
Computation with Anonymous 
Finite-State Agents

David Soloveichik

EE382N
Embedded System Design and Modeling

Guest Lecture



Outline

• Population protocols model 
• Examples of "deterministic" computation 
• Formally defining "deterministic computation":  

stable computation 
• Time model and computational complexity 
• Consensus / approximate majority algorithm 
• Biological connections 
• Programming molecular interactions



[Angluin, Diamadi, Fischer, Peralta PODC 2004]

"Suppose we have equipped each bird in a particular flock with a sensor 
that can determine whether the bird’s temperature is elevated or not, and 
we wish to know whether at least 5 birds [or at least 5%] in the flock have 
elevated temperatures."

"In systems consisting of massive amounts of cheap, bulk-produced 
hardware, or of small mobile agents that are tightly constrained by the 
systems they run on, the resources available at each agent may be severely 
limited."

Designer does not have control over interactions between agents (i.e., 
which agents interact next).

"Population Protocols"



Agents ⬌ Molecules



anonymous  finite-state

• no unique id 
• can't tell if interacts twice with 

the same agent

• agents have finite memory 
(independent of n)

n = number 
of agents

a

a a
a

b
bb

bb

b
c

c
c

cc c

b bb

b

b

b
c

c
a

a

a

b
b

b
c

a

b



fully connected interaction graph
• any pair of agents could interact next 
• physical intuition: interact when happen to come close, but no control 

over movement

n = number 
of agents

a

a a
a

b
bb

bb

b
c

c
c

cc c

b bb

b

b

b
c

c
a

a

a

b
b

b
c

a

b



a,a → c,c 
a,c → a,a 
b,c → b,b

"Well-mixed" interaction model: any two agents 
equally likely to interact next 

8a 16b 9c

Transition (interaction) rules: describes how 
states of two interacting agents change

Configuration: counts of agents in each state

a

a a
a

b
bb

b
b

b
c

c
c

cc c
b bb

b

b

b
c

ca

a

a

b

b bc
a

b



a

a

a
a

b
bb

bb

b
c

c
c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c



a

a aa

b
b

b
b

b

b

c

c

c

c

c c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c



a

a aa

b
b

b
b

b

b

c

c

c

c

c c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c



a

a aa

b

b
b

b

b

c

a

c

c

c c

b

a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇



a

a aa

b

b
b

b

b

c

a

c

c

c c

b

a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇



a

a aa

b

b
b

b

b

c

a

c

c

c c

b

a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇



a
a

a

a

b

b

b

b

b b

ca

c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇



a
a

a

a

b

b

b

b

b b

ca

c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇



c
a

a

a

b

b

b

b

b b

cc

c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇

3a 6b 7c
⬇



c
a

a

a

b

b

b

b

b b

cc

c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇

3a 6b 7c
⬇



c
a

a

a

b

b

b

b

b b

cc

c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b

4a 6b 6c
5a 6b 5c

⬇

3a 6b 7c
⬇



Outline

• Population protocols model 
• Examples of "deterministic" computation 
• Formally defining "deterministic computation":  

stable computation 
• Time model and computational complexity 
• Consensus / approximate majority algorithm 
• Biological connections 
• Programming molecular interactions



Example: Multiplication by 2

a

a

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

b

b

x x

x xx

x
xxx

x
xb b

b
xbx

x

x

x x
x

x

b

b

b=a·2

4 a 8 b



Example: Multiplication by 2

a

a

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

b

b

x x

x xx

x
xxx

x
xb b

b
xbx

x

x

x x
x

x

b

b

b=a·2

a,x → b,b
4 a 8 b



Example: Division by 2

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

x x

x xx

x
xx

x

x
x

x

b

x x

x

x x
x

x

a

b

a

x x

xx
x

5 a 2 b



Example: Division by 2

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

x x

x xx

x
xx

x

x
x

x

b

x x

x

x x
x

x

a

b

a,a → b,x

a

x x

xx
x

5 a 2 b



Example: Addition
c=a+b

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

c x

x cx

x
xx

x

x
x

x

c

x x

x

x x
x

x

c

c

b

x x

xx
x

3 a
2 b

5 c



Example: Addition
c=a+b

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

c x

x cx

x
xx

x

x
x

x

c

x x

x

x x
x

x

c

c

a,x → c,x 
b,x → c,x

b

x x

xx
x

3 a
2 b

5 c



Example: Subtraction
c=a-b

3 a
2 b

1 c

(assume a≥b)

