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"Population Protocols”

'Suppose we have equipped each bird in a particular flock with a sensor
that can determine whether the bird’'s temperature is elevated or not, and
we wish to know whether at least 5 birds [or at least 5%] in the flock have
elevated temperatures.’

'In systems consisting of massive amounts of cheap, bulk-produced
hardware, or of small mobile agents that are tightly constrained by the
systems they run on, the resources available at each agent may be severely
limited.’

Designer does not have control over interactions between agents (i.e.,
which agents interact next).
[Angluin, Diamadi, Fischer, Peralta PODC 2004 ]



Agents e Molecules




N = humber

of agents
anonymous finite-state
* NO unigue id e agents have finite memory
e can't tell if interacts twice with (independent of n)

the same agent



n = number
of agents

fully connected interaction graph

e any pair of agents could interact next
* physical intuition: interact when happen to come close, but no control
over movement




"Well-mixed" interaction model: any two agents
equally likely to interact next
Configuration: counts of agents in each state

Transition (interaction) rules: describes how
states of two interacting agents change
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Example: Multiplication by 2

b=a-2
x X X X
X X
% X X X X bX
X X .
X a X X b X
X X X
X Xy xX X X
a X b
Xb
X X A X b



Example: Multiplication by 2

X
X x

b=a-2

a,Xx - b,b

8 b



Example: Division by 2
b=la/2]

X
X X
% X x X x
XaX xX
. X X
X
X Xy . .
A X
X
X



Example: Division by 2

b=la/2

X X
X x
X
aX
a
X X
X
v X

a,a » b,x




Example: Addition

c=a+b
X Xx
X C
) X ® Xy
X
c c X
X X
XXX
X x X c
X
X X
X
5 C



Example: Addition

c=a+b
X
X
X
X
a,X =» C,X
b,X = C,X




Example: Subtraction
c=a-b  (assume ax=b)

X X
X X
X
o X XXXX
X
)
X XXXX
X X C
XX
X X X
X
1 C

X



Example: Subtraction
c=a-b  (assume ax=b)

. Xx X
X
. X XXXX
’ = XX
X X
X XXXX
X X C
x X
X X X
X
d,X =» C,X
c,b - X, X 1 C

X



Example: Minimum

c=min(a,b)
X Xx
X
. X XXX
X
aCX
X X
X X
X x X c
X
X X
X
1 a
2 C



Example: Minimum

c=min(a,b)

a,b » c,X

X
X
xXxXx
X
aCX
X X
X X
XXC
X
X X
1 a
2 C



Example: Maximum
c=max(a,b)



Example: Maximum
c=max(a,b)

Note: max(a,b) = a + b - min(a,b)




Example: Maximum
c=max(a,b)

Note: max(a,b) = a

b - min(a, b)

c=a+b c=min(a-b) c=a-b

’

—

4




Example: Maximum

c=max(a,b)
Note: max(a,b) = a + b - min(a,b)
c=a+b c=min(a-b) c=a-b

’ - ra'
’ - rb'
a',b' - Kk,




Output Non-Monotonicity Makes
Composition Tricky

d=max(a,b) e=min(d,c)
] - ,a yC = €,
’ = rb'

a',b' - K,
rk = Ay

How do you compose these to compute
e=min(max(a,b),c)



e=min(max(a,b),c)

’ — ra'
p A7 b'
’
a',b' - K
’
rk -
’




e=min(max(a,b),c)

’ — ra'
’ — )
’
a',b' - K
’
rk_’
’
y C -
’

INcorrect



e=min(max(a,b),c)

’ — ra'
’ — ) | .
a'; b' - k’ ’al
’ | ) ;
K - JERE
’ k’
y C - ’ T
’
K
’ - K
K, e o :
’

INcorrect
correct



Example: Testing Equality
y means a=b
n means a#b

Qutput goal: get to a stable configuration where
there are agents in state y or state n but not both.

(assume a,b>0)



Example: Testing Equality
y means a=b
n means a#b

Qutput goal: get to a stable configuration where
there are agents in state y or state n but not both.

(assume a,b>0)
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Defn: Output Stable Configurations

For a configuration X, let W(x) be in the input value
and ®O(x) is the output value.
W(x) or O(x) may be undefined (L).

We say configuration X is output-stable it for all
configurations y reachable from X, output value
D(y) = O(x).




Defn: Stable Computation

We say the population protocol stably computes
the function or predicate fif:

For every configuration x with input value W(x)= 1,

for every configuration w reachable from X, there is
an output-stable configuration y reachable from w
with output value ®(y)=AW(x)).

