
Embedded System Design and Modeling 
EE382N.23, Fall 2019 

Lab #2 
Refinement 

Due: Monday, October 28th, 2019 (11:59pm) 

Instructions: 

 Please submit your solutions via Canvas. Submissions should include a lab report (single 
PDF) and a single Zip or Tar archive with the source and supplementary files (code 
should include a README and has to be compilable and simulatable by running 'make' 
and ‘make test’, respectively). 

 You are allowed to work in teams of up to three people and you are free to switch 
partners between labs and the project. Please submit one solution per team. 

 

Tiny Yolo Object Detector Model Refinement 

The purpose of this lab is to perform computation and communication refinement on the Tiny 
YOLO object detector SystemC specification model. As discussed in the lectures, the purpose of 
refinement process is to compile the abstract specification model into detailed computation and 
communication models to represent corresponding design decisions both for performance 
analysis as well as for further synthesis and implementation. You can start the refinement from 
the specification model developed in Lab 1. 

A diagram of the reference specification model is shown below:   
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(a) Computation Refinement 

As a first step, we will refine the specification model into a computation model that reflects the 
partitioning and mapping of processes onto processing elements (PEs), where we will assume 
that we have allocated an Intel processor (PE1) to execute all the Kahn processes of Tiny YOLO. 

1. Wrap all the processes of the specification and instantiate them under a new SystemC module 
that represents the processor PE: 
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After deciding on a mapping, we can also make our model timed. Towards this end, you will 
need to annotate process() method of each Kahn process with a call to SystemC’s 
wait() with timing information representing the estimated execution time on the processor 
the process is mapped. For this lab, we will use the timing information you profiled in Lab1 
(in ms, i.e. using wait(<profiled_time_in_ms>, SC_MS). 
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Once code is annotated, measure the throughput and latency of application via 
sc_time_stamp(). This function returns the current time as sc_time which you can 
perform arithmetic operations on and which can be printed by passing it into the cout 
stream or by casting it to seconds via to_seconds(). 

2. Next, we will further refine the model to represent scheduling decisions. Since the processor 
can only execute a single task at a time, we need to serialize process executions on the 
processor. Assume that we decided to perform scheduling dynamically under the control of 
an operating system (OS). Introduce a preemptive operating system model that uses round-
robin scheduling to serialize execution of the processes on the processor. Use the (minimal) 
API for such an operating system provided at [1]. Refine your model by defining an OS 
channel that implements the os_api interface. [1] also provides a new base class for Kahn 
process that has an init() method, which can be used to register tasks with operating 
system as well as any other initialization that cannot be executed in the constructor. Note 
that, in addition to Kahn processes and their timed waits, you will need to refine 
write()/read() calls and wrap any wait statements used for inter-process 
communication (IPC) and synchronization with pre_wait() and post_wait() as 
discussed in class. 

A diagram of the refined model with OS is shown below:   
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Measure the latency and throughput of the refined model and compare it with the previous 
results. How does serialization of tasks affect latency? How closely does your scheduled 
model match execution of the application on the real Intel processor? 

3. To improve latency and throughput, we will further introduce a hardware accelerator into our 
system. This accelerator is used to speed up layers l12 and l13, which are the most 
computationally heavy convolutional layers. In the general case, relative performance of 
accelerator compared to the processor depends on variety of factors but for this lab, we will 
simply assume that the accelerator can reduce forward propagation time of layers by factor of 
5 (5x).  

Map layers l12 and l13 out into a new accelerator PE2 and corresponding SystemC wrapper 
module, where the input queue of l12 and the output queue for l13 will be turned into inter-
processor communication. In hardware, we need to perform static scheduling and 
serialization. To model the accelerator, fuse layers l12 and l13 by defining a new Kahn 
process that executes both layers sequentially in a loop. Scale the annotated execution times 
by the speedup factor. A diagram of the refined model with accelerator is shown below:   
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Measure the latency and throughput of the refined model and compare it with the previous 
results. By how much does the accelerator improve overall system latency and throughput? 
Do throughput and latency improve equally? Why or why not?  

4. (Extra Credit) Implement an OS model that uses priority scheduling. How is latency and 
throughput of your design affected by different task priority settings? 
 