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

x

x
x

x
xx

x

x
x

xx x

x

x x
x

x

c

b

x x

xx
x x

x

x
x



Example: Subtraction
c=a-b

a,x → c,x 
c,b → x,x3 a

2 b
1 c

(assume a≥b)

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

x

x
x

x
xx

x

x
x

xx x

x

x x
x

x

c

b

x x

xx
x x

x

x
x



Example: Minimum
c=min(a,b)

3 a
2 b 2 c

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

x

x
x

x
xx

x

x
x

xx x

x

x x
x

x

c

b

x x

xx
x a

x

x
c

1 a



Example: Minimum
c=min(a,b)

a,b → c,x3 a
2 b 2 c

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

x

x
x

x
xx

x

x
x

xx x

x

x x
x

x

c

b

x x

xx
x a

x

x
c

1 a



Example: Maximum
c=max(a,b)



Example: Maximum
c=max(a,b)

Note: max(a,b) = a + b - min(a,b)



Example: Maximum
c=max(a,b)

Note: max(a,b) = a + b - min(a,b)

a,x → c,x 
c,b → x,x

c=a-b
a,b → c,x
c=min(a-b)c=a+b

a,x → c,x 
b,x → c,x



Example: Maximum
c=max(a,b)

a,x → c,a' 
b,x → c,b' 
a',b' → k,x 
c,k → x,x

Note: max(a,b) = a + b - min(a,b)

a,x → c,x 
c,b → x,x

c=a-b
a,b → c,x
c=min(a-b)c=a+b

a,x → c,x 
b,x → c,x



Output Non-Monotonicity Makes 
Composition Tricky

a,x → d,a' 
b,x → d,b' 
a',b' → k,x 
d,k → x,x

d=max(a,b)
d,c → e,x
e=min(d,c)

e=min(max(a,b),c) ?
How do you compose these to compute



a,x → d,a' 
b,x → d,b' 
a',b' → k,x 
d,k → x,x 

d,c → e,x

e=min(max(a,b),c)



a,x → d,a' 
b,x → d,b' 
a',b' → k,x 
d,k → x,x 

d,c → e,x

e=min(max(a,b),c)

incorrect



a,x → d,a' 
b,x → d,b' 
a',b' → k,x 
d,k → x,x 

d,c → e,x

a,x → d,a' 
b,x → d,b' 
a',b' → k,x 

d,c → e,x 

k,x → k',c 
k',e → x,x

e=min(max(a,b),c)

incorrect correct



Example: Testing Equality
y means a=b 
n means a≠b

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

b

(assume a,b>0)

Output goal: get to a stable configuration where  
there are agents in state y or state n but not both.



Example: Testing Equality
y means a=b 
n means a≠b

a

a

x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

b

a

b
a,b → y,x 
y,n → y,x 
a,y → a,n 
b,y → b,n

(assume a,b>0)

Output goal: get to a stable configuration where  
there are agents in state y or state n but not both.



Defn: Output Stable Configurations

We say configuration x is output-stable if for all 
configurations y reachable from x, output value  
Φ(y) = Φ(x).

For a configuration x, let Ψ(x) be in the input value 
and Φ(x) is the output value.  
Ψ(x) or Φ(x) may be undefined (⊥).



Defn: Stable Computation

For every configuration x with input value Ψ(x)≠⊥, 
for every configuration w reachable from x, there is 
an output-stable configuration y reachable from w 
with output value Φ(y)=f(Ψ(x)).

We say the population protocol stably computes 
the function or predicate f if:

[Angluin, Aspnes, Eisenstat, Ruppert 2007]



Outline

• Population protocols model 
• Examples of "deterministic" computation 
• Formally defining "deterministic computation":  

stable computation 
• Time model and computational complexity 
• Consensus / approximate majority algorithm 
• Biological connections 
• Programming molecular interactions



