
Embedded System Design and Modeling
EE382N.23, Fall 2015

Lab #2
Refinement

Part (a) due: October 21, 2015 (11:59pm)
Part (b) due: October 28, 2015 (11:59pm)

Instructions:

• Please submit your solutions via Blackboard. Submissions should include a lab report
(single PDF) and a single Zip or Tar archive with the source and supplementary files
(code should include a README and has to be compilable and simulatable by running
'make' and ‘make test’, respectively).

• You are allowed to work in teams of up to three people and you are free to switch
partners between labs and the project. Please submit one solution per team.

SUSAN Edge Detector Model Refinement
The purpose of this lab is to perform computation and communication refinement on the SUSAN
edge detector SpecC specification model. As discussed in the lectures, the purpose of refinement
process is to compile the abstract specification model into detailed computation and
communication models to represent corresponding design decisions both for performance
analysis as well as for further synthesis and implementation. You can start the refinement from
the specification model developed in Lab 1, a reference solution of which is provided at:
/home/projects/courses/fall_15/ee382n_16893/susan_spec.tar.gz

A diagram of the reference specification model is shown as below:

Design
Susan

DetectEdges Read
Image

Write
Image

SusanThin
EdgeDraw

In this lab, we will refine this Design behavior all the way down to both transaction-level and
pin-accurate communication models:

(a) First, manually refine the SUSAN edge detector specification model into a computation
model where the top Design behavior reflects the partitioning and scheduling of all behaviors
among available processing elements (PEs):

1. Before a computation refinement process, normally we need to perform a design space
exploration and allocate PEs and partition the behaviors, e.g. based on some initial
profiling. For this lab, we will assume a given mapping of behaviors to PEs, including
associated performance/profiling metrics.

Assume that we have allocated an ARM processor (PE1) and a HW_Standard accelerator
(PE2). In partition (I), all behaviors are allocated on the ARM processor, while in
partition (II), SusanThin and EdgeDraw are allocated on PE2 to accelerate the overall
execution. For ReadImage and WriteImage, two dedicated virtual PEs, INPUT and

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 2

OUTPUT, are allocated, respectively, and during your refinement you can ignore their
execution durations:

PE1 PE1

OUTPUT

INPUT
DetectEdges ReadImage

WriteImageOUTPUT

INPUT
DetectEdges

SusanThin

EdgeDraw

ReadImage

WriteImage

(I) (II)

PE2
Susan
Thin

Edge
Draw

For PE1 and PE2, a table is given showing performance profiling metrics in the
granularity of one loop iteration. Note that in SusanEdges and EdgeDraw there are two
consecutive loops, which are referred to as A and B in the code and the following table:

 ARM (PE1) HW_Standard (PE2)
SetupBrightnessLut 2700 360
SusanEdges_A 19000000 3000000
SusanEdges_B 20000000 1200000
SusanThin 6400000 180000
EdgeDraw_A 12000000 600000
EdgeDraw_B 12000000 600000

Based on the given partitions and profiling metrics table, implement proper wrapper
behaviors for PEs and insert waitfor() statements with corresponding times in the
correct loops for behavior DetectEdges, SusanThin and EdgeDraw. Simulate both
partition (I) and (II), and include the results in your report.

2. Assume that PE1 is a single-core ARM processor, which can only execute one thread any
time. In the specification model, we have parallelized the outer loops in each leaf
behavior and multiple loop iterations can execute simultaneously. In this lab, we need
either statically or dynamically serialize and schedule all the parallel threads. In case of
dynamic scheduling, an OS model is needed to emulate the online interleaving of threads
in time.

For partition (I), perform static scheduling. Serialize the three behaviors (DetectEdges,
SusanThin and EdgeDraw) on PE1 and statically schedule them in an FSM loop. Also
statically serialize all the parallelized loop threads in each of these three behaviors.

