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Lecture 10: Outline

• Hardware/software co-design

• Separate partitioning & scheduling definitions

• Traditional partitioning & scheduling algorithms

• System-level design

• Combined partitioning & scheduling

• MPSoC mapping algorithms

• Design space exploration

• Multi-objective optimization

• Exploration algorithms
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Traditional Hardware/Software Co-Design

 Limited target architecture model

• Single CPU plus N hardware accelerators/co-processors

• Often limited to single optimization objective
– Minimize cost under performance constraints

– Maximize performance under resource constraints

 Classical approaches for partitioning & scheduling

HW

Software
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Partitioning

• The partitioning problem is to assign n objects 
O = {o1, ..., on} to m blocks (also called partitions) 
P = {p1, ..., pm}, such that 

• p1 p2  ... pm = O

• pi  pj = { }  i,j: i j and

• cost c(P) is minimized

 In system-level design:

• oi = processes/actors

• pj = processing elements (hardware/software processors)

• c(P) = ∑ cost of processor pj (zero if unused) and/or
communication cost between partitions

• Constrain processor load and/or number of partitions

 Bin packing and/or graph partitioning (both NP-hard)
Source: L. Thiele
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Hardware/Software Partitioning

• Constructive heuristics

• Hierarchical clustering
– Minimize notion of communication cost between partitions

• Iterative heuristics

• Kernighan-Lin (min-cut)
– Minimize notion of communication cost between partitions

• Meta-heuristics

• Simulated annealing
– Generic optimization approach

Extends to multi-processor system-level design

• …
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Scheduling

V1 V2 V4V3

t

G=(V,E)

Dt



• Assume that we are given a specification graph G=(V,E)

• A schedule  of G is a mapping V  Dt of a set of tasks V
to start times from domain Dt, such that none overlap

 In system-level design:
• Static vs. dynamic vs. quasi-static (static order)
• Preemptive vs. non-preemptive (atomic)
• Optimize throughput (rate of G), latency (makespan of G)
• Resource, dependency, real-time (deadline) constraints
 Implicit or explicit multi-processor partitioning (NP-hard)

Source: P. Marwedel
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Hardware/Software Scheduling

• Uni-processor scheduling 

• General-purpose OS schedulers
– Balance average performance, fairness, responsiveness

• Exact real-time scheduling methods
– RMS, EDF for independent periodic real-time task sets

– EDD, EDF for independent aperiodic real-time task sets

– LDF, EDF* for dependent (real-time) task graphs

 Throughput/makespan fixed, minimize latency (= meet deadlines)
 Schedulability (maximize utilization while guaranteeing deadlines)

Analytical cost models based on estimated task execution times

• KPN, SDF scheduling of generalized task graphs
– Constructive methods, focus on buffer/code sizing, completeness, ..

 Hardware accelerators as special cases

 Extensions for (homogeneous) multi-cores
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Multi-Processor Systems-on-Chip (MPSoCs)

• Multi-processor
• Heterogeneous
• Asymmetric multi-

processing (AMP)
• Distributed memory 

& operating system

• Multi-core
• Heterogeneous or homogeneous or identical
• Symmetric multi-processing (SMP)
• Shared memory & operating system
Multi-core processors in a multi-processor system

• Many-core
• > 10 processors/cores …
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Multi-Processor Mapping

• Partitioning
• Possible extensions of classical two-partition approaches

– Min-cut, clustering, annealing

 Truly parallel execution (not just accelerators)
– Need to consider effect on scheduling

• Scheduling
• Multi-core scheduling (SMP)

– Periodic, independent tasks
– Homogeneous processors/cores
Real-time extensions [EDF, P-Fair, …]

• Multi-processor scheduling (AMP)
– General (dependent/aperiodic) tasks
– Heterogeneous processors
Schedule & partitioning inter-dependent!

 Integrated partitioning & scheduling

Global queue (+ affinity)

Partitioned queue (+ load balancing)
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Multi-Processor Mapping Formulations (1)

• Models of computation
• Set of tasks (processes/actors) { T1, T2, … }

– Independent
– Task graph = data-flow/precedence graph (DFG/HSDF)

= directed, acylic graph (DAG) 
– Generalized task models (KPN, SDF)

• Timed models
– Arrival/release times ai (periods ti), soft/hard deadlines di (= ti )

• Models of Architecture
• Set of processing elements (processors) { P1, P2, … }

– Number and type fixed, constrained, or flexible
– With or without migration, homogeneous or heterogeneous

• Set of communication media (busses) { B1, B2, … }
– Shared, point-to-point, fully connected