[Angluin, Aspnes, Eisenstat, Ruppert 2007]
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"Well-Mixed" Stochastic Model

any two agents equally likely to interact next



Measuring Time Complexity of Population Protocols

- o, ° o n = total number of agents

Natural parallel model: each agent interacts with
©(1) other agents in one unit of time

Thus there are O(n) total interactions per unit of time



Expected Time for "Direct Communication”

n agents total
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Expected Time for "Direct Communication”

n agents total

probability that the next interaction
iInvolves a and

2/ N2

expected number of interactions
until @ and b interact:

n4/2

corresponding expected time:

O(n)




Expected Time for "Communication by Epidemic"

n agents total

\J

\J




Expected Time for "Communication by Epidemic"

n agents total




Expected Time for "Communication by Epidemic"

probability that the next interaction

n agents total involves a and




Expected Time for "Communication by Epidemic"
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Expected Time for "Communication by Epidemic"

probability that the next interaction
iINnvolves a and

2ax/n? = 2a(n-a)/n?

n agents total

expected number of interactions
until a increases by 1:

n2/(2a(n-a))

expected number of interactions

until all x become
2 n— 1

_Za(n—a)




1
Fact: ) ~ = O(logn)
a=1
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Fact: g EZO(Iogn)
a=1
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Expected Time for "Communication by Epidemic"

probability that the next interaction
iINnvolves a and

2ax/n? = 2a(n-a)/n?

n agents total

expected number of interactions
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Expected Time for "Communication by Epidemic"

probability that the next interaction
iINnvolves a and

2ax/n? = 2a(n-a)/n?

n agents total

expected number of interactions
until a increases by 1:

n2/(2a(n-a))

expected number of interactions

until all x become
2 n— 1

—Z a(n— D = O(nlog n)

corresponding expected time:
O(log n)



Exponential Difference Between Direct vs Epidemic

nagents
p AT Oy
-~ o y Vo dy
expected o(n) A(log n)

time;:



Produce v iff
at least 1a and 1

a
da,X - d,d
a,o - a,
©(log n)

expected time



Produce v iff
at least 1a and 1b

X

a,X - a,a
a,b - a,y

©(log n)
expected time

Produce v iff
at least 2a

X



Produce v iff
at least 1a and 1b

X

a,X - a,a
a,b - a,y

©(log n)
expected time

Produce v iff
at least 2a

X




Produce v iff
at least 1a and 1b

X

a,X - a,a
a,b - a,y

©(log n)
expected time

Produce v iff
at least 2a

X
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Approximate Majority Population Protocol
(aka Consensus)

[run simulation]

1 1 1

[Angluin, Aspnes, Eisenstat DISC’07]



Approximate Majority Population Protocol
(aka Consensus)

The expected time to converge is provably ©(log n)

starting configuration: half x and half

1 1 1 LILEL III 1 1 1 LELELL II 1 1 1 rmrrri
50 Parallel time to reach consensus  + _
3.03 " log(n) =,
40 [ + + o+ * :I__‘
30

+ o+ o+
+ ++ + N
++ + %

20

Steps per agent

100 1000 10000 100000

Population size

[Angluin, Aspnes, Eisenstat DISC’07]



Approximate Majority Population Protocol

in Biology
X+Y =+ X+B
X+Y =+ B+Y —sp =
X+B—=2X+X < 9
Y+B Y +Y

n = total number of molecules (X,Y, B)



Approximate Majority Population Protocol
in Biology

methylated unmodified acetylated

“Epigenetic Memory ¥ ’/: %

by Nucleosome % — A g = NG L B L YJ
Modification” /j\ /} /j\ I_ 7T

Silenced p g .\ /‘— - S
|33 733333801|
Active 2 - \‘ lI ( ;>
VL2222 9001

Dodd, Micheelsen, Sneppen, Thon, Cell 129, 813-822 (2007)




How Can We ldentify Algorithms in Biology?

Does a biologically messy network X “implement” some
ideal algorithm Y?

o O ~0 N '> K/
- 4 &0
0 O E I

0@ P To520

~ »-gﬁ; i

—Xe—Be—— Y —




How Can We ldentify Algorithms in Biology?

Does a biologically messy network X “implement” some
ideal algorithm Y?

—Xe—Be—— Y —

" “Hairball”

o ©CO0ee



How Can We ldentify Algorithms in Biology?

Intermediary Species

Symmetries

Model Reduction

(vast area

——

CRN Morphisms



Approximate Majority Emulation Zoo

e S
1
XK w—

Y |

S b=
1
X =

ccr L

( homomorphism and
stoichiomorphism (transitive))

[Cardelli,"Morphisms of reaction networks that couple structure to function” 2014]
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Why Compute with Molecules?

