
Embedded System Design and Modeling
EE382N.23, Fall 2017

; a in R0, b in R1
f MOV R2,#0 ; c in R2
 MOV R3,#0 ; i in R3
loop CMP R3,#100 ; i < 100?
 BGE end
 LDR R4,[R0,R3 LSL #2] ; t = a[i]
 CMP R4,#0 ; t == 0?
 BNE skip
 LDR R4,[R1,R3 LSL #2] ; t = b[i]
skip ADD R2,R2,R4 ; c = c + t
 ADD R3,R3,#1 ; i++
 B loop
end MOV R0,R2 ; c in R0
 BX LR

Homework #3
System Modeling & Refinement

Assigned: October 16, 2017
Due: October 30, 2017

Instructions:
• Please submit your solutions via Canvas. Submissions should include a single PDF with

the writeup and a single Zip or Tar archive for any supplementary files (e.g. source files,
which has to be compilable by simply running 'make' and should include a README
with instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 3.1: Source-Level Simulation
Given the following C code and its ARM assembly implementation, and assuming execution on
an ARM micro-architecture with a typical 5-stage in-order pipeline (consisting of fetch, decode,
execute, memory and write-back stages), full data forwarding/bypassing, and static not-taken
branch prediction with branches resolved in the execution stage, can you find an annotation of
the C code with waitfor()statements that accurately replicates the timing of the ARM
execution? State all your assumptions.

Problem 3.2: Computation and Communication Refinement
For this problem, we will further refine the Producer-Consumer example from Problem 1.1 in
Homework 1 all the way down to both pin-accurate and transaction-level models of different
design variants. Start from the code for the specification model that you developed for Problem
1.1(e)(4) in Homework 1 (or the reference solutions provided).

(a) First assume an implementation in which both S and R behaviors are mapped to the same
PE1. This will require the two concurrent behaviors to execute and be dynamically scheduled
under the control of an operating system (OS). Manually refine the specification model into a
scheduled computation model that reflects these design decisions:

int f(int *a, int *b) {
 int i, t;
 int c = 0;

 for(i = 0; i < 100; i++)
 {
 t = a[i];
 if (t) {
 t = b[i];
 }
 c = c + t;
 }
 return c;
}

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #3 2

PE1

RS

OS

Wrap the parallel Producer-Consumer behavior pair into a PE1 behavior and insert an OS
model channel that emulates dynamic scheduling in a round-robin fashion. You can refer to
slides 19-21 in Lecture 8 and references [19] and [20] on the class website for more details
about OS modeling

Write an OS model that is based on cooperative multitasking, i.e. that provides a yield()
method to be called by application tasks in order to trigger a task/context switch. Convert
parallel S and R application behaviors into tasks that call OS channel methods to wait for OS
activation at the beginning of their execution and terminate themselves at the end of their
main(). Insert yield() calls into the loop bodies of S and R behaviors to enable cooperative
scheduling. Does it matter where the yield() calls are inserted? Why or why not?

(b) Now assume an implementation in which the S behavior is mapped to PE1 and the R
behavior to PE2, where a single Bus1 connects PE1 (bus master) and PE2 (bus slave).
Manually refine the specification model into a communication model that reflects these
design decisions:

rdy
ack

addr[15:0]
data[31:0]

PE1 PE2

RS

M
as

te
r Slave

Bus1

We will use a simple HW bus protocol with address, data and control wires for all PE-to-PE
interconnect and communication. Source code for a pin-accurate model (PAM) of a
corresponding HWBus protocol channel is available at:

/home/projects/courses/fall_17/ee382n-23/HWBusPAM.sc

Wrap the S and R behaviors into PE1 and PE2 behaviors, respectively, and insert an instance
of the HWBusPAM protocol channel to connect the two PEs. Refine all communication
between S and R into transactions over Bus1 that realize equivalent semantics and desired
overall application behavior/functionality.

Finally, implement a transaction-level model (TLM) of the HWBus channel where the
internal communication is not realized via wires but as abstract function calls. Replace the
existing HWBusPAM instance with an instance of your HWBusTLM channel connecting the
two PEs. The TLM channel should implement the exact same interface as the PAM, such that
no code inside the PE behaviors will have to be touched for this plug-and-play replacement.

What accuracy (in measured latencies) and speedup can your TLM reach compared to the
PAM? Draw the timing diagram of the pin-accurate model of the bus protocol. Draw a
similar diagram of the timing of events in the transaction-level model. Assuming that
simulation runtimes grow linearly with the number of simulated context switches, i.e. wait
and waitfor events, what is the expected speedup per bus transaction of transaction-level vs.
pin-accurate modeling? What is the actual speedup in your simulations? Can you think of any

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #3 3

further ways for speeding up the simulation (with our without a loss in accuracy compared to
the PAM)?

	Problem 3.1: Source-Level Simulation
	Problem 3.2: Computation and Communication Refinement

