Embedded System Design and Modeling
EE382N.23, Fall 2017

Extra Credit Lab #3
Exploration

Due: December 13, 2017 (11:59pm)

Instructions:

e Please submit your solutions via Canvas. Submissions should include a lab report (single
PDF) and a single Zip or Tar archive with the source and supplementary files (code
should include a README and has to be compilable and simulatable by running 'make’
and ‘make test’, respectively).

e You are allowed to work in teams of up to three people and you are free to switch
partners between labs and the project. Please submit one solution per team.

SUSAN Edge Detector Design Space Exploration

The purpose of this lab is to perform design space exploration and to bring the SUSAN edge
detector example down to an (optimal) implementation using the System-On-Chip Environment
(SCE). As discussed in class, a system specification consists of a functional model plus
associated architectural and other implementation constraints. We will be using the specification
model that you developed in Lab #1 for the former, while the latter will be largely dictated by
SCE’s capabilities, restrictions and provided databases (as well as bugs in the tool).

Note that this assignment is by nature open-ended. There is no single solution, and part of the
evaluation is who can come up with the best design. The instructions below are just meant to
provide a general framework and some initial directions/tips. We have not tested all the
possibilities ourselves, but want to explore what a good design for this example looks like. You
will likely run into bugs in the tools, so please bring up any issues in class such that everybody
can learn from them.

SCE is installed next to the SpecC tools on the ECE LRC Linux servers. Instructions for
accessing and setting up SCE and the tutorial are posted on the class website:
http://www.ece.utexas.edu/~gerstl/ee382n_f17/docs/SCE_setup.pdf
Again, once logged in (e.g. remotely via ssh —X and make sure to have an X11 server running
locally), you need to setup the environment:
module load sce

SCE comes with an extensive tutorial and it is highly recommended to go through the first part
of the tutorial that demonstrates SCE’s system exploration and synthesis capabilites on a GSM
Vocoder design example. The tutorial instructions are available as part of the SCE installation
(see below) and online at:
http://www.cecs.uci.edu/~cad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
Note, however, that the tutorial is based on an older version of SCE. As such, some steps have
changed and communication design steps have been expanded. A list of errata with all modified
and added tutorial steps necessary for the current SCE version is available on the class website:
http://www.ece.utexas.edu/~gerstl/ee382n_f17/docs/SCE_Tutorial_Errata.pdf

To run the tutorial, setup a local working directory for the tutorial demo, launch the SCE GUI
and follow the steps of the tutorial document:


http://www.cecs.uci.edu/%7Ecad/publications/tech-reports/2003/TR-03-41.tutorial.pdf
http://www.ece.utexas.edu/%7Egerstl/ee382n_f17/docs/SCE_Tutorial_Errata.pdf

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #3 2

mkdir demo

cd demo

setup_demo

(open SCE_Tutorial/sce-tutorial .pdf or browse SCE_Tutorial/html/)
(open SCE_Tutorial _Errata.pdf, see above)

sce &

Go through the tutorial up to and including Section 3.

We are now ready to load the edge detector specification model into SCE and start the analysis,
exploration and refinement process. You can start from the SpecC code that you developed as a
result of Lab #1 or the reference solution provided and already used for Lab #2.

(a) Profile, analyze and estimate the edge detector specification model:

1.

Open SCE in the susan edge detector directory and create a new project “susan.sce”
(Project—New, Project—SaveAs..). Adjust the simulator and compiler options
as needed. Set the simulation command to

/usr/bin/time _/%e && diff -s out.pgm golden.pgm
Set the compiler verbosity level to 3 and the warning level to 2.

Import the susan_edge_detector.sc specification model into SCE and add it to the project.
Rename the model in the project window to SusanSpec.

3. Compile and simulate the model to validate its correctness.

Browse the graphical hierarchy chart. Expose all levels of hierarchy and submit a printout
of the chart of the complete specification model (Window—Print.. to file
SusanSpec.ps).

Profile (Val idation—Profile) the model and generate the bar graph for the raw
Computation profile of all behaviors in the Susan part of the design. Submit a printout of
the computation graph (Window—Print.. to file SusanRawProfile.ps).

Allocate a single PE of ARM7_TDMI type and a single PE of HW_Standard type, using
default parameters (100MHz clock frequency). Reanalyze (Validation—Analyze)
the design and generate the bar graph for the HW/SW Computation profile of all
behaviors in the Susan part of the design. Submit a printout of the computation graph
(Window—Print.. to file SusanSpecProfile.ps).

