bit decrement memory 
deca 8-bit decrement RegA 
decb 8-bit decrement RegB 
des 16-bit decrement RegSP 
dex 16-bit decrement RegX 
dey 16-bit decrement RegY 
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD
eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult 
emuls RegY:D=RegY*RegD signed mult 
eora 8-bit logical exclusive or to RegA 
eorb 8-bit logical exclusive or to RegB 
etbl 16-bit look up and interpolation
exg exchange register contents
         exg X,Y
fdiv unsigned fract div, X=(65536*D)/X
ibeq increment and branch if result=0
         ibeq Y,loop
ibne increment and branch if result≠0
         ibne A,loop
idiv 16-bit unsigned div, X=D/X, D=rem
idivs 16-bit signed divide, X=D/X, D=rem
inc 8-bit increment memory 
inca 8-bit increment RegA 
incb 8-bit increment RegB 
ins 16-bit increment RegSP 
inx 16-bit increment RegX 
iny 16-bit increment RegY 
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive 
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set



ldaa 8-bit load memory into RegA 
ldab 8-bit load memory into RegB 
ldd 16-bit load memory into RegD 
lds 16-bit load memory into RegSP 
ldx 16-bit load memory into RegX 
ldy 16-bit load memory into RegY 
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory 
lsra 8-bit logical right shift RegA 
lsrb 8-bit logical right shift RegB 
lsrd 16-bit logical right shift RegD 
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
         movb #100,PTT 
movw 16-bit move memory to memory
         movw #13,SCIBD 
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory 
nega 8-bit 2's complement negate RegA 
negb 8-bit 2's complement negate RegB 
oraa 8-bit logical or to RegA 
orab 8-bit logical or to RegB 
orcc 8-bit logical or to RegCC 
psha push 8-bit RegA onto stack 
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD
pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory

rora 8-bit roll shift right RegA 
rorb 8-bit roll shift right RegB 
rtc return sub in expanded memory
rti return from interrupt 
rts return from subroutine
sba 8-bit subtract RegA-RegB
sbca 8-bit sub with carry from RegA 
sbcb 8-bit sub with carry from RegB 
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
         sex B,D
staa 8-bit store memory from RegA 
stab 8-bit store memory from RegB 
std 16-bit store memory from RegD 
sts 16-bit store memory from SP 
stx 16-bit store memory from RegX 
sty 16-bit store memory from RegY 
suba 8-bit sub from RegA 
subb 8-bit sub from RegB 
subd 16-bit sub from RegD 
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC 
tba transfer B to A
tbeq test and branch if result=0
         tbeq Y,loop
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
         tbne A,loop
tfr transfer register to register
         tfr X,Y
tpa transfer CC to A
trap illegal instruction interrupt
trap illegal op code, or software trap
tst 8-bit compare memory with zero 
tsta 8-bit compare RegA with zero 
tstb 8-bit compare RegB with zero 
tsx transfer S to X 
tsy transfer S to Y 
txs transfer X to S 
tys transfer Y to S 
wai wait for interrupt 
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX 
xgdy exchange RegD with RegY

Pseudo op                                    meaning  
   org                    Specific absolute address to put subsequent object code
   =     equ              Define a constant symbol
   set                    Define or redefine a constant symbol
   dc.b  db  fcb  .byte   Allocate byte(s) of storage with initialized values
   fcc                    Create an ASCII string (no termination character)
   dc.w  dw  fdb  .word   Allocate word(s) of storage with initialized values
   dc.l  dl       .long   Allocate 32-bit long word(s) of storage with initialized values
   ds    ds.b rmb .blkb   Allocate bytes of storage without initialization
   ds.w           .blkw   Allocate bytes of storage without initialization
   ds.l           .blkl   Allocate 32-bit words of storage without initialization


