Communication Systems Design in Practice

Jacob Kornerup, Ph.D. LabVIEW R&D National Instruments

ni.com

A Word About National Instruments

- Annual Revenue: \$1.14 billion
- Global Operations: Approximately
 6,870 employees; operations in more than 40 countries
- Broad Customer Base: More than 35,000 companies served annually
- Diversity: No industry >15% of revenue
- Culture: Ranked among top 25 companies to work for worldwide by the Great Place to Work Institute

Graphical System Design

A Platform-Based Approach for Measurement and Control

Tough Real-Time Challenges

Large Telescope Mirror Control

Tokomak Plasma Control

Wind Turbine Sound Source Characterization

CERN Hadron Collider

Early Cancer Detection

Structural Health Monitoring

European Southern Observatory Extremely Large Telescope

Primary Mirror (M1): 42 Meters

E-ELT Programme

The Primary Mirror (M1)

Mirror Segment Active Control

- 6 Edge Sensors (6000 total)
- 3 Actuators (3000 total)
- 3K x 6K Matrix calculation / 1 ms

Perspective Pope Election 2005

Perspective Pope Election 2013

The Need for 5G

Explosion of wireless data and connected devices

Prototyping Is Critical for Algorithm Research

"Experience shows that the real world often breaks some of the assumptions made in theoretical research, so **testbeds are an important tool for evaluation under very realistic operating conditions**"

"...development of a testbed that is able to test radical ideas in a complete, working system is crucial"

¹NSF Workshop on Future Wireless Communication Research

The National Instruments Vision

"To do for test and measurement what the spreadsheet did for financial analysis."

Virtual Instrumentation

with **NI LabVIEW**[™]

High-Level Design Models

Graphical System Design Platform

The Long Tail

["The Long Tail," Chris Anderson Wired, 2004]

NI Vision *Evolved*. Graphical System Design

Design discontinuities in EDA tools

[1] Kurt Keutzer, UC Berkeley EECS 244 class

Platform Based Design & Models of Computation

- Constructs for application domain experts
- Structured implementation with the right levels of abstraction
- Separation of concerns between functionality and architecture
- Evolve designs on hardware "generations"
- Design flow that supports analysis, simulation, verification and synthesis

[1] E.A. Lee, "Embedded Software", Revised from UCB ERL Memorandum M01/26, November 1, 2001,
 [2] E.A. Lee and S. Neuendorffer, "Concurrent Models of Computation for Embedded Software", Memorandum No. UCB/ERL M04/26, July 22, 2004

[3] Alberto Sangiovanni-Vincentelli, "Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design", Proceedings of the IEEE, Vol. 95, No. 3, March 2007.

ni.com

The Y-Chart System Design Methodology

Platform Dimensions

- Distributed
- Heterogeneous computing platforms
 - Real-time OS, FPGA, Desktop OS, GPU
- Communication schemes
- Real-time
- 10
- Timing

Application Dimensions

- Algorithm development
- IO characterization
 - Timing characteristics
- Real-time constraints
- Models of Computation integration
- State management

Dataflow MoCs for Streaming Applications

Key trade-off: Analyzability vs. Expressibility

Platform Architectures

Key trade-off: Flexibility vs. Performance

The Y-Chart System Design Methodology

ni.com

p. 1523-1543. Dec. 2000.

Aided Design of Integrated Circuits and Systems, 19(12):

High-Level Design Models

Graphical System Design Platform

LabVIEW Today

Realizing Our Vision for Instrumentation Graphical System Design

Platform-Based Design for Communications Systems

A. Sangiovanni-Vincentelli, UC Berkeley. Defining Platform Based Design. EEDesign, Feb 2002

Tools Challenge

Existing tools provide a disjointed path from concept to real-world signal

Tools Solution

Complete System Design Platform | Delivered

Design Tool Wish List

Example: OFDM Transmitter

5 MHz, LTE-Like Design

- Symbol Mapping: 4 QAM
- Data/Pilot Structure: 1 Pilot (reference) for every 5 Data Symbols
- Frame Structure: 512 Elements [106 Zeros, 150 Data/Pilot, 1 Zero, 150 Data/Pilot, 105 Zeros]
- Cyclic Prefix Length: 128

Hardware Aware Design Environment

Interactive, visual representation of the physical system which:

- Enables system discovery and verification of system setup
- Provides hardware documentation and visualization of available resources
- Allows for design partitioning and deployment
- Enables articulation of system architecture

Design Exploration for FPGA Deployment

Floating point design → Fixpoint design Performance constraints: Throughput, latency, resources Simulation capability

Design Exploration for FPGA Deployment

Float to Fix Point Conversion with a **datadriven approach**

Design Exploration for FPGA Deployment

Feedback on design based on constraints:

- Actual throughput
- Buffer sizes

Schedule View to analyze where the design can be further optimized

Algorithm Design Languages: FPGA

Graphical System Design A Platform-Based Approach for Measurement and Control