(b) The next step is to go through the computation (architecture and scheduling) exploration and
refinement process. The goal is to find an optimal realization on a system architecture
consisting of up to three ARM processors or hardware accelerators:

1.

Allocate two custom hardware PEs of HW_Virtual type and name them INPUT and
OUTPUT. Those two custom hardware blocks are placeholders for the peripherals
implementing the I/O with the external world. As such, map the Readlmage and
Writelmage behaviors onto the INPUT and OUTPUT PEs, respectively.

Enable the channel view (Synthesis—Show Channels) and map the in_image and
out_image input and output queues at the Design level into the INPUT and OUTPUT PEs,
respectively. This is necessary because we want to have the two 1/0 blocks implement
the dedicated input and output buffers associated with the queues. In general, mapping a
complex channel into a PE means that the channel will result in a specific implementation



EE382N.23: Embedded Sys Dsgn/Modeling, Lab #3 3

being synthesized as part of that PE. Unmapped complex channels, on the other hand,
will simply be resolved into their basic elements without any guarantees about a
particular buffer size, for example.

3. Allocate between at least one PE of ARM7_TDMI type and as many additional PEs of
ARM7_TDMI or HW_Standard type (with default parameters, i.e. 100MHz clock
frequency) as you want/need, and explore possible mapping options of Susan behaviors
onto PEs. Make sure to reprofile and reanalyze the design (Val idation—Evaluate)
every time you change the allocation or mapping. Perform architecture refinement for
every feasible design alternative.

4. If your partitioned model has shared variables between parallel behaviors mapped to
different processors (e.g. in the dataparallel parts), those variables need to be mapped into
additional shared memory components. (Unlike for variables between sequential
behaviors, which SCE will, by default, automatically refine into a distributed realization,
there is no other implementation option for concurrently accessed variables.) You can use
additional or existing HW _Standard components as shared memories. Select
Synthesis—Show Variables and map any such shared variables into a chosen
memory (HW) component.

5. The SCE database currently does not include any multi-core processors. As such, all
behaviors mapped to an ARM processors need to be statically or dynamically serialized.
(By contrast, HW units can run multiple blocks/behaviors truly in parallel, i.e. don’t need
to be scheduled.) Explore various feasible scheduling strategies for each allocated ARM
processor in each architecture alternative. You can choose between static and round-robin
or priority-based dynamic scheduling (with various task priority assignments) of parallel
behaviors mapped to the same PE. Note that you should not schedule (i.e. select None
under dynamic scheduling) ARM processors with only one mapped behavior. Do not
schedule any of the 1/O hardware units (INPUT or OUTPUT). Perform scheduling
refinement for every feasible design alternative.

6. As part of your exploration process, you should consider modifying the original
specification model to better match a particular architecture mapping. While ideal tools
should support arbitrary application/architecture mappings, there are many optimizations
current tools can’t or won’t do. For example, based on an analysis of your specification
MoC from Lab #1 in relation to the concurrency available in a selected architecture (see
also Homework #4), you may want to sequentialize some of the specification code to
explicitly realize a semi-static schedule that matches your chosen mapping. Among other
tuning, this can be used to optimize memory requirements, which are an issue on the
more restricted SWARM targets used in the final synthesis step (see part (d) below).

7. Compile and simulate all generated scheduled architecture models. Record the simulated
encoding times for each alternative and plot the design space as points in an encoding
time vs. cost graph. Assume that an ARM PE and a hardware accelerator PE have a cost
of 100 and 150, respectively. What is the best design?

(c) Identify at least three promising candidate architectures. We can then go into the
communication design (network exploration and communication synthesis) process to
synthesize the best designs down to a TLM and PAM realization:

1. Open network allocation to define the overall network topology. Busses for each ARM
processor in the system should already be pre-allocated and ARM processors should be



EE382N.23: Embedded Sys Dsgn/Modeling, Lab #3 4

pre-connected as masters on their respective busses. Connect the INPUT and OUTPUT
hardware PEs as slaves on the same bus as the ARM processor running their direct
communication partners (i.e. SusanEdges and EdgeDraw behaviors, respectively). Note
that processors are always masters on their bus, where an additional *slave0”
connectivity is reserved by the ARM processor itself and should never be used.

