
Embedded System Design and Modeling
EE382N.23, Fall 2015

Homework #1
Design Languages

Assigned: September 2, 2015
Due: September 16, 2015

Instructions:
• Please submit your solutions via Canvas. Submissions should include a single PDF with

the writeup and a single Zip or Tar archive for any supplementary files (e.g. source files,
which has to be compilable by simply running 'make' and should include a README
with instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 1.1: SpecC Compiler and Simulator
The SpecC environment is installed on the ECE LRC Linux servers. Instructions for accessing
and setting up the tools are posted on the class website:

http://www.ece.utexas.edu/~gerstl/ee382n_f15/docs/SpecC_setup.pdf
In short, once logged in, you need to load the corresponding module:

module load sce

The SpecC installation includes a comprehensive set of examples showing the features and use
of the language. Examples are found in $SPECC/examples/simple/. You can copy them
into a working directory:

% mkdir hw1.1
% cd hw1.1
% cp $SPECC/examples/simple/* .

And then use the provided Makefile to compile and simulate all examples:
% make all
% make test

It is recommended to inspect the sources of all examples and the included Makefile to
understand the use of the SpecC compiler (scc) for the compilation and simulation process, and
to experiment with the scc command-line usage and with the various sir_xxx tools.
Information about all tools and scc is available via their man pages:

% man scc
% man sir_xxx

You can manually inspect, compile and execute an example on the command line as follows:
% less HelloWorld.sc
% scc HelloWorld –vv
% ./HelloWorld

Also practice working with the SpecC Internal Representation (SIR) and associated tools. You
can compile an example into its (binary) SIR representation as follows:

% scc Adder –sc2sir –vv

http://www.ece.utexas.edu/%7Egerstl/ee382n_f15/docs/SpecC_setup.pdf

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 2

You can then use the various sir_xxx tools to inspect and manipulate your design:
% man sir_list
% sir_list –t Adder.sir
% man sir_tree
% sir_tree –bt Adder.sir FA

Finally, a SIR file can be compiled into a simulation executable as follows:
% scc Adder –sir2out –vv
% ./Adder

Submit a log of the output of the above commands for the Adder example.

Problem 1.2: SpecC Language
For this assignment, you are asked to develop, simulate and debug a simple Producer-Consumer
example in SpecC. The program should contain two parallel behaviors S and R that communicate
the string “Hello world” from sender to receiver. The communication should be character by
character (one byte at a time), and both behaviors should print the characters as they are sent and
received to the screen. After the entire message is transmitted, both behavior should end and the
simulation should cleanly terminate. You program output should look like this:

Receiver starting...
Sender starting...
Sending 'H'
Received 'H'
Sending 'e'
Received 'e'
Sending 'l'
Received 'l'
Sending 'l'
Received 'l'
Sending 'o'
Received 'o'
Sending ' '
Received ' '
Sending 'w'
Received 'w'
Sending 'o'
Received 'o'
Sending 'r'
Received 'r'
Sending 'l'
Received 'l'
Sending 'd'
Received 'd'

(a) Write a program that realizes all communication via shared variables and events. You can
follow the example on slide 40 of Lecture 2. Your code should look very similar, with only a
few required modifications and additions to comply with the above specifications (e.g. to
print output to the terminal). Compile and simulate the code to verify its correctness, and
include a log of your program output in your report.

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 3

(b) Modify the example into a proper SpecC model that cleanly separates computation from
communication. Follow the example on slide 41 of Lecture 2 to create a new channel that
encapsulates basic communication primitives and replace all shared variables and events
between S and R to exclusively use one or more instances of your custom channel. Compile
and simulate the modified code to verify its correctness.

(c) SpecC programs can be debugged using the standard GNU Linux debugger (gdb). A nice
graphical frontend for gdb is available on the LRC machines through the gnutools module:
% module load gnutools
% ddd <design>

This will bring up the ddd graphical debugger, which allows you to debug you program
directly at the SpecC source code level (if you prefer debugging at the level of the
intermediate C++ code generated by the SpecC compiler, you can pass the –sl command
line option to scc – this instructs the compiler to not create the necessary debug annotations
that relate assembly and C++ to SpecC code). For example, in the gdb prompt of the
debugger’s command window, you can set breakpoints in SpecC behaviors and then start
execution:
(gdb) b R::main
(gdb) run

Alternatively, you can use the debugger’s graphical user interface (GUI) to open any SpecC
source file (File→Open Source…), set breakpoints and then hit the Run toolbar button
(Program→Run). From there, you can single step through the code, inspect variables, etc.

Modify your code from (b) to remove all ‘Ack’ related functionality from your custom
channel, compile the code, and observe its behavior in the debugger. Explain the behavior of
the modified code. Is the ‘Ack’ necessary? Why or why not?