• Set of storage elements (memories) { M1, M2, … }
– Shared, distributed
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Multi-Processor Mapping Formulations (2)

• Optimization problems
• Cost models

– Analytical: execution times ei (best/worst/average?), real-time calc.
– Simulation (dynamic scheduling, timing variations)

• Objectives/constraints
– Latency: response time ri = finish time fi – ai, lateness li = ri - di

– Throughput: 1 / makespan (schedule length)
– Cost: chip area, code/memory size, …

 Examples (all at least NP-complete):
• General job-shop scheduling

– Minimize makespan of independent task set on m processors
– Classical multi-processor scheduling: atomic jobs, no migration

• General DAG/DFG scheduling
– Minimize makespan for dependent task graph on m resources
– Minimize resources under makespan constraint
– Pipelined variants for periodic task graph invocations

• KPN, SDF scheduling
– Optimize latency, throughput, buffers, cost, … under x constraints

Multi-Processor Mapping Approaches

• Exact methods

• Integer linear programming (ILP)

• Constructive heuristics

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources 

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Simulated annealing

 Set-based multi-objective DSE approaches

 Many of these adapted from other domains

 DAG/DFG scheduling in compilers & high-level synthesis

 Production planning, operations research, …
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Multi-Processor Mapping Approaches
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Integer Linear Programming

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the ILP problem said 
to be a 0/1 (or binary) integer linear programming problem. 
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• Linear expressions over integer variables

• Cost function

• Constraints

Source: L. Thiele
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Integer Linear Program for Partitioning (1)

• Inputs
• Tasks ti, 1 ≤ i ≤ n
• Processors pk, 1 ≤ k ≤ m
• Cost ci,k , if task ti is in processor pk

• Binary variables xi,k

• xi,k = 1: task ti in block pk

• xi,k = 0: task ti not in block pk

• Integer linear  program:
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Source: L. Thiele
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Integer Linear Program for Partitioning (2)

• Additional constraints
• example: maximum number of hk objects in block k

• Popular approach
• Various additional constraints can be added
• If not solving to optimality, run times are acceptable and a 

solution with a guaranteed quality can be determined
• Can provide reference to provide optimality bounds of 

heuristic approaches
• Finding the right equations to model the constraints is an 

art… (but good starting point to understand a problem)
 Static scheduling can be integrated (SDFs)
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Source: L. Thiele
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Integer Linear Program for Scheduling

• Inputs

• Task graph TG: tasks ti, 1 ≤ i ≤ n with edges (ti,tj)

• Discrete time window: 0 ≤ t < Tmax

• Decision variables

• si,t ∈ {0,1}: task ti executes at time t

• Constraints

• Single task execution: ∑t si,t = 1,   1 ≤ i ≤ n

• Sequential task execution: ∑i si,t ≤ 1, 0 ≤ t < T

• Task dependencies ti →tj : ∑t t·sj,t ≥ ∑t t·si,t + 1

• Objective

• Minimize latency (task tn is sink):   minimize ∑t t·sn,t
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Start time of task ti

Integer Linear Program for Scheduling (2)

• Inputs

• Task graph TG: tasks ti, 1 ≤ i ≤ n with edges (ti,tj)

• Execution time ei of task ti, 1 ≤ i ≤ n 

• Discrete time window: 0 ≤ t < Tmax

• Decision variables

• si,t ∈ {0,1}: task ti starts execution at time t

• Constraints

• Single task execution: ∑t si,t = 1,   1 ≤ i ≤ n

• Sequential task execution:   ∑ ∑ , ≤	1, 0 ≤ t < T

• Task dependencies ti →tj :   ∑t t·sj,t ≥ ∑t t·si,t + ei

• Objective

• Minimize latency (task tn is sink):   minimize ∑t t·sn,t + en
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Is task ti executing at time t ?  Did it start in t, t-1, … ?
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ILP for Partitioning & Scheduling

• Inputs

• Tasks ti, 1 ≤ i ≤ n, edges (ti,tj), time window: 0 ≤ t < Tmax

• Processors pk, 1 ≤ k ≤ m, cost ci,k if task ti in processor pk

• Execution time ei,k of task ti on processor pk

• Decision variables

• xi,k ∈ {0,1}: task ti mapped to processor pk

• si,t ∈ {0,1}: task ti starts execution at time t

• Constraints

• Unique task mapping: ∑k xi,k = 1,  1 ≤ k ≤ m

• Single task execution: ∑t si,t = 1,   1 ≤ i ≤ n

• Sequential task execution on each processor:
∑ ∑ , · , ≤	1, 0 ≤ t < T, 1 ≤ k ≤ m

• Task dependencies ti →tj :   ∑t t·sj,t ≥ ∑t t·si,t + ∑k xi,k·ei,k

• Objective

• Weighted cost & latency:   min w1 ∑k ∑i xi,k·ci,k +w2(∑t t·sn,t + ∑k xn,k·en)
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Non-linear!

