
Embedded System Design and Modeling
EE382N.23, Fall 2019

Homework #2
Design Languages & Implementation Modeling

Assigned: October 10, 2019
Due: October 24, 2019

Instructions:
• Please submit your solutions via Canvas. Submissions should include a single PDF with

the writeup and a single Zip or Tar archive for any supplementary files (e.g. source files,
which has to be compilable by simply running 'make' and should include a README
with instructions for running each model).

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

• Some questions might not have a clearly correct or wrong answer. In general, grading is
based on your arguments and reasoning for arriving at a solution.

Problem 2.1: Discrete-Event
For each of the following SystemC examples, what is the output of the program? You are free to run
the examples in the SystemC simulator, but you need to provide an explanation of all possible
behaviors according to SystemC semantics.

(a) Assume that ab, ac and bc are sc_signal<int> with delta semantics that have been
initialized to 0. What would be the behavior of the program if ab, ac and bc were instead
composed out of normal variables and pure events without delta semantics (i.e. without delta
variable updates and with immediate event notifications)?

A B C

SC_MODULE(C) {
 sc_in<int> ac, bc;

 SC_CTOR(C) {
 SC_THREAD(run);
 sensitive << ac << bc;
 }

 void run(void) {
 while(true)
 {
 wait(); // wait(
 // ac->default_event() |
 // bc->default_event());
 cout << "C: "
 << ac << bc << endl;
 }
 }
};

SC_MODULE(B) {
 sc_in<int> ab; sc_out<int> bc;

 SC_CTOR(B) {
 SC_THREAD(run); sensitive << ab;
 }
 void run(void) {
 while(true) {
 wait(); // wait(ab->default_event());
 cout << "B: " << ab << endl;
 bc = 1;
 }
 }
};

SC_MODULE(A) {
 sc_out<int> ab, ac;

 SC_CTOR(A) {
 SC_THREAD(run);
 }

 void run(void) {
 wait(1, SC_NS);
 ab = 1;
 ac = 1;
 }
};

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #2 2

(b) Assume that ab, ac and bc are sc_signal<int> that have been initialized to ‘0’. What
would be the behavior of the program if ab, ac and bc were instead be composed out of
normal variables and pure events without delta semantics/updates/notifications?

(c) Assume that all sc_signal<sc_logic> have a default value of ‘X’ (unknown).

1

0

SC_MODULE(NAND) {
 sc_in<sc_logic> a, b;
 sc_out<sc_logic> c;
 SC_CTOR(NAND) { SC_THREAD(run);
 sensitive << a << b;
 }
 void run(void) {
 sc_logic t;
 while(true) {
 wait();
 t = ~(a & b);
 cout << t << endl;
 c = t;
 }
 }
};

SC_MODULE(T) {
 sc_out<sc_logic> x;
 SC_CTOR(T) { SC_THREAD(run); }
 void run(void) {
 wait(1, SC_NS);
 x = 1;
 }
};

SC_MODULE(F) {
 sc_out<sc_logic> x;
 SC_CTOR(F) { SC_THREAD(run); }
 void run(void) {
 wait(1, SC_NS);
 x = 0;
 }
};

(d) Assume that all sc_signal<sc_logic> have a default value of ‘X’ (unknown). What
would the behavior be if signals are initialized to ‘0’ instead?

1

1

SC_MODULE(NAND) {
 sc_in<sc_logic> a, b;
 sc_out<sc_logic> c;
 SC_CTOR(NAND) { SC_THREAD(run);
 sensitive << a << b;
 }
 void run(void) {
 sc_logic t;
 while(true) {
 wait();
 t = ~(a & b);
 cout << t << endl;
 c = t;
 }
 }
};

SC_MODULE(T) {
 sc_out<sc_logic> x;
 SC_CTOR(T) { SC_THREAD(run); }
 void run(void) {
 wait(1, SC_NS);
 x = 1;
 }
};

(e) Ignoring other sources of non-determinism, e.g. coming from the C language itself, is a

discrete-event model that does not allow shared variables and only supports signals for
communication deterministic? If so, why? If not, what sources of non-determinism still
exist?

