
Embedded System Design and Modeling
EE382N.23, Fall 2019

Lab #2
Refinement

Due: Monday, October 28th, 2019 (11:59pm)

Instructions:

 Please submit your solutions via Canvas. Submissions should include a lab report (single
PDF) and a single Zip or Tar archive with the source and supplementary files (code
should include a README and has to be compilable and simulatable by running 'make'
and ‘make test’, respectively).

 You are allowed to work in teams of up to three people and you are free to switch
partners between labs and the project. Please submit one solution per team.

Tiny Yolo Object Detector Model Refinement

The purpose of this lab is to perform computation and communication refinement on the Tiny
YOLO object detector SystemC specification model. As discussed in the lectures, the purpose of
refinement process is to compile the abstract specification model into detailed computation and
communication models to represent corresponding design decisions both for performance
analysis as well as for further synthesis and implementation. You can start the refinement from
the specification model developed in Lab 1.

A diagram of the reference specification model is shown below:

image
reader

l0 … l14
image
writer

detection

(a) Computation Refinement

As a first step, we will refine the specification model into a computation model that reflects the
partitioning and mapping of processes onto processing elements (PEs), where we will assume
that we have allocated an Intel processor (PE1) to execute all the Kahn processes of Tiny YOLO.

1. Wrap all the processes of the specification and instantiate them under a new SystemC module
that represents the processor PE:

image
reader

l0 … l14
image
writer

detection

PE1

After deciding on a mapping, we can also make our model timed. Towards this end, you will
need to annotate process() method of each Kahn process with a call to SystemC’s
wait() with timing information representing the estimated execution time on the processor
the process is mapped. For this lab, we will use the timing information you profiled in Lab1
(in ms, i.e. using wait(<profiled_time_in_ms>, SC_MS).

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 2

Once code is annotated, measure the throughput and latency of application via
sc_time_stamp(). This function returns the current time as sc_time which you can
perform arithmetic operations on and which can be printed by passing it into the cout
stream or by casting it to seconds via to_seconds().

2. Next, we will further refine the model to represent scheduling decisions. Since the processor
can only execute a single task at a time, we need to serialize process executions on the
processor. Assume that we decided to perform scheduling dynamically under the control of
an operating system (OS). Introduce a preemptive operating system model that uses round-
robin scheduling to serialize execution of the processes on the processor. Use the (minimal)
API for such an operating system provided at [1]. Refine your model by defining an OS
channel that implements the os_api interface. [1] also provides a new base class for Kahn
process that has an init() method, which can be used to register tasks with operating
system as well as any other initialization that cannot be executed in the constructor. Note
that, in addition to Kahn processes and their timed waits, you will need to refine
write()/read() calls and wrap any wait statements used for inter-process
communication (IPC) and synchronization with pre_wait() and post_wait() as
discussed in class.

A diagram of the refined model with OS is shown below:

image
reader

l0 … l14
image
writer

detection

PE1

RTOS

Measure the latency and throughput of the refined model and compare it with the previous
results. How does serialization of tasks affect latency? How closely does your scheduled
model match execution of the application on the real Intel processor?

3. To improve latency and throughput, we will further introduce a hardware accelerator into our
system. This accelerator is used to speed up layers l12 and l13, which are the most
computationally heavy convolutional layers. In the general case, relative performance of
accelerator compared to the processor depends on variety of factors but for this lab, we will
simply assume that the accelerator can reduce forward propagation time of layers by factor of
5 (5x).

Map layers l12 and l13 out into a new accelerator PE2 and corresponding SystemC wrapper
module, where the input queue of l12 and the output queue for l13 will be turned into inter-
processor communication. In hardware, we need to perform static scheduling and
serialization. To model the accelerator, fuse layers l12 and l13 by defining a new Kahn
process that executes both layers sequentially in a loop. Scale the annotated execution times
by the speedup factor. A diagram of the refined model with accelerator is shown below:

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 3

image
reader

l14
image
writer

l11

RTOS

PE1

PE2

l12+l13

…

…

Measure the latency and throughput of the refined model and compare it with the previous
results. By how much does the accelerator improve overall system latency and throughput?
Do throughput and latency improve equally? Why or why not?

4. (Extra Credit) Implement an OS model that uses priority scheduling. How is latency and
throughput of your design affected by different task priority settings?

(b) Communication refinement

As the final step, we will perform communication refinement and replace the zero-latency
communication model with pin-accurate and transaction-level models (PAMs and TLMs). For
this purpose, we will use a simple hardware bus protocol with address, data and control wires for
all communication between PEs (CPU and Accelerator). A detailed, pin-accurate implementation
of this bus protocol is provided in [1]. The bus model defines physical layer realizations for
interrupt detection (MasterHardwareSyncDetect) and interrupt generation
(SlaveHardwareSyncGenerate), bus wires and a protocol-level (physical) implementation each
for master (MasterHardwareBus) and slave (SlaveHardwareBus) sides. In addition, media access
(MAC) channels (named [Master|Slave]HardwareBusLinkAccess) show the methods of how to
access the bus.

