
Embedded System Design and Modeling
EE382N.23, Fall 2017

Homework #1
Design Languages

Assigned: September 6, 2017
 Due: September 18, 2017 September 20, 2017

Instructions:
• Please submit your solutions via Canvas. Submissions should include a single PDF with

the writeup and a single Zip or Tar archive for any supplementary files (e.g. source files,
which has to be compilable by simply running 'make' and should include a README
with instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 1.1: SpecC Language
The SpecC environment is installed on the ECE LRC Linux servers. Instructions for accessing
and setting up the tools are posted on the class website:

http://www.ece.utexas.edu/~gerstl/ee382n_f17/docs/SpecC_setup.pdf
In short, once logged in, you need to load the corresponding module:

module load sce

The SpecC installation includes a comprehensive set of examples showing the features and use
of the language. Examples are found in $SPECC/examples/simple/. You can copy them
into a working directory:

% mkdir hw1.1
% cd hw1.1
% cp $SPECC/examples/simple/* .

And then use the provided Makefile to compile and simulate all examples:
% make all
% make test

It is recommended to inspect the sources of all examples and the included Makefile to
understand the use of the SpecC compiler (scc) for the compilation and simulation process, and
to experiment with the scc command-line usage and with the various sir_xxx tools.
Information about all tools and scc is available via their man pages:

% man scc
% man sir_xxx

You can manually inspect, compile and execute an example on the command line as follows:
% less HelloWorld.sc
% scc HelloWorld –vv
% ./HelloWorld

Also practice working with the SpecC Internal Representation (SIR) and associated tools. You
can compile an example into its (binary) SIR representation as follows:

% scc Adder –sc2sir –vv

http://www.ece.utexas.edu/%7Egerstl/ee382n_f17/docs/SpecC_setup.pdf

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 2

You can then use the various sir_xxx tools to inspect and manipulate your design:
% man sir_list
% sir_list –t Adder.sir
% man sir_tree
% sir_tree –bt Adder.sir FA

Finally, a SIR file can be compiled into a simulation executable as follows:
% scc Adder –sir2out –vv
% ./Adder

For this assignment, you are asked to develop, simulate and debug a simple Producer-Consumer
example in SpecC. The program should contain two parallel behaviors S and R that communicate
the string “Hello world” from sender to receiver. The communication should be character by
character (one byte at a time), and both behaviors should print the characters as they are sent and
received to the screen. After the entire message is transmitted, both behaviors should end and the
simulation should cleanly terminate. You program output should look like this:

Receiver starting...
Sender starting...
Sending 'H'
Received 'H'
Sending 'e'
Received 'e'
Sending 'l'
Received 'l'
Sending 'l'
Received 'l'
Sending 'o'
Received 'o'
Sending ' '
Received ' '
Sending 'w'
Received 'w'
Sending 'o'
Received 'o'
Sending 'r'
Received 'r'
Sending 'l'
Received 'l'
Sending 'd'
Received 'd'

(a) Write a program that realizes all communication via shared variables and events. You can
follow the example on slide 33 of Lecture 2. Your code should look very similar, with only a
few required modifications and additions to comply with the above specifications (e.g. to
print output to the terminal). Compile and simulate the code to verify its correctness, and
include a log of your program output in your report.

(b) Modify the example into a proper SpecC model that cleanly separates computation from
communication. Follow the example on slide 34 of Lecture 2 to create a new channel that
encapsulates basic communication primitives and replace all shared variables and events

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 3

between S and R to exclusively use one or more instances of your custom channel. Compile
and simulate the modified code to verify its correctness.

(c) SpecC programs can be debugged using the standard GNU Linux debugger (gdb). A nice
graphical frontend for gdb is available as:
% ddd <design>

This will bring up the ddd graphical debugger, which allows you to debug you program
directly at the SpecC source code level (if you prefer debugging at the level of the
intermediate C++ code generated by the SpecC compiler, you can pass the –sl command
line option to scc – this instructs the compiler to not create the necessary debug annotations
that relate assembly and C++ to SpecC code). For example, in the gdb prompt of the
debugger’s command window, you can set breakpoints in SpecC behaviors and then start
execution:
(gdb) b R::main
(gdb) run

Alternatively, you can use the debugger’s graphical user interface (GUI) to open any SpecC
source file (File→Open Source…), set breakpoints and then hit the Run toolbar button
(Program→Run). From there, you can single step through the code, inspect variables, etc.
Modify your code from (b) to remove all ‘Ack’ related functionality from your custom
channel, compile the code, and observe its behavior in the debugger. Explain the behavior of
the modified code. Is the ‘Ack’ necessary? Why or why not?