"Well-Mixed" Stochastic Model
any two agents equally likely to interact next

a

a

a
a

b
bb

bb

b
c

c
c

cc c
a,a → c,c 
a,c → a,a 
b,c → b,b



Measuring Time Complexity of Population Protocols

Thus there are Θ(n) total interactions per unit of time

Natural parallel model: each agent interacts with 
Θ(1) other agents in one unit of time

n = total number of agents



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

n agents total

a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

probability that the next interaction 
involves a and b:

n agents total

a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

probability that the next interaction 
involves a and b:

n agents total

2/n2

a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

probability that the next interaction 
involves a and b:

n agents total

2/n2

expected number of interactions 
until a and b interact:

a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

probability that the next interaction 
involves a and b:

n agents total

2/n2

expected number of interactions 
until a and b interact:

n2/2

a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

probability that the next interaction 
involves a and b:

n agents total

2/n2

expected number of interactions 
until a and b interact:

n2/2

corresponding expected time:

a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

probability that the next interaction 
involves a and b:

n agents total

2/n2

expected number of interactions 
until a and b interact:

n2/2

corresponding expected time:
Θ(n)a,b → a,y

Expected Time for "Direct Communication"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

n agents total

a,x → a,a 
a,b → a,y

Expected Time for "Communication by Epidemic"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

n agents total

a,x → a,a

Expected Time for "Communication by Epidemic"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

a,x → a,a

Expected Time for "Communication by Epidemic"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

a,x → a,a

Expected Time for "Communication by Epidemic"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

a,x → a,a

Expected Time for "Communication by Epidemic"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

n2/(2a(n-a))

a,x → a,a

Expected Time for "Communication by Epidemic"



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

n2/(2a(n-a))

a,x → a,a

Expected Time for "Communication by Epidemic"

expected number of interactions 
until all x become a:



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

n2/(2a(n-a))

a,x → a,a

Expected Time for "Communication by Epidemic"

expected number of interactions 
until all x become a:

X
= ?



X
Fact:



X

X
Fact:



X
0

@
X X

1

A

X
Fact:



X
0

@
X X

1

A

0

@
X X

1

A

change of 
variables: x=n-a

X
Fact:



X
0

@
X X

1

A

0

@
X X

1

A

X
change of 

variables: x=n-a

X
Fact:



X
0

@
X X

1

A

0

@
X X

1

A

X
change of 

variables: x=n-a

X X

X
Fact:



X
0

@
X X

1

A

0

@
X X

1

A

X
change of 

variables: x=n-a

X X

X
Fact:



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

n2/(2a(n-a))

a,x → a,a

Expected Time for "Communication by Epidemic"

expected number of interactions 
until all x become a:
X



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

n2/(2a(n-a))

a,x → a,a

Expected Time for "Communication by Epidemic"

expected number of interactions 
until all x become a:
X

corresponding expected time:



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

x

probability that the next interaction 
involves a and x:n agents total

2ax/n2 = 2a(n-a)/n2

expected number of interactions 
until a increases by 1:

n2/(2a(n-a))

a,x → a,a

Expected Time for "Communication by Epidemic"

expected number of interactions 
until all x become a:
X

corresponding expected time:



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

a,b → a,y

x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

a,x → a,a 
a,b → a,y

expected  
time: Θ(n) Θ(log n)

Exponential Difference Between Direct vs Epidemic
n agents



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

a,x → a,a 
a,b → a,y

Θ(log n)  
expected time

Produce y iff 
at least 1a and 1b



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

a,x → a,a 
a,b → a,y

Θ(log n)  
expected time

Produce y iff 
at least 1a and 1b

x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

Produce y iff 
at least 2a



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

a,x → a,a 
a,b → a,y

Θ(log n)  
expected time

a,a → a,y

Produce y iff 
at least 1a and 1b

x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

Produce y iff 
at least 2a



x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

b

a,x → a,a 
a,b → a,y

Θ(log n)  
expected time

a,a → a,y

Produce y iff 
at least 1a and 1b

x

x

x x

x xx

x
xxx

x
xx

x
x

xxx
x

x

x
x x x

a

a

Produce y iff 
at least 2a

a,x → a,a 
a,a → a,y



Outline

• Population protocols model 
• Examples 
• Definition of "stable computation" (captures the 

computation style of examples) 
• Time model and computational complexity 
• Consensus / approximate majority algorithm 
• Biological connections 
• Programming molecular interactions



Approximate Majority Population Protocol
(aka Consensus)

x,y → x,b 
x,y → b,y 
x,b → x,x 
y,b → y,y

[run simulation]

[Angluin, Aspnes, Eisenstat DISC’07]



4 Dana Angluin et al.

numbers of x and y tokens); this (together with the fact
that the corresponding systems of di↵erential equations
do not have closed-form solutions) appears to rule out
arguments based on classical techniques involving reduc-
tion to a continuous process in the limit (e.g., [12, 14]).
Similarly, approaches based on direct computation of hit-
ting times or eigenvalues of the resulting Markov chain
would appear to require substantially more work than a
direct potential function argument.