(d) Now replace your custom channel with (1) a c_double_handshake and (2) a c_queue
instance out of the SpecC standard channel library. Use queue depths/sizes of 1 and 5 bytes.
Again, compile and simulate the code. Does the program behave differently with your
custom, a c_queue or a c_double_handshake channel? Explain any differences. You
can inspect the code for standard channels in their source files (in the $SPECC/import
directory) or in the debugger. For the latter, you need to add the $SPECC/import directory
to gdb’s search path for source files, such that you can step into channel method calls:

(gdb) dir /usr/local/packages/sce-20100908/import

(e) Your SpecC simulation so far has been untimed. Turn your SpecC program now into a timed
model. Simulate execution timing by adding waitfor() statements into R and S behaviors
whenever a new character is sent or received. Furthermore, insert code to print the total
simulated time at the end of the simulation. Use the model from (d) with a c_queue channel
of size/depth 5. For each of the following cases, compile and simulate the code. Explain any
differences, including a comparison to the untimed model:

(1) Insert a waitfor(5) delay into both R and S.

(2) Increase the delay in S to 10 time units.

(3) Reduce the delay in S to 5 and increase the delay in R to 10 time units.

(4) Change the queue size from 5 to 1.

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 4

For timed models, the SpecC simulator also includes the capability to create traces and
waveforms of model behavior over time in standard value change dump (VCD) format. To
enable tracing, compile your model with the –Tvcds command line option passed to scc.
This will produce a <design>.vcd waveform file when running the simulation. Tracing
options can be controlled by an associated <design>.do command file. See the examples
in $SPECC/examples/trace (including the README file) for more details. Generated
traces can then be opened and visualized in any VCD waveform viewer, such as gtkwave
available on the LRC machines:
% module load gnutools
% gtkwave <design>.vcd

You can insert behavior instances (such as Main.r and Main.s) into the waveform
display to observe their traced behavior over time. Submit such waveform plots for (1)-(4).

Problem 1.3: Language Semantics
For each of the following examples, what is the output of the program assuming (i) discrete-event
(with delta cycle) and (ii) synchronous-reactive (with fixed-point) semantics for the signal
interactions between concurrent blocks? For (i), you are free to run the examples in the SpecC
simulator, but you need to provide an explanation of the behavior. For (ii), examples of equivalent
Esterel syntax are indicated in the comments in some cases (and same conditions apply: you can feed
equivalent code though an Esterel compiler and simulator, but you need to provide explanations).

(a)

(b)

A B C

behavior C(signal bool ac,
 signal bool bc)
{
 void main(void) {
 while(true)
 {
 wait(ac, bc); // ac or bc
 // trap X in [
 // await ac; exit X;
 // ||
 // await bc; exit X;
 //]
 printf(“C\n”);
 }
 }
};

behavior B(signal bool ab, signal bool bc) {
 void main(void) {
 while(true) {
 wait(ab); printf(“B\n”); notify(bc);
 }
 }
};

behavior A(signal bool ab,
 signal bool ac)
{
 void main(void) {
 waitfor(1); // pause
 notify(ab); // emit ab
 notify(ac); // emit ac
 }
};

A B C

behavior C(signal bool ac,
 signal bool bc)
{
 void main(void) {
 while(true)
 {
 wait(ac, bc); // ac or bc
 printf(“C\n”);
 }
 }
};

behavior B(signal bool ab, signal bool bc) {
 void main(void) {
 while(true) {
 wait(ab); printf(“B\n”); notify(bc);
 }
 }
};

behavior A(signal bool ab,
 signal bool ac)
{
 void main(void) {
 waitfor(1);
 while(true) {
 notify(ab);
 notify(ac);
 }
 }
};

EE382V: Embedded Sys Dsgn and Modeling, Homework #1 5

(c) You can assume that (valued) signals have a default value of ‘0’:

1

0

behavior NAND(in signal bool a,
 in signal bool b
 out signal bool c) {
 void main(void) {
 bool t;
 while(true) {
 wait(a, b);
 t = !(a && b);
 printf(“%u\n”, t);
 c = t; // emit c(t)
 }
 }
};

behavior T(out signal bool x) {
 void main(void) {
 waitfor(1); // pause
 x = 1; // emit x(1)
 }
};

behavior F(out signal bool x) {
 void main(void) {
 waitfor(1); // pause
 x = 0; // emit x(0)
 }
};

(d) You can assume that (valued) signals have a default value of ‘0’:

1

1

behavior NAND(in signal bool a,
 in signal bool b
 out signal bool c) {
 void main(void) {
 bool t;
 while(true) {
 wait(a, b);
 t = !(a && b);
 printf(“%u\n”, t);
 c = t; // emit c(t)
 }
 }
};

behavior T(out signal bool x) {
 void main(void) {
 waitfor(1); // pause
 x = 1; // emit x(1)
 }
};

(e) Ignoring other sources of non-determinism, e.g. coming from the sequential code inside the

blocks themselves (through the C language), is a discrete-event model that does not allow
shared variables and only supports (valued) signals for communication deterministic? If so,
why? If not, what sources of non-determinism still exist? What can you say about the
(non-)determinism of (valued) signals in a synchronous-reactive language?

	Problem 1.1: SpecC Compiler and Simulator
	Problem 1.2: SpecC Language
	Problem 1.3: Language Semantics