ILP for Partitioning & Scheduling (2)

• Inputs
• Tasks ti, 1 ≤ i ≤ n, edges (ti,tj), time window: 0 ≤ t < Tmax

• Processors pk, 1 ≤ k ≤ m, cost ci,k if task ti in processor pk

• Execution time ei,k of task ti on processor pk

• Decision variables
• si,k,t ∈ {0,1}: task ti starts at time t on processor pk

• Constraints
• Single & unique task mapping: ∑k∑t si,k,t = 1,   1 ≤ i ≤ n
• Sequential, non-overlapping execution on each processor:

∑ ∑ , ,,
≤	1, 0 ≤ t < T, 1 ≤ k ≤ m

• Task dependencies ti →tj : 
∑k∑t t·sj,k,t ≥ ∑k∑t t·si,k,t + ∑k∑t si,k,t ·ei,k

• Objective
• Weighted cost & latency: 

minimize w1(∑k ∑i ∑t ci,k ·si,k,t) + w2(∑k∑t t·sn,k,t+∑k∑t sn,k,t ·en,k )
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SDF Partitioning & Scheduling
• Inputs

• Actors ai, 1 ≤ i ≤ n, channels (ai,aj), time window: 0 ≤ t < Tmax

• Production, consumption, initial rates/tokens on (ai,aj): ci,j, pi,j, oi,j

• Repetitions for actor ai: ri

• Processors pk, 1 ≤ k ≤ m, cost ci,k if actor ai in processor pk

• Execution time ei,k of actor ai on processor pk

• Decision variables
• si,k,t ∈ {0,1}: actor ti starts at time t on processor pk

• Constraints
• Single & unique actor mapping: ∑k∑t si,k,t = ri,   1 ≤ i ≤ n
• Sequential, non-overlapping execution on each processor:

∑ ∑ , ,,
≤	1, 0 ≤ t < T, 1 ≤ k ≤ m

• Token balance equations for each channel ai→aj : 
∑ ∑ , ∙ , , 	 ∑ ∑ , ∙ , ,

, 	 	 , , 0 ≤ t < T

• Objective
• Weighted cost & latency (unique sink an with rn = 1): 

minimize w1(∑k ∑i ci,k · I{∑t si,k,t>0}) + w2(∑k∑t t·sn,k,t+∑k∑t sn,k,t ·en,k )
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• Allocation and partitioning
• Resource sharing

• Static scheduling
• Pipelining

Throughput   = 1 / Period
Latency = (End of the n-th exec. of sink) – (Start of the n-th exec. of source)

Pipelined Scheduling

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Pipelined Scheduling ILP (1)

• Multi-objective cost function
• Minimize: w1·Throughput + w2·Latency + w3·Cost

• Decision variables
• Actor to processor binding 
• Actor start times

• Constraints
• Execution precedence according to SDF semantics
• Unique actor mapping
• Processor-dependent actor execution times
• Sequential execution on each processor
• Stable periodic phase

 Optimize partition and schedule simultaneously

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Pipelined Scheduling ILP (2)

• ILP formulation of multi-processor SDF mapping

• Inputs
– Time window: 0 ≤ t ≤ T

– Repetition vector: number of executions ri for actor i

– Production and consumption rates on edge i1->i2: ci1,i2, pi1,i2

– Initial tokens on edge i1->i2: oi1,i2

– Execution time of actor i on processor j: di,j

– Cost of processor j: pcj

• Decision variables
– : Actor i mapped to processor j

– : Number of started/ended executions of actor i till time t

– : Indicator for start of periodic phase

• Helper variables
– : number of executions of i at time t

– : step function indicating first start of i in stable phase
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J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Pipelined Scheduling ILP (3)

• ILP formulation of multi-processor SDF mapping (cont’d)

• Constraints

– Unique actor mapping:

– Actor execution time:

– Token balance equations:

– Sequential (non-overlapping) execution:

– Periodicity of schedule:

• Objectives

– Period =

– Cost = 

– Latency =  
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Time interval between source’s 1st start 
and sink’s 1st end in the periodic phase

Difference in iteration 
numbers

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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SDF Mapping Optimizations

• Integer Linear Programming (ILP) formulation
• Optimal, but single solution only and exponential