For partition (II), assume dynamic scheduling under an operating system. Introduce an
OS channel in PE1 and register each loop thread in behavior DetectEdges in the OS
model. Apply a round-robin scheduling strategy to make the execution switch between
parallel threads. You can refer to slides 19 and 20 in Lecture 8 and references [19] and
[20] on the class website for more details about OS modeling.

Specifically, convert parallel behaviors into tasks that provide a method to register
themselves with the OS, then wait for OS activation at the beginning of their execution,
and finally terminate themselves at the end of their main(). Next, convert every
waitfor() statement in each task into an os_timewait() call that models

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 3

execution time and then yields the task by calling the OS-internal scheduler to allow for
context switching to another task. Every par statement in the original specification
should be refined by wrapping it into a pair of par_start() / par_end() statements,
in which the OS model can dynamically fork/join tasks.

Diagrams of the resulting models for both partitions are shown below:

PE1

OUTPUT

INPUT
DetectEdges

SusanThin

EdgeDraw

ReadImage

WriteImage

PE2

PE1

OUTPUT

INPUT
DetectEdges

Susan
Thin

Edge
Draw

ReadImage

WriteImage

RTOS

3. Finally, introduce an OS model for PE1 in partition (I). Keep the three top behaviors

running in parallel under control of the OS in a wrapper task TASK_PE1, which will be
executed as soon as the system starts. In this case, you also need to perform
synchronization refinement for all the communication channels running under the OS
model. As described in the lectures, this can be achieved by adding a pair of
pre_wait()/post_wait() OS methods around original SpecC wait statements
inside the channels. You can find the original code for all SpecC standard channels under
$SPECC/import. Create a copy of each used channel and refine the code as needed.

A brief diagram of the resulting model is shown below:

PE1
TASK_PE1

OUTPUTINPUT
DetectEdges SusanThin EdgeDrawReadImage WriteImage

RTOS

4. Simulate and verify your timed computation models from part (2) and (3). What is the
latency for processing of a single picture for each model? What is the throughput for each
model? How much speedup can be achieved by using the hardware accelerator in PE2?

(b) Next, perform communication refinement and transform the computation models from (a2)
and (a3) into TLM and PAM models.

1. We will use a simple bus protocol for all PE communication. A PAM implementation of
the corresponding HWBus protocol is available at:

/home/projects/courses/fall_15/ee382n_16893/HWBus.sc

Copy the code to your directory and browse the PAM bus model to try to understand its
structure. It is easiest to start with the channel HardwareBus, which shows a demo
instantiation of the bus. It first defines physical layer realizations for interrupt detection

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 4

(MasterHardwareSyncDetect) and interrupt generation (SlaveHardwareSyncGenerate).
The bus model then defines the bus wires and a protocol-level (physical) interface each
for master (MasterHardwareBus) and slave (SlaveHardwareBus) sides, including how
physical layers connect to bus wires. Finally, media access (MAC) channels (named
(Master|Slave)HardwareBusLinkAccess) show the methods of how to access the bus.

Draw the timing diagram of the pin-accurate model of the bus protocol.

2. Refine the partition (I) into a PAM, where PE1 is bus master and I/O blocks (INPUT,
OUTPUT) are slaves. In a PAM, the pin-accurate physical and MAC layer bus protocols
are inlined into each PE. Note that each bus slave needs to send an interruption signal to
inform its corresponding master when it is ready. The PAM includes corresponding
physical interrupt layer half channels inlined into each PE. All communications are
happening through connected signal wires. Within each PE, there should be half-channels
representing the drivers. The DetectEdges and EdgeDraw behaviors do not call the
bus/interrupt channels directly. Rather, they should remain unrefined, and a driver
adapter should translate the send()/receive() calls in the behaviors into bus
communication, including all necessary synchronization. For the driver implementation,
queue buffering semantics are not necessary and the original c_typed_queue are assumed
to be refined down to non-buffered communication with double handshake semantics.

