
Embedded System Design and Modeling 
EE382N.23, Fall 2019 

Lab #1 
Specification 

Due: September 30, 2019 (11:59pm) 

Instructions: 
• Please submit your solutions via Canvas. Submissions should include a lab report (single 

PDF) and a single Zip or Tar archive with the source and supplementary files (code 
should include a README and has to be compilable and simulatable by running 'make' 
and ‘make test’, respectively). 

• You are allowed to work in teams of up to three people and you are free to switch 
partners between labs and the project. Please submit one solution per team. 

 

Tiny YOLO Object Detector Specification Model 
The purpose of this lab is to convert the TinyYOLOv2 object detection neural network into a 
clean specification model that conforms to the KPN model of computation (MoC) discussed in 
class. TinyYOLOv2 is a smaller version of YOLOv2 that targets resource-constrained 
environments. It consists of 16 layers, out of which 9 are convolutional. You can find more 
details about in [1]. Although YOLO/TinyYOLO has been implemented in various frameworks, 
for purposes of this course, we will use the original C implementation in Darknet [2]. 

You can install Darknet in Linux using commands below: 
% git clone https://github.com/pjreddie/darknet 
% cd darknet 
% make 

Next, we will need to download pre-trained weights of TinyYOLO: 
% wget https://pjreddie.com/media/files/yolov2-tiny.weights 

Now we can use command below to detect objects in sample images provided by Darknet: 
% ./darknet detect cfg/yolov2-tiny.cfg ./yolov2-tiny.weights data/dog.jpg 

If everything works, you should get an output similar to Figure 1. As this figure shows, 
TinyYOLO predicts three objects in this picture. You can check the location and size of 
predictions in predictions.jpg that is generated by Darknet automatically when executing 
command above. 

 
Figure 1. Output of TinyYOLO-Darknet when run with dog.jpg 
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We will use the SystemC C++ class library [5] to model TinyYOLO as KPN. SystemC provides 
an easy-to-use threading interface and thread-safe, race-free communication and FIFO queue 
semantics. Note that SystemC has a lot more to offer and is an industry-standard system-level 
design language (SLDL) used for system design and modeling, especially at the system-on-chip 
(SoC) and hardware level. We will learn and use more of SystemC for SoC and 
hardware/software implementation modeling later in class.  

Follow the tutorial posted on the class webpage [3] to setup the SystemC environment and 
become familiar with it. We have created a template library for modeling of KPNs in SystemC, 
available at [4]. Follow the tutorial provided with the library, and study and run the provided 
KPN examples. 

It is then time to parallelize and refine the Darknet/TinyYOLO code into a KPN.  

(a) Layer-wise pipelining 

One of the most straightforward ways to refine TinyYOLO’s neural network is to model each 
layer as a separate Kahn process. Implement such refinement by defining classes that inherit 
from kahn_process defined in [4], define ports necessary for interfacing it to other  
layers and override its process()with the neural network layers’ forward propagation 
method. Given that TinyYOLOv2 has 9 convolutional and 6 maxpool layers, it is highly 
recommended that you develop a single parameterized convolutional and a single 
parameterized maxpool layer process template to implement those layers in TinyYOLO. 
Note that, besides convolutional and maxpool layers, TinyYOLOv2 has a region layer which 
you will need to implement as well.  

Finally, in addition to the layers in the neural network itself, you will also need to model a 
testbench of pre- and post-processing processes and interface them to the neural network 
model. Pre-processing consists of loading input image from a file and adjusting its size. Post-
processing includes non-maximal suppression (nms) that eliminates duplicate predictions and 
writing predictions to a file. See the hints at the end of this document for more details. 

Make sure that your final model compiles, simulates and produces the same golden reference 
output as the original code. Document your model in terms of processes and their 
connections, e.g. in graphical form. Profile the model in terms of the computation, memory 
and communication requirements of each process. You can profile computation requirements 
using ‘gprof’ (make sure to compile the code with the –pg flag), including a breakdown of 
the time spent in different methods or functions called by a process. Memory and 
communication requirements can be determined by analyzing (or instrumenting) the code. 
For memory footprints, break them down in terms feature maps and weights. 

(b) Tiling and fusing 

A layer-based partitioning results in large feature maps exchanged between layers. As a next 
step, further explore alternative ways of modeling the neural network that expose additional 
parallelism while reducing the communication and memory requirements per process. One 
way to achieve this is by exploiting inherent locality between input and output feature maps 
of a convolutional layer to partition feature maps into smaller tiles that can be computed 
independently and concurrently. To further reduce communication, matching tiles across 
layers can then be fused together into a larger process.  
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Such a fused tile partitioning (FTP) approach is described in [6]. Refer to [6] to first partition 
TinyYOLO’s layers 0-14 each into nine processes using a 3x3 grid of equally sized tiles. 
What are the computation, memory and communication requirements of each process now? 

Then further fuse matching tiles of layers 0-14 into nine independent Kahn processes 
according to the full FTP approach described in [6] (to apply FTP, you will need tile 
coordinates for input/output feature map of all layers 0-14, which you can derive using 
Algorithm 1). What are the per-process computation, memory and communication 
requirements after fusing? 

To reduce the programming effort, it is recommended that you define a single parameterized 
Kahn process for tiled and fused layers that takes input and output coordinates as parameters. 
Note that region layers, as well as pre/post processing, cannot be tiled/fused. As such, they 
are not included in the fused layers and should be modeled as standalone processes similar to 
those in part (a). Furthermore, in defining ports and connections, you should pay attention 
that some of these standalone processes might need more than one output port or more than 
one input port. 

Additional Questions 
Answer the following additional questions: 

(a) Is it always optimal to fuse all layers in FTP? 

(b) Can your different KPNs run in bounded queue memory? If not, why not? If yes, what are 
the possible schedules and the minimal queue sizes that guarantee model operation, and what 
effect does increasing the queue size have on the model and its potential implementation?    

(c) Can the different partitioning schemes be modeled using a SDF MoC? If so, describe how 
you would change kahn_process.h. If not, explain why, i.e. what are the limitations of 
SDF that prevent modeling the application as SDF. 

Hints 

• Keep in mind that in a KPN, memory/state can only exist within processes, i.e. there are 
no global variables, and all communication between processes must be through FIFO 
queues.  

• To understand Darknet’s code flow, checkout examples/detector.c::test_detector() 

• Use Darknet’s load_image_color() and letterbox_image() to load input image and 
interface it to the neural network. 

• You can find layer implementations in the “src” folder of Darknet. 

• Note that maxpool layers are stateless but convolutional layers have weights/biases that 
need to be loaded from weights file. For more details on loading layer parameters, see 
src/parser.c::load_convolutional_weights(). 

• Use draw_detections() to generate images with predictions marked on the original image. 
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