A B C

SC_MODULE(C) {
 sc_in<int> ac, bc;

 SC_CTOR(C) {
 SC_THREAD(run);
 sensitive << ac << bc;
 }

 void run(void) {
 while(true)
 {
 wait(); // wait(
 // ac->default_event() |
 // bc->default_event());
 cout << "C: "
 << ac << bc << endl;
 }
 }
};

SC_MODULE(B) {
 sc_in<int> ab; sc_out<int> bc;

 SC_CTOR(B) {
 SC_THREAD(run); sensitive << ab;
 }
 void run(void) {
 while(true) {
 wait(); // wait(ab->default_event());
 cout << "B: " << ab << endl;
 bc = 1;
 }
 }
};

SC_MODULE(A) {
 sc_out<int> ab, ac;

 SC_CTOR(A) {
 SC_THREAD(run);
 }

 void run(void) {
 wait(1, SC_NS);
 while(true) {
 ab = 1;
 ac = 1;
 }
 }
};

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #2 3

Problem 2.2: Synchronous-Reactive
For the examples 2.1(a)-(d) above, what would be the output and behavior (sequence of executed
steps) under synchronous-reactive semantics, e.g. when translated into corresponding Esterel
programs as shown below? Note that Esterel supports valued signals that extend pure
presence/absence into a unique value in each execution step/cycle, where emit S(v) emits
signal S with value v, and ?S returns the value of signal S. You are again free to run the examples
in any Esterel simulator, but you need to provide general explanations of all possible behaviors.

(a)

(b)

(c) What sequence of values of c0 and c1 is emitted by this program?

module M:
output C
signal ab, ac, bc in %// local signal
 [
 pause; emit ab; emit ac
 ||
 loop await ab; emit bc end
 ||
 loop await [ac or bc]; emit C end
];
end signal
end module

module M:
output C
signal ab, ac, bc in %// local signal
 [
 pause; loop emit ab; emit ac end
 ||
 loop await ab; emit bc end
 ||
 loop await [ac or bc]; emit C end
];
end signal
end module

module M:
signal i0, i1, c0, c1: boolean in %// valued signals
 [
 pause; emit i0(true) || pause; emit i1(false)
 ||
 loop await [i0 or c1]; emit c0(not (?i0 and ?c1)) end
 ||
 loop await [i1 or c0]; emit c1(not (?i1 and ?c0)) end
];
end signal
end module

EE382N.23: Embedded Sys Dsgn/Modeling, Homework #2 4

(d) What sequence of values of c0 and c1 is emitted by this program?

(e) What can you say about the (non-)determinism of (valued) signals in a synchronous-reactive
language?

Problem 2.3: Modeling
Given the attached SystemC code with different attempts at writing a model of a simple
operating system, available at

http://www.ece.utexas.edu/~gerstl/ee382n_f19/assignments/homework2.cpp

(a) What is the behavior (output) of this program when using OS model OS1 and OS2? You can
run the program in the SystemC simulator, but again describe all possible behaviors
according to SystemC semantics.

(b) Make minimal modifications to fix the model to represent the correct execution of tasks A
and B as tasks running under control of a (most simplified/basic) custom OS with execution
sequence “A1”, “B1”, “A2”, …. Make changes to task models A and B, and show any
additional OS methods you need to introduce in the OSAPI as well as their implementation.
What is the program output?

module M:
signal i0, i1, c0, c1: boolean in %// valued signals
 [
 pause; emit i0(true) || pause; emit i1(true)
 ||
 loop await [i0 or c1]; emit c0(not (?i0 and ?c1)) end
 ||
 loop await [i1 or c0]; emit c1(not (?i1 and ?c0)) end
];
end signal
end module

http://www.ece.utexas.edu/%7Egerstl/ee382n_f19/assignments/homework2.cpp

	Problem 2.1: Discrete-Event
	Problem 2.2: Synchronous-Reactive
	Problem 2.3: Modeling