(d) Now replace your custom channel with (1) a c_double_handshake and (2) a c_queue
instance out of the SpecC standard channel library. Use queue depths/sizes of 1 and 5 bytes.
Again, compile and simulate the code. Does the program behave differently with your
custom, a c_queue or a c_double_handshake channel? Explain any differences. You
can inspect the code for standard channels in their source files (in the $SPECC/import
directory) or in the debugger. For the latter, you need to add the $SPECC/import directory
to gdb’s search path for source files, such that you can step into channel method calls:

(gdb) dir /usr/local/packages/sce-20170901/import

(e) Your SpecC simulation so far has been untimed. Turn your SpecC program now into a timed
model. Simulate execution timing by adding waitfor() statements into R and S behaviors
whenever a new character is sent or received. Furthermore, insert code to print the total
simulated time at the end of the simulation. Use the model from (d) with a c_queue channel
of size/depth 5. For each of the following cases, compile and simulate the code. Explain any
differences, including a comparison to the untimed model:

(1) Insert a waitfor(5) delay into both R and S.

(2) Increase the delay in S to 10 time units.

(3) Reduce the delay in S to 5 and increase the delay in R to 10 time units.

(4) Change the queue size from 5 to 1.

For timed models, the SpecC simulator also includes the capability to create traces and
waveforms of model behavior over time in standard value change dump (VCD) format. To
enable tracing, compile your model with the –Tvcds command line option passed to scc.
This will produce a <design>.vcd waveform file when running the simulation. Tracing

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 4

options can be controlled by an associated <design>.do command file. See the examples
in $SPECC/examples/trace (including the README file) for more details. Generated
traces can then be opened and visualized in any VCD waveform viewer, such as gtkwave
available on the LRC machines:
% gtkwave <design>.vcd

You can insert behavior instances (such as Main.r and Main.s) into the waveform
display to observe their traced behavior over time. Submit such waveform plots as part of
your explanations for behavior seen in (1)-(4).

Problem 1.2: Discrete-Event Language Semantics
For each of the following SpecC code examples, what are the outputs and sequences of behavior
executions according to SpecC’s discrete-event semantics? Show possible parallel simulation, if
any. Does each program terminate normally? If not, why not, and how could the code be fixed?
Note that you are free to run the examples in the SpecC simulator, but you need to provide general
explanations of all possible behaviors.

(a)

(b)

behavior A(event x,
 event y)
{

void main(void)
{
 printf(“A\n”);

 notify x;
 wait y;

 printf(“A end\n”);
 }
};

behavior B(event x,
 event y)
{

void main(void)
{

 printf(“B\n”);
 notify y;
 wait x;
 printf(“B end\n”);
 }
};

behavior Main(void) {
event x, y;

 A a(x,y);
 B b(x,y);

int main(void) {
 par { a; b; }
 printf("Done\n”);
 return 0;
 }
};

behavior A(event x,
 event y)
{

void main(void)
{

 printf(“A\n”);
 wait x;
 wait y;
 printf(“A end\n”);
 }
};

behavior B(event x,
 event y)
{

void main(void)
{

 printf(“B\n”);
 notify x;
 notify y;
 printf(“B end\n”);
 }
};

behavior Main(void) {
event x, y;

 A a(x,y);
 B b(x,y);

int main(void) {
 par { a; b; }
 printf("Done\n”);
 return 0;
 }
};

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 5

(c)

(d)

(e) What is the output of the following parity generator example? For what values of X, N and M
does the program terminate normally? What do the values of X, N and M need to be to
maximize parallelism in a parallel simulator on a multi-core simulation platform?