(b) Communication refinement 

As the final step, we will perform communication refinement and replace the zero-latency 
communication model with pin-accurate and transaction-level models (PAMs and TLMs). For 
this purpose, we will use a simple hardware bus protocol with address, data and control wires for 
all communication between PEs (CPU and Accelerator). A detailed, pin-accurate implementation 
of this bus protocol is provided in [1]. The bus model defines physical layer realizations for 
interrupt detection (MasterHardwareSyncDetect) and interrupt generation 
(SlaveHardwareSyncGenerate), bus wires and a protocol-level (physical) implementation each 
for master (MasterHardwareBus) and slave (SlaveHardwareBus) sides. In addition, media access 
(MAC) channels (named [Master|Slave]HardwareBusLinkAccess) show the methods of how to 
access the bus. 

5. Refine the final computation model from part (a) to a PAM, where the CPU (PE1) is the bus 
master and the Accelerator (PE2) is a bus slave. In a PAM, the pin-accurate physical and 
MAC layer bus protocols are inlined into computing elements (PE1 or PE2). Note that, to 
avoid deadlocks in case of communication with multiple bus slaves, each bus slave needs to 
send an interrupt signal to inform its corresponding master when it is ready. The PAM will 
need to include corresponding physical interrupt layer half channels inlined into the 
computing element. In the PAM, all communications is happening through connected signal 
wires. Within each computing element, there should be half-channels representing the 
drivers. The l11, l14, l12+l13 processes do not call the bus/interrupt channels directly. 
Rather, they should remain unrefined, and a driver adapter should translate the 
read()/write() calls in the behaviors into bus communication, including all necessary 
synchronization. A diagram of the resulting PAM is shown below: 
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Note that interrupts generated by the accelerator might be missed by the MasterDriver if PE1 
is not performing a read or write. To address this problem, you will need introduce thread(s) 
into the top-level module of PE1 that model the hardware of the processor continuously 
checking for interrupts and recording them in a flag (in reality, there should also be an 
interrupt service routine integrated with the OS model, but you are not required to model to 
this level of accuracy in this lab). Instead of directly calling the interrupt detection, the driver 
should check the flag and block when it is not set (either using an sc_event or a built-in 
channel like sc_mutex or sc_semaphore). Keep in mind that this blocking or 
synchronization channel needs to be properly integrated with the OS 
(pre_wait()/post_wait()) to trigger a context switch when blocking the calling 
process.  

What is the throughput and latency of the PAM model? How does simulation execution time 
of the PAM compare with previous models? 

6. Next, we are going to replace the pin-accurate model of the system with a transaction-level 
model (TLM) at an abstracted level. For this, the protocol-level interface (both master and 
slave side) can be exchanged with a single HardwareBusProtocolTLM channel in which the 
communication is not performed via the wires previously instantiated, but through plain 
variables and events as a transaction-level model. Implement a corresponding transaction-
level channel model of the bus and refine the existing PAM of the system into a TLM-based 
communication model. A TLM-based communication model has a similar structure as the 
PAM. However, physical layers and wires are replaced with a TLM bus channel that will 
transfer the data word by word. Furthermore, TLM versions of interrupts are realized by 
replacing physical interrupt layers and wires with single handshake channels (that act as 
interrupt TLMs). A diagram of the resulting TLM is shown below: 
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Does your TLM reach the same accuracy (in measured latencies and throughput) as the 
PAM? If not, explain why it is not possible for you to write a TLM that is 100% accurate. 
What is the expected and actual simulation speedup of the TLM compared to the PAM, i.e. 
does the achieved speedup match what you would theoretically expect?  

7. (Extra Credit) Instead of a TLM at the protocol level, the MAC and bus protocol TLM 
channels together can be exchanged by a single MAC-TLM channel, where both the MAC 
and physical layers are abstracted away and data will be directly communicated without 
modeling it being sliced into bus words. Implement a MAC-TLM version of the bus and 
refine the communication model into a MAC-TLM based variant. Note that, to see the 
benefits of MAC-TLM, the feature maps need to be transferred all at once instead of 
transaction by transaction. You will need to send the entire output feature map of l11 as a 
single struct-based token that encapsulates all data, instead of sending one float at a time. 
Likewise, the output feature map of l12+l13 should also be sent as a single token. 

A diagram of MAC-TLM communication model shown below. In this case, a MAC-TLM 
channel encapsulates all the access and communication protocols. Note that interrupt models 
remain unchanged, and are still realized as single handshake channels: 
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Can your MAC-TLM reach the same accuracy (in measured latencies and throughput) as the 
PAM and/or TLM? In general, under what conditions will a MAC-TLM be able to provide 
the same simulated timing behavior as a TLM or PAM? What is the expected and actual 
speedup between PAM, TLM and MAC-TLM?  
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