A diagram of partition (I)’s resulting PAM is shown below:

PE1

TASK_PE1

DetectEdges SusanThin EdgeDraw

INPUT OUTPUT
WriteImageReadImage

RTOS

MasterMac

IProtocolMaster
PE1Protocol

SlaveMac

IProtocolSlave
INPUTProtocol

IProtocolSlave
OUTPUTProtocol

Address[15:0]

data[31:0]

control

Intr
Intr

Intr
Intr

MasterDriver

SlaveDriver

MasterDriver

SlaveMac

SlaveDriver

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 5

3. The protocol-level interface (both master and slave side) can be exchanged with a single
HardwareBusProtocolTLM channel (where the communication is not performed via the
wires previously instantiated, but through events as a transaction-level model).
Implement a corresponding transaction-level channel model of the bus and refine the
existing PAM into a TLM-based communication model. A TLM-based communication
model has a similar structure. However, physical layers and wires are replaced with a
TLM bus channel that will transfer the data word by word. Furthermore, TLM versions of
interrupts are realized by replacing physical interrupt layers and wires with instances of
standard c_single_handshake channels (that act as interrupt TLMs):

PE1

TASK_PE1

DetectEdges SusanThin EdgeDraw

RTOS

INPUT
ReadImage

SlaveDriver

Intr

MasterMac

MasterDriver MasterDriver

Intr

BusTLM

SlaveMac

OUTPUT
WriteImage

SlaveDriver

SlaveMac

Can your TLM reach the same accuracy (in measured latencies) as the PAM? Assuming
that simulation runtimes grow linearly with the number of simulated context switches, i.e.
wait and waitfor events, what is the expected speedup per bus transaction of transaction-
level vs. pin-accurate modeling?

4. Finally, the MAC channels and TLM channels together can be exchanged by a single
MAC-TLM channel (where both the MAC and physical layers are abstracted away and
data will be directly communicated without being sliced into bus words), where in MAC-
TLM, the image data is transferred all at once instead of transaction by transaction.
Implement a MAC-TLM version of the bus and refine the communication model into a
MAC-TLM based variant. A diagram of MAC-TLM communication model of partition (I)
is shown below. In this case, a MAC-TLM channel encapsulates all the access and
communication protocols. Note that interrupt models remain unchanged, and are still
realized as instances of standard c_handshake channels:

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 6

PE1
TASK_PE1

DetectEdges SusanThin EdgeDraw

RTOS

IMacSlave

IMacMaster

INPUT
ReadImage

SlaveDriver

MasterDriver MasterDriver

Intr

Intr

OUTPUT
WriteImage

SlaveDriver

Bus MAC-TLM

Can your MAC-TLM reach the same accuracy (in measured latencies) as the PAM and/or
TLM? In general, under what conditions will a MAC-TLM be able to provide the same
simulated timing behavior as a TLM or PAM? What is the expected and actual speedup
between PAM, TLM and MAC-TLM?

5. (extra credit) Implement PAM, TLM and MAC-TLM communication models for
partition (II). Note that in this case, PE2 will be both master and slave on the bus. As
such, proper bus arbitration between two masters will have to be implemented. You can
assume a simple central arbiter component that receives requests and grants access to
each PE. In the PAM, corresponding request and grant wires can be included and the
central bus arbiter can be implemented as a separate behavior communicating with two
masters through such wires. In the TLM and MAC-TLM, equivalent arbitration
functionality needs to be included inside the bus channels. What about speed and
accuracy of communication models in this case?

Document the transformation steps you applied and include listings of your modified source
code. Throughout the refinement process, continuously validate your model after each change to
make sure that it is still syntactically and functionally correct. Compile and simulate all models
to validate their correctness. Explain the quantitative and qualitative composition of and
contributions to the simulated delays observed in each model. Report on the differences in lines
of code and simulation runtimes/speed between the models. To compute the lines of code for a
SpecC model, you can use the sir_stats tool that is part of the SpecC tool set. Also, to
obtain simulation runtimes, you can prepend the Unix time command in front of the simulation
command line. Note, however, that you will have to increase the time resolution by averaging
over a large number of simulation runs or a larger input test vector file.

	SUSAN Edge Detector Model Refinement

