
Embedded System Design and Modeling 
EE382N.23, Fall 2015 

Lab #1 
Specification 

Part (a)+(b) due:  September 23, 2015 (11:59pm) 
Part (c)+(d) due:  September 30, 2015 (11:59pm) 

 
Instructions: 

• Please submit your solutions via Canvas. Submissions should include a lab report (single 
PDF) and a single Zip or Tar archive with the source and supplementary files (code 
should include a README and has to be compilable and simulatable by running 'make' 
and ‘make test’, respectively). 

• You are allowed to work in teams of up to three people and you are free to switch 
partners between labs and the project. Please submit one solution per team. 

 

SUSAN Edge Detector Specification Model 
The purpose of this lab is to convert the SUSAN (smallest univalue segment assimilating 
nucleus) edge detection reference code into a clean SpecC specification model that conforms to 
the structure, rules and specification modeling guidelines discussed in class. A C reference 
implementation of the core SUSAN algorithm is part of the automotive subset in the MiBench 
benchmark suite (http://www.eecs.umich.edu/mibench/). A slightly modified version of the 
SUSAN code that we will use as a starting point for our design, is available at 
/home/projects/courses/fall_15/ee382n_16893/SUSAN.tar.gz 

Install the SUSAN edge detector example as follows: 
% mkdir lab1 
% cd lab1 
% gtar xvzf /home/projects/…/ee382n_16893/SUSAN.tar.gz 
% cd SUSAN 

Now you can compile and run the example using the provided Makefile: 
% make 
% make test 

The latter command runs the example on a “input_small.pgm” sample input and validates the 
generated “output_edge.pgm” file against an expected “golden.pgm” reference output. 

You are free to perform the conversion process into a SpecC specification in one step. However, 
good software engineering principles highly recommend breaking the process into as many small 
steps as possible. That way the model can be compiled and simulated after each change, to 
continuously validate that it is still syntactically and functionally correct: 

(a) First, we need to become familiar with the reference code and prepare it for conversion:  

1. Browse the source, analyze the source code structure and draw a high-level block 
diagram of the function hierarchy and their communication dependencies (critical 
variables). Submit the block diagram of the software architecture of the reference code as 
part of your lab report. Note: in addition to the edge detection, the original source code 
also supports image corner detection and smoothing.  You can ignore those functions that 
are not used in the edge detection code. Run the program with -e option:  

%./susan input_small.pgm out.pgm -e 

http://www.eecs.umich.edu/mibench/
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2. Clean up the source code to make it static and synthesizable. Modify the sources for a 
fixed input image sensor size of 76×95 pixels. Simplify the code as much as possible, 
remove any unnecessary communication/dependencies, and convert all dynamic memory 
allocation into appropriate static data structures (i.e. remove all malloc calls, which are 
not implementable in hardware and not supported on many embedded processors and 
operating systems). At the end, put each function called inside the main() function in a 
separate header/source file (<function_name>.h/.c) in order to make the example easier 
to manage. Report on the code changes that you performed. 

3. In preparation for conversion to SpecC, you should make sure that parameters passed 
between functions (which will become communication between behaviors) are not of 
pointer type. Explicitly pass arrays and convert pointers into arrays into array indices 
instead. 

(b) Next, transform the simplified, static code into an initial SpecC model with proper behavioral 
and structural hierarchy:  

1. Gradually convert <name>.c/.h C files into <name>.sc/.sir SpecC modules, where each 
module gets translated into one or more SpecC behaviors. Introduce a single behavior of 
appropriate name in each file. Let the behavior encapsulate all local variables and 
functions (i.e. files must not have any variables or functions outside of behaviors). 
Replace parameters with equivalent behavior ports for external communication. Ensure 
that behaviors are free of side effects, i.e. that they only communicate with other 
behaviors through their ports and do not access any global variables outside of their body. 
Note: it is recommended to hierarchically encapsulate SetupBrightnessLut and 
SusanEdges  into a separate parent DetectEdges behavior (and detect_edges.sc file). 

2. Convert get_image.c and put_image.c into Stimulus and Monitor behaviors for the 
testbench, respectively. The Stimulus behavior reads the input file into a shared 
ImageBuffer port (get_image) and then sends a start signal over a c_handshake 
channel. The Monitor reads bytes of manipulated image data from a c_queue interface 
and writes them into an output file (put_image). Create a top-level Susan behavior that 
communicates with the testbench and executes DetectEdges, SusanThin and EdgeDraw 
child behaviors sequentially in a loop. Finally, introduce a main susan_edge_detector.sc 
file that contains the Main behavior implementing a typical testbench setup running 
concurrent Stimulus, Susan and Monitor sub-behaviors. Your whole setup should look 
something like this: 
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put_image()
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3. Remove the .h files and compile all .sc sources into .sir files and check for compile errors. 
Finally, compile the top-level susan_edge_detector.sc source into an executable and 
simulate the design. Validate the generated output against the known good data to ensure 
the design is working correctly. Note: it is highly recommended to update the Makefile in 
order to automate the compilation process using the make utility. 

(c) In the last parts of this lab,  you are to parallelize the SpecC specification model to obtain a 
clean and parallel/pipelined specification that can be use for design space exploration and 
synthesis: 

1. During the implementation process we are interested in printing the simulated time it 
took for encoding a single image. To achieve this, insert timing checks into the testbench. 
Update the Stimulus behavior to wait for 1000 time units before sending the first start 
signal to the Susan. Furthermore, modify the Stimulus to send consecutive images (you 
can just send the same image over and over for a fixed number of times) with some fixed 
delay between images. Print the total delay required for processing of each single picture 
(from sending the start signal to receiving the last byte of the image) in the Monitor. 
Simulate the model to check timing info is printed correctly (since our specification 
model is untimed, delays should be zero at this point). 