It is possible that such di�culties are an inherent
property of randomized population protocols. The ability
to construct register machines using such protocols [2,3]
suggests that analysis of an arbitrary protocol for ar-
bitrarily large populations quickly enters the realm of
undecidability. For example, the question of whether a
given protocol computes the constant function 0 with
probability (1� 1/n) in every possible population is un-
decidable. But we cannot rule out the possibility that a
more sophisticated approach might give an easier proof
of the convergence rate for the particular protocols we
are interested in.

Our results are stated using explicit constant factors.
The reader should be warned that in many cases these
are gross overestimates, and that from simulation we ob-
serve that the expected number of interactions to conver-
gence seems to be less than 4n log n from two challenging
families of initial configurations (see Figure 2.) The first
of these, initial populations evenly divided between x
and y with no blank tokens, can be shown numerically
for reasonably small n to be the configurations that max-
imize expected convergence time.

4.1 Notation and Preliminaries

We write x
t

, y
t

, and b
t

for the number of x, y, and
blank tokens at time t (that is, following t interactions).
When it will not cause confusion, we will omit the sub-
scripts. We are interested in properties of the discrete
time stochastic process

(x
0

, y
0

, b
0

), (x
1

, y
1

, b
1

), (x
2

, y
2

, b
2

), . . .

giving the values of these quantities after each interac-
tion. Let ⌧⇤ denote the convergence time, defined to
be the first time t at which x

t

= n or y
t

= n, indicating
that the agents have reached consensus.

Formally, for each t we consider the �-algebra gener-
ated by {(x

i

, y
i

, b
i

)} for all i  t, which we denote F
t

. To
avoid writing F

t

everywhere, we will implicitly condition
any probabilities or expected values concerning a single
interaction ending at some time t on F

t�1

.
To reduce the size of some of the expressions we will

be dealing with, we introduce several variables for re-
ferring to frequently-occurring expressions. These are as
follows.

u = x� y

Fig. 2 Simulation results: parallel time of approximate ma-
jority from two initial conditions

 10

 20

 30

 40

 50

 100  1000  10000  100000

St
ep

s 
pe

r a
ge

nt

Population size

Starting configuration: half Xs, half Ys

Parallel time to reach consensus
3.03 * log(x)

 10

 20

 30

 40

 50

 100  1000  10000  100000

St
ep

s 
pe

r a
ge

nt

Population size

Starting configuration: one X, one Y

Parallel time to reach consensus
2.55 * log(x)

v = x + y = n� b

g = 1/(n(n� 1))

Note that �n  u  n, and |u| = n indicates that con-
vergence has been reached. Also 0  v  n, with 1  v
for non-blank configurations. The change of basis to u
and v allows us to take advantage of the symmetry be-
tween x and y tokens. The variable g is the conversion
factor between numbers of pairs of tokens and the prob-
ability that one of these pairs is selected; thus, for ex-
ample, gvb gives the probability of an interaction with a
non-blank initiator and a blank responder.

We make extensive use of the � operator from the
theory of di↵erence equations, defined as (�f)

t

= f
t+1

�
f

t

.
We use 0-1 indicator variables for various events, writ-

ing for example Ivb

t

for the indicator of the event that the
interaction that ends at time t is an xb or a yb interac-
tion. Though we attempt to give these indicator variables
evocative names, we prefer convenience to absolute con-
sistency: so, for example, we use Ixy as the indicator for
the event of either an xy or a yx interaction. Table 1 lists
the indicator variables we use.