behavior Even(
 event s, event f,
 inout bit[8] d,
 in int c)
{

void main(void)
{
 waitfor(X);

 notify(s);
 waitfor(N);
 wait(f);
 d[7] = c & 0x01;
 }
};

behavior OnesCntr(
 event s, event f,
 in bit[8] d,
 inout int c)
{

void main(void)
{ int i;
 wait(s);

 waitfor(M);
 c = 0;
 for(i=0;i<7;i++)
 c += d[i];
 notify(f);
 }
};

behavior Main(void) {
event s, f;
bit[8] d = 42;
int c;

 Even e(s,f,d,c);
 OnesCntr o(s,f,d,c);

int main(void) {
 par { e; o; }
 printf("D: %d\n”,
 (int)d);
 return 0;
 }
};

behavior A(event x,
 int f)
{

void main(void)
{

 if(f) wait x;
 f += 1;
 // critical sec.
 if(f>1) exit(1);
 notify x;
 f -= 1;
 }
};

behavior B(event x,
 int f)
{

void main(void)
{

 if(f) wait x;
 f += 1;
 // critical sec.
 if(f>1) exit(1);
 notify x;
 f -= 1;
 }
};

behavior Main(void) {
event x;
int f = 0;

 A a(x,f);
 B b(x,f);

int main(void) {
 par { a; b; }
 printf("Done\n”);
 return 0;
 }
};

behavior A(event x,
 event y)
{

void main(void)
{

 printf(“A\n”);
 notify x;
 wait x;
 printf(“A end\n”);
 }
};

behavior B(event x,
 event y)
{

void main(void)
{

 printf(“B\n”);
 notify x;
 wait x;
 printf(“B end\n”);
 }
};

behavior Main(void) {
event x, y;

 A a(x,y);
 B b(x,y);

int main(void) {
 par { a; b; }
 printf("Done\n”);
 return 0;
 }
};

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 6

(f) (g)

Problem 1.3: Synchronous-Reactive Language Semantics
For the examples (a)-(c) above, what would be the outputs and sequences of behavior executions
under synchronous-reactive semantics, e.g. when translated into corresponding Esterel programs
as shown below? Does each program terminate normally? If not, why not, and how could the
code be fixed? Note that the regular await statement in Esterel first pauses for one cycle
before checking for the signal. The await immediate statement checks and immediately
exits if the signal is already present in the initial/current instant (it is a shortcut for present X
else await X end). Note that you are again free to run the examples in any Esterel simulator, but
you need to provide general explanations of all possible behaviors.

(a)

behavior A(int myA, event e) {
void main(void) {

 myA = 10;
 notify e;
 myA = 11;

 }
};
behavior B(int myA, event e) {

void main(void) {
 wait e;

 myA = 42;
 }
};
behavior Main(void){
 int myA; event e;
 A a(myA, e);
 B b(myA, e);

 int main(void){
 par { a; b; }
 printf("myA: %d\n", myA);
 return 0;
 }
};

behavior A(int myA, event e) {
void main(void) {

 waitfor 10;
 myA = 11;
 waitfor 10;

 }
};
behavior B(int myA, event e) {

void main(void) {
 waitfor 11;
 myA = 10;
 }
};
behavior Main(void){
 int myA; event e;
 A a(myA, e);
 B b(myA, e);

 int main(void){
 par { a; b; }
 printf("myA: %d\n", myA);
 // now() returns current
 // simulated time
 printf("Time: %llu\n", now());
 return 0;
 }
};

module M:
signal x, y in %// local signal
 [
 emit x; await immediate y; end
 ||
 emit y; await immediate x; end
];
end signal
end module

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #1 7

(b)

(c)

module M:
signal x, y in %// local signal
 [
 await immediate x; await immediate y; end
 ||
 emit x; emit y; end
];
end signal
end module

module M:
signal x in %// local signal
 [
 emit x; await immediate x; end
 ||
 emit x; await immediate x; end
];
end signal
end module

	Problem 1.1: SpecC Language
	Problem 1.2: Discrete-Event Language Semantics
	Problem 1.3: Synchronous-Reactive Language Semantics