 Heuristics
• Maximum throughput partition

– For fixed partition, the best throughput is 
determined by the critical processor

– Best throughput achievable if acyclic SDF or
enough initial tokens

• Two-stage ILP optimization process

 Throughput and cost are prioritized over latency

 Integrate communication model
 J. Lin, A. Gerstlauer, B. Evans, “Communication-aware Heterogeneous 

Multiprocessor Mapping for Real-time Streaming Systems,” JSP’12

Critical 
processor
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Multi-Processor Mapping Approaches

• Exact methods

• Exhaustive search

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources 

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Random search

• Iterative improvement/hill climbing

• Simulated annealing

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 27

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 28

Constructive Methods – List Scheduling
• Greedy heuristic

• Process graph in topology order (source to sink)

• Process ready nodes in order of priority (criticality)

 List scheduling variants only differ in priority function
– Highest level first (HLF), i.e. distance to the sink

– Critical path, i.e. longest path to the sink

• Widely used scheduling heuristic

• Operation scheduling in compilation & high-level synthesis
• Hu’s algorithm for uniform delay/resources (HLF, optimal)

• Iterative modulo scheduling for software pipelining

• Job-shop/multi-processor scheduling
• Graham’s algorithm (optimal online algorithm for ≤ 3 processors)

• Heterogeneous earliest-finish time first (HEFT)

 Natural fit for minimizing makespan/latency
O(n) complexity
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Constructive Methods – List Scheduling
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l = 0;

i = 0…n: pi ← Idle;

Ready ← Initial tasks (no dependencies);

while (!empty(Ready)) {

forall pi: status(pi) == Idle {

t = first(Ready, pi);  // by priority

pi ← (t, l, l + exec_time(t));

}

l = min(l + 1, finish_time(pi));

forall pi: finish_time(pi) == l {

Ready ← successors(current(pi));

pi ← Idle;

}

}

Multi-Processor Mapping Approaches

• Exact methods

• Exhaustive search

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers to minimize latency/makespan
– Hu’s algorithm as optimal variant for uniform tasks & resources 

• Force-directed schedulers to minimize resources

• Generic iterative heuristics

• Random search

• Iterative improvement/hill climbing

• Simulated annealing
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Iterative Methods

• Basic principle

• Start with some initial configuration (e.g. random)

• Repeatedly search neighborhood (similar configuration)
– Select neighbor as candidate (make a move)

• Evaluate fitness (cost function) of candidate
– Accept candidate under some rule, select another neighbor

• Stop if quality is sufficient, no improvement, or end time

• Ingredients

• Way to create an initial configuration

• Function to find a neighbor as next candidate (make move)

• Cost function (single objective)
– Analytical or simulation

• Acceptance rule, stop criterion

 No other insight into problem needed
EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 31

Source: L. Thiele

Iterative Improvement

• Greedy “hill climbing” approach

• Always and only accept if cost is lower (fitness is higher)

• Stop when no more neighbor (move) with lower cost

• Disadvantages

• Can get trapped in local optimum as best result
– Highly dependent on initial configuration

• Generally no upper bound on iteration length

 How to cope with disadvantages?

• Repeat with many different initial configurations

• Retain information gathered in previous runs

• Use a more complex strategy to avoid local optima

 Random moves & accept cost increase with probability > 0
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Source: L. Thiele
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Iterative Methods - Simulated Annealing

• From Physics
• Metal and gas take on a minimal-energy state during 

cooling down (under certain constraints)
– At each temperature, the system reaches a thermodynamic 

equilibrium
– Temperature is decreased (sufficiently) slowly

• Probability that a particle “jumps” to a higher-energy state: 

• Application to combinatorial optimization
• Energy = cost of a solution (cost function)

– Can use simulation or any other evaluation model (KPN, DDF, …)

• Iteratively decrease temperature
– In each temperature step, perform random moves until equilibrium
– Increases in cost are accepted with certain probability

(depending on cost difference and “temperature”)
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Source: L. Thiele
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Iterative Methods - Simulated Annealing

temp = temp_start;

cost = c(P);

while (Frozen() == FALSE) {

while (Equilibrium() == FALSE) {

P’ = RandomMove(P);

cost’ = c(P’);

deltacost = cost’ - cost;

if (Accept(deltacost, temp) > random[0,1)) {

P = P’;

cost = cost’;

}

}

temp = DecreaseTemp (temp);

}

tempk

deltacost

etempdeltacost 


),Accept(

Source: L. Thiele
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Iterative Methods - Simulated Annealing

• Random moves: RandomMove(P)
• Choose a random solution in the neighborhood of P