3.03 * log(n)

starting configuration: half x and half y

[Angluin, Aspnes, Eisenstat DISC’07]

Approximate Majority Population Protocol
(aka Consensus)

The expected time to converge is provably Θ(log n) 



X YB

X + Y → X + B
X + Y → B + Y
X + B → X + X
Y + B → Y + Y

n = total number of molecules (X, Y, B)

Approximate Majority Population Protocol
in Biology



Dodd, Micheelsen, Sneppen, Thon, Cell 129, 813-822 (2007) 

methylated unmodified acetylated

=
“Epigenetic Memory 

by Nucleosome 
Modification”

Approximate Majority Population Protocol
in Biology



➔
?

How Can We Identify Algorithms in Biology?

 Does a biologically messy network X “implement” some 
ideal algorithm Y?



➔
?

“Hairball”

How Can We Identify Algorithms in Biology?

 Does a biologically messy network X “implement” some 
ideal algorithm Y?



How Can We Identify Algorithms in Biology?

Intermediary Species

Symmetries CRN Morphisms

Model Reduction
(vast area)



[Cardelli, “Morphisms of reaction networks that couple structure to function” 2014]



Outline

• Population protocols model 
• Examples of "deterministic" computation 
• Formally defining "deterministic computation":  

stable computation 
• Time model and computational complexity 
• Consensus / approximate majority algorithm 
• Biological connections 
• Programming molecular interactions



Why Compute with Molecules?

‣ Embed programming into environments not compatible with 
electronics



Goal: Approximate Majority

...

Strand Displacement Implementation

“3 rules” reactions

Strand Displacement Implementation of 
the Approximate Majority Network

compile



Goal: Approximate Majority

...

Strand Displacement Implementation

“3 rules” reactions

Strand Displacement Implementation of 
the Approximate Majority Network

compile

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

co
un

t 
of

 s
ta

te

time (au)
20 40 60 80 100

200

400

600

800

1000
X

B
Y

start: X=700, Y=300

Ideal Test tube



Goal: Approximate Majority

...

Strand Displacement Implementation

“3 rules” reactions

Strand Displacement Implementation of 
the Approximate Majority Network

compile

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

co
un

t 
of

 s
ta

te

time (au)
20 40 60 80 100

200

400

600

800

1000
X

B
Y

start: X=700, Y=300

Ideal Test tube
1011 agents!



Every goal reaction corresponds to a set of 
implementation reactions



Why)do)we)care?)

X3 + X4 k1! X5

X5 k2! X1

X1 + X2 k3! X3

X3 + g1 k4! i + g2

i + g2 k5! X3 + g1

i + x4 k6! j + w1

j + g3 k7! X5 + w2

X5 + g4 k8! k + w3

k + g5 k9! X1 + w4

X1 + g6 k10! l + g7

l + g7 k11! X1 + g6

l + X2 k12! m + w5

m + g8 k13! X3 + w6

=&?&

But&you&are&implemenWng&each&
reacWon&separately.&So&why&can’t&I&
verify&them&separately?&

Yes&you&can,&if&there&is&no&crosstalk&between&
modules&implemenWng&different&reacWons.&
[Lakin,&Phillips,&Stefanovic&2013]&

Every goal reaction corresponds to a set of 
implementation reactions



How can you tell that an implementation of a 
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]



A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

How can you tell that an implementation of a 
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]



B + D → B + E

A + E → F

1.

2.

3.

1.1.
1.2.
1.3.

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

How can you tell that an implementation of a 
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]



B + D → B + E

A + E → F

1.

2.

3.

1.1.
1.2.
1.3.

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

{1 A, 1 D}⟹

{1 il, 1 B, 1 D}

1.1

⟹

{1 il, 1 B, 1 E}

2

⟹

{1 A, 1 E}

1.2

⟹

{1 F}

3

Ex. Error

How can you tell that an implementation of a 
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]



B + D → B + E

A + E → F

1.

2.

3.

1.1.
1.2.
1.3.

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

{1 A, 1 D}⟹

{1 il, 1 B, 1 D}

1.1

⟹

{1 il, 1 B, 1 E}

2

⟹

{1 A, 1 E}

1.2

⟹

{1 F}

3

Ex. Error

How can you tell that an implementation of a 
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]



Conclusions

• Population protocols model considers extremely 
weak agents, no control over interactions 

• Application domains: sensor networks, molecular 
computation 

• Complex global behavior possible: arithmetic, 
boolean predicates, consensus, etc. 

• Time complexity: exponential difference between 
certain tasks, many open questions 

• "Programming language" for chemistry?

More: Google "population protocols", "chemical reaction networks"