5. Refine the final computation model from part (a) to a PAM, where the CPU (PE1) is the bus
master and the Accelerator (PE2) is a bus slave. In a PAM, the pin-accurate physical and
MAC layer bus protocols are inlined into computing elements (PE1 or PE2). Note that, to
avoid deadlocks in case of communication with multiple bus slaves, each bus slave needs to
send an interrupt signal to inform its corresponding master when it is ready. The PAM will
need to include corresponding physical interrupt layer half channels inlined into the
computing element. In the PAM, all communications is happening through connected signal
wires. Within each computing element, there should be half-channels representing the
drivers. The l11, l14, l12+l13 processes do not call the bus/interrupt channels directly.
Rather, they should remain unrefined, and a driver adapter should translate the
read()/write() calls in the behaviors into bus communication, including all necessary
synchronization. A diagram of the resulting PAM is shown below:

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 4

image
reader

l14
image
writer

… l11

RTOS

PE1 PE2

l12+l13

M
as
te
rD
ri
ve
r

M
as
te
rD
ri
ve
r

M
as
te
rM

A
C

M
as
te
rP
ro
to
co
l

Intr

Intr

… Sl
av
eP

ro
to
co
l

Intr

Intr

Sl
av
eM

A
C

Sl
av
eD

ri
ve
r

Sl
av
eD

ri
ve
r

data[31:0]

addr[15:0]

control

Note that interrupts generated by the accelerator might be missed by the MasterDriver if PE1
is not performing a read or write. To address this problem, you will need introduce thread(s)
into the top-level module of PE1 that model the hardware of the processor continuously
checking for interrupts and recording them in a flag (in reality, there should also be an
interrupt service routine integrated with the OS model, but you are not required to model to
this level of accuracy in this lab). Instead of directly calling the interrupt detection, the driver
should check the flag and block when it is not set (either using an sc_event or a built-in
channel like sc_mutex or sc_semaphore). Keep in mind that this blocking or
synchronization channel needs to be properly integrated with the OS
(pre_wait()/post_wait()) to trigger a context switch when blocking the calling
process.

What is the throughput and latency of the PAM model? How does simulation execution time
of the PAM compare with previous models?

6. Next, we are going to replace the pin-accurate model of the system with a transaction-level
model (TLM) at an abstracted level. For this, the protocol-level interface (both master and
slave side) can be exchanged with a single HardwareBusProtocolTLM channel in which the
communication is not performed via the wires previously instantiated, but through plain
variables and events as a transaction-level model. Implement a corresponding transaction-
level channel model of the bus and refine the existing PAM of the system into a TLM-based
communication model. A TLM-based communication model has a similar structure as the
PAM. However, physical layers and wires are replaced with a TLM bus channel that will
transfer the data word by word. Furthermore, TLM versions of interrupts are realized by
replacing physical interrupt layers and wires with single handshake channels (that act as
interrupt TLMs). A diagram of the resulting TLM is shown below:

EE382N.23: Embedded Sys Dsgn/Modeling, Lab #2 5

image
reader

l14
image
writer

… l11

RTOS

PE1 PE2

l12+l13

M
as
te
rD
ri
ve
r

M
as
te
rD
ri
ve
r

M
as
te
rM

A
C

B
u
sT
LM

… Sl
av
eM

A
C

Sl
av
eD

ri
ve
r

Sl
av
eD

ri
ve
rIntr

Intr

Does your TLM reach the same accuracy (in measured latencies and throughput) as the
PAM? If not, explain why it is not possible for you to write a TLM that is 100% accurate.
What is the expected and actual simulation speedup of the TLM compared to the PAM, i.e.
does the achieved speedup match what you would theoretically expect?

7. (Extra Credit) Instead of a TLM at the protocol level, the MAC and bus protocol TLM
channels together can be exchanged by a single MAC-TLM channel, where both the MAC
and physical layers are abstracted away and data will be directly communicated without
modeling it being sliced into bus words. Implement a MAC-TLM version of the bus and
refine the communication model into a MAC-TLM based variant. Note that, to see the
benefits of MAC-TLM, the feature maps need to be transferred all at once instead of
transaction by transaction. You will need to send the entire output feature map of l11 as a
single struct-based token that encapsulates all data, instead of sending one float at a time.
Likewise, the output feature map of l12+l13 should also be sent as a single token.

A diagram of MAC-TLM communication model shown below. In this case, a MAC-TLM
channel encapsulates all the access and communication protocols. Note that interrupt models
remain unchanged, and are still realized as single handshake channels:

image
reader

l14
image
writer

… l11

RTOS

PE1 PE2

l12+l13

M
as
te
rD
ri
ve
r

M
as
te
rD
ri
ve
r

IM
A
C
M
as
te
r

B
u
s
M
A
C
‐T
LM

Intr

…

IM
A
C
Sl
av
e

Sl
av
eD

ri
ve
r

Sl
av
eD

ri
ve
rIntr

Can your MAC-TLM reach the same accuracy (in measured latencies and throughput) as the
PAM and/or TLM? In general, under what conditions will a MAC-TLM be able to provide
the same simulated timing behavior as a TLM or PAM? What is the expected and actual
speedup between PAM, TLM and MAC-TLM?

References

[1] https://github.com/kammirzazad/KPN-Refinement