2. For synthesis, we need to develop an accurate model of the actual I/O structure for the 
susan edge detector. The testbench (Stimulus and Monitor) will not be synthesized (and 
hence can contain non-synthesizable functionality, such as file accesses). As a result, we 
can also not refine the communication to the testbench (that means regardless of the 
refinement process, testbench communication will always use abstract communication 
channels or variables but never any bus). To more accurately reflect the I/O structure of 
the real system, we want to create another set of parallel behaviors representing I/O 
blocks that will be synthesized into hardware I/O components, such as network or disk 
controllers that interact with other peripherals. During synthesis they will eventually be 
replaced with pre-designed hardware blocks that implement the real I/O. 

Design Monitor
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Introduce a ReadImage behavior (read_image.sc), move the waiting for the start signal 
into ReadImage and send the input image over its outgoing queue after the start signal 
has been received. Introduce a WriteImage behavior (write_image.sc) that continuously 
reads output images from a queue and forwards them into an outgoing double-handshake 
channel. Introduce an additional level of hierarchy as a Design behavior (design.sc) that 
sits between Monitor and Stimulus and is a parallel composition of ReadImage, Susan 
and WriteImage instances communicating via c_queue channels, where both the input 
and output queues should have space for 1 image. 
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3. Finally, it is time to parallelize the Susan model. Convert the top-level Susan model into 
a KPN using appropriate behavioral and structural composition. In the process, modify 
leaf behaviors as necessary, e.g. to turn them into non-terminating processes by 
introducing an additional level of behavior hierarchy that runs a corresponding child 
behavior in an endlessly looping fsm. Use c_typed_queue channels of appropriate type 
for communication. An example and tutorial for use of typed queues can be found at: 

$SPECC/examples/sync/c_bit64_queue.sc 
$SPECC/examples/sync/typed_queue.sc 

Can your model run in bounded memory, i.e. is there an upper limit to the queue sizes 
required to run your model? How do queue sizes influence the possible execution 
schedules and parallelism available in the model? Justify the choice of queue sizes in 
your code. Is your model deadlock-free and deterministic?  

4. In addition to any top-level task parallelism, the SUSAN algorithm exhibits ample data 
parallelism across the outer loops within in each leaf behavior. As in many image 
processing applications, this means that multiple instances of a behavior can, for example, 
operate in parallel and independently on different parts of a larger image. Modify at least 
one of the leaf behaviors to model and expose the available data parallelism. Hint on 
modeling such data parallelism in SpecC: Decompose the outer loops inside each 
behavior into multiple parallel instances of an appropriate subbehavior, then pass the 
entire input data plus some indication of the range of data to work on (such as a thread ID 
or index) to each subbehavior. You are allowed to select an arbitrary number of threads. 
The following sketches an example of decomposing a loop into two data-parallel threads 
(this is not a full solution): 

SusanEdgesLoop

SusanEdgesThread 
0

SusanEdgesThread 
1

V1 V2

V3
 

(d) Finally, we want to perform additional validation and analysis of the resulting model: 

1. We can execute the model in a parallel simulation environment to validate whether your 
parallelism works safely. As discussed in class, a parallel simulation can not only achieve 
faster speeds, but will also help to detect concurrency problems. It will run concurrent 
blocks truly in parallel, i.e. in non-predetermined order, which will potentially expose and 
debug any non-determinism issues in your code. 
A parallel version of the SpecC compiler is installed under 

/home/projects/gerstl/esld/scc 
You can create a parallel simulation of your model as follows (make sure to unload the 
regular version of the SpecC compiler first, i.e. do not mix versions): 

% module unload sce 
% source /home/projects/gerstl/esld/scc/bin/setup.{c}sh 
% scc <design> <opts> -par 
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This will create an executable that will parallelize the simulation across 4 host CPU cores 
by default. Compile and execute your model in the parallel SpecC simulator. Report on 
your results. Measure the runtime of both a sequential and parallel simulation of your 
model. (Use the /usr/bin/time utility to get reliable measurements. Make sure that 
your testbench feeds a large enough number of consecutive images into the design such 
that the simulation time is long enough to get meaningful data – the resolution of host 
timer measurements on Linux is only 10ms). What differences in simulation speeds do 
you see? Discuss and explain the speed results. 

2. At this point, you should have successfully converted the design into a model ready for 
synthesis. Make sure your final model compiles, simulates and produces the golden 
reference output. Include a brief description of the status of your model in the lab report. 
Make sure to include a documentation of your behavior hierarchy (output of the 
sir_tree –blt command) for each of your models. Also include a graphical 
representation of your model. You can open your model in the SpecC viewer and include 
a screenshot (double clicking in the viewer window increases the levels of hierarchy 
shown, and display of structural connectivity can be enabled from the View menu): 

% module load sce 
% scchart <design> 

Could your model be improved to better support exploration and implementation, if at 
all? Is there additional parallelism that could be exposed or could the application be better 
modeled using a different MoC? Specifically, can the application be modeled in SDF 
form? If not, why not? If yes, how would the model have to be changed? In general, how 
does the code differ between a KPN and SDF modeled in SpecC? Could a tool be 
developed to automatically recognize whether a model is a KPN or SDF? What 
advantages and disadvantages does it have to model an application as SDF versus KPN? 
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