» Embed programming into environments not compatible with
electronics

e\

MICROCHIP

§ &6




Strand Displacement Implementation of
the Approximate Majority Network

acement Implementation

¥ et ul®

t t x t vy t mx
T o T — F o T T o

Goal: Approximate Majority

Lt

x t oy t ut y ot >
GG ur®

X+Y = B+Y compile TR e
X+Y—> X+B —_— i o et [
B+X = X+X

B+Y Y +Y




Strand Displacement Implementation of
the Approximate Majority Network

Strand Displacement Implementation

Goal: Approximate Majority i - Y

b toox oty ot mx ul
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N
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“3 rules” reactions
Ideal ' ' Test tube
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Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013



Strand Displacement Implementation of
the Approximate Majority Network

Strand Displacement Implementation

Goal: Approximate Majority i - Y
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“3 rules” reactions
Ideal ' ' Test tube
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start: X=700,Y=300 X=07 Y=03
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Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013



Every goal reaction corresponds to a set of
implementation reactions

X3+ X453 X5
X553 x1
X1+ X258 x3




Every goal reaction corresponds to a set of
implementation reactions

X3+ gl 24+ g2
ﬁ i+ g2 X34 g1
/

/ i—l—x4ﬁ>j—|—w1
E . k- '.
e | g+ g3 — X5+ w2
X3+ X455 x5 \

X5+ g4 58 k4 w3

X5 3 X1 « | g o5 53 el
X1+X2 3y X1 4 g6 221 4 g7

[+ g7™ X1+ g6

l+X2—>m—|—w5

m + g8 28 X3+ w6




How can you tell that an implementation of a
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree,VEMDP 2014]



How can you tell that an implementation of a
reaction is correct? Can be tricky!

Goal reactions Implementation

A—-B+C A—il +B

il +B — A
\ il & C

[Shin, Thachuk,Winfree,VEMDP 2014]



How can you tell that an implementation of a
reaction is correct? Can be tricky!

Goal reactions Implementation
. A=>B+C I.I. A—il +B
1.2. il +B A

1.3. il & C

2. B+D—=>B+E

3. A+E—F

[Shin, Thachuk,Winfree,VEMDP 2014]



How can you tell that an implementation of a
reaction is correct? Can be tricky!

Goal reactions Implementation Ex. Error
{1A, 1D}
. A=>B+C I.I. A—>il +B ”
1.2. il +B—A
1.3. il & C

2. B+D—=>B+E

3. A+E—F

[Shin, Thachuk,Winfree,VEMDP 2014]



How can you tell that an implementation of a
reaction is correct? Can be tricky!

Goal reactions

. A=>B+C

2. B+D—=>B+E

3. A+E—F

[Shin, Thachuk,Winfree,VEMDP 2014]

Implementation

1.
|.2.
|.3.

A—il +B
il +B—A
il = C

Ex. Error
{1A,1D}

1]

{1il,1B,1 D)

2 |

{1il,1B,1E}



Population protocols model considers extremely
weak agents, no control over interactions

Application domains: sensor networks, molecular
computation

Complex global behavior possible: arithmetic,
boolean predicates, consensus, etc.

Time complexity: exponential difference between
certain tasks, many open questions

'Programming language” for chemistry?

Google "population protocols”, "chemical reaction networks"”



[EE381V] Programming with Molecules

Graduate Course :: Spring 2016

Instructor: David Soloveichik
Lecture: T, TH 12:30PM-2PM
Classroom: CBA 4.338

Description

———

| |

Ae2A
A+B—2B
B—-0

A+C—-0
Ce2C

compile

&
L

J/

We will discuss paradigms for programming complex behavior in (bio)chemical systems. Similar to how
digital circuits and automata (e.g., finite state machines) are fundamental abstractions for electronic
computation, we are interested in models of computation as embedded in the chemical world. The
motivating natural phenomena include biological self-organization and information processing in chemical
pathways in cells. Applicatiods of rationally designed molecular systems will be introduced from synthetic
biology, and DNA bioengineering and nanotechnology. Topics will include algorithmic tile-assembly and
cellular automata, discrete and continuous chemical reaction networks, population protocols, and strand
displacement cascades. We will study chemical computation by reasoning, simulation, and formal proofs
about these and other models. Besides chemistry, we find applications in distributed computing settings
where weak computational agents must operate in a disordered environment (e.g., sensor networks). The
course will consist of a combination of lectures, paper discussions, and group projects.