2. Hardware accelerators can play the roles of masters or slaves on any bus. Connect any
hardware accelerators as masters, slaves or masters & slaves to achieve required
connectivity. As an alternative to communication over the AHB busses, you can freely
allocate DblHNdShkBus instances for separate, dedicated connection between any custom
hardware blocks (including the 1/0 blocks INPUT or OUTPUT).

3. If there is more than one ARM (and hence more than one bus) in the system, allocate
transducer CEs of T_Custom type to bridge and connect busses as necessary (where
transducers are slaves on each bus they connect to). Note that transducers by default only
have one port, but any number of additional ports can be created by right-clicking on the
transducer name in the Connectivity tab and selecting Add port...

4. Perform network refinement and explore different custom packet sizes. By default, each
packet going through a transducer can only hold 1 byte. An increased packet size can
reduce communication overhead if larger blocks of data are transferred over any
transducers in the design. What is the optimal packet size (and why)?

5. Assign the link parameters for each channel on each bus. You can freely choose the
interrupt/synchronization scheme. However, due to the mux-based architecture of the
ARM/AMBA AHB bus being used, addresses need to be assigned to match the slave
connectivity. Specifically, channels served by a particular “slaveN” have to be assigned a
bus address in the range between OXNOOOOOOQO-OXNFFFFFTT (otherwise, you will see
a deadlock in the PAM simulation). Note that right-clicking into the link parameter dialog
and selecting Autofill addresses.. should automatically assign proper default
addresses.

6. Perform communication refinement to generate both a transaction-level and pin-accurate
model of each design. Compile and simulate each model to record the final encoding
delays. How much percent communication overhead does each design have?

7. Browse the hierarchy (View—Chart) and source (View—Source) of one of the
generated models. Specifically, take a look at the model of an ARM processor that SCE
inserts. Can you identify the model of the interrupt controller, the modeling of processor
suspension and interrupt handling in the processor core, and the OS model?

(d) In the final step, we will synthesize the actual software binaries for all ARM target processor
in our selected candidate designs. To validate final software execution, we will then run the
binaries on an instruction-set simulation (ISS) based virtual platform model of each design:

1. We will use a uCOS-II real-time operating system (RTOS) for each ARM in the system.
uCQOS only supports priority scheduling. As such, make sure that all ARM processors in
your candidate designs either use priority-based dynamic scheduling or do not use an OS
at all (i.e. have None selected). In the former case, make sure that all tasks have unique
priorities assigned (required by uCOS).

2. Select Synthesis—C Code Generation to perform backend software synthesis
for each ARM processor in your design. In the dialog, select the ARM processor you



EE382N.23: Embedded Sys Dsgn/Modeling, Lab #3 5

want to synthesize and use the default parameters for cross-compiler and target OS.
Generate an output model with ISS reintegration each. You can choose between a fully
cycle-accurate SWARM ISS or a fast functional OVP ISS with only rough timing.
Generate simulations with both types of ISSs and record the differences in simulation
times and simulated encoding delays. Repeat C code generation until all ARM processors
in the design have been replaced with their reintegrated ISS models.

3. Before we can simulate the software code, we need to cross-compile the generated source
code into a final target binary. Change into each subdirectory with generated code and
compile the executable:

cd ARMx
make

(Before compiling the code, we need to make sure that the necessary libraries are linked
against while also increasing the uCOS thread stack size for our example. Modify the
Makefile and add —Im to USR_LFLAGS and -DSTACK_SIZE_DEFAULT=40960 to
USR_CFLAGS.)

4. Compile and simulate the design. The code will now run the real binary in an instruction-
accurate simulator for the ARM processor(s). You might see some IRQ messages flying
by as the ISS is running, but in the end the simulation should stop after some time when
the pictures are encoded. Congratulations, we achieved a full-system co-simulation of the
actual target software binary together with its surrounding hardware for the complete
SoC! Plot the final cost vs. performance for each alternative in a design space graph
similar to (b)-7. Compare the final encoding times to the previous PAM simulation result,
how much differences are there?

Submit a lab report that documents all your steps and includes a discussion and analysis of your
results and observations. Record and document the changes and trends in model complexities
(File—Statistics), simulation runtimes and simulated encoding delays between different
steps and models in the design process. Assuming that a SWARM simulation provides cycle-
accurate results, show the tradeoffs in simulation speed vs. accuracy of different design models.
What conclusions can you draw?

Finally, what is the optimal architecture, and why is it better than others? Explain and discuss the
differences in performance you see between different designs.



	SUSAN Edge Detector Design Space Exploration