• Cooling Down: DecreaseTemp(), Frozen()
• Initialize: temp_start = 1.0
• DecreaseTemp: temp =  • temp    (typical: 0.8    0.99)
• Terminate (frozen): temp < temp_min or no improvement

• Equilibrium: Equilibrium()

• After defined number of iterations or when there is no more 
improvement

 Complexity

• From exponential to constant, depending on the 
implementation of the cooling down/equilibrium functions

• The longer the runtime, the better the quality of results
Source: L. Thiele

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 36

Lecture 10: Outline

 Partitioning & scheduling

Problem definitions

 Hardware/software co-design

Traditional partitioning & scheduling algorithms

 System-level design

MPSoC mapping algorithms

• Design space exploration

• Multi-objective optimization

• Exploration algorithms
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Multi-Objective Exploration

• Multi-objective optimization (MOO)

• In general, several solutions (implementations) exist with 
different properties, e.g., area and power consumption, 
throughput, etc.

• Implementations are often optimized with respect to many 
(conflicting) objectives

• Finding best implementations is task of multi-objective 
optimization

 Exact, constructive & iterative methods are prohibitive

 Large design space, multiple objectives, dynamic behavior

 Set-based iterative approaches (EA, ACO, PSO)

 Randomized, problem independent (black box)

 Often inspired by processes in nature 
(evolution, ant colonies, diffusion)

Source: C. Haubelt, J. Teich
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Objective Space
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Source: C. Haubelt, J. Teich
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incomparable

incomparable

is
dominated

dominates

Pareto Dominance

• Given: two decision vectors x1 and x2

• x1≻≻x2 (strongly dominates) if ∀i: fi(x1)<fi(x2)
• x1≻x2 (dominates) if ∀i: fi(x1)≤fi(x2) ∧ ∃j: fj(x1)<fj(x2)
• x1~x2 (indifferent) if ∀i: fi(x1)=fi(x2)
• x1||x2 (incomparable) if ∃i,j: fi(x1)<fi(x2) ∧ fj(x2)<fj(x1)

ob
je

ct
iv

e 
2

objective  1

◈

◈
◈

◈
◈

◈

◈

◈

◈
◈

Source: C. Haubelt, J. Teich
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Pareto Optimality

• Set of all solutions X

• A decision vector x ∊ X is said to be Pareto-optimal
if ∄y ∊ X: y ≻ x
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Pareto front

Source: C. Haubelt, J. Teich
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Optimization Goals

• Find Pareto-optimal solutions (Pareto front)

• Or a good approximation (convergence, diversity)

• With a minimal number of iterations
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Source: C. Haubelt, J. Teich

Design Space Exploration (DSE)

• Search space vs. decision space vs. design space

• Encoding of decisions defines search space
– Focus on observable decisions, hardcode unobservable ones

» No observable effect on design quality, e.g. address mappings

• Functional & architecture constraints define decision space
– Quickly prune & reject infeasible decisions 

» Smart encoding, avoid during construction, attach large quality penalty 

• Quality constraints restrict objective space
– Invalid solutions outside of valid quality range

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 42

Valid Region

Feasible Region

Search Space Decision Space Objective Space

decisions

Decoding
and setting of
unobservable

Functional Constraints Non-Functional Constraints

Evaluation

Encoding of 
decisions
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Design Space Exploration (DSE)

• Design Space Exploration is an iterative process

• How can a single design point be evaluated?
– Most DSE approaches rely on simulation-based cost models

• How can the design space be covered during the 
exploration process?

Covering the 
design space

(Decision making)

Evaluating 
design points
(Refinement)

Source: C. Haubelt, J. Teich, Univ. of Erlangen-Nuremberg
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Design Space Exploration (DSE)

• Multi-objective evolutionary algorithms (MOEAs)

• Capable to explore the search space very fast, i.e., they 
can find some good solutions after a few iterations 
(generations)

• Explore high dimensional search spaces

• Can solve variety of problems (discrete, continuous, …)

• Work on a population of individuals in parallel

• Black box optimization (generic evaluation model)

• Fitness evaluation

• Simulation, analysis or hybrid
– Tradeoff between accuracy and speed

• Hierarchical optimization
– Combination with second-level optimization

Source: C. Haubelt, J. Teich
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Init Population

Fitness 
assignment

selection

Recombination

Begin

End ?No Problem Solved 

Multi-Objective Evolutionary Algorithm

x1

x2

x2

x1

f(x1,x2)

Source: C. Haubelt, J. Teich
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Fitness Selection

1

2 3
4

• Pareto ranking

Source: C. Haubelt, J. Teich
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Recombination

Optimized 
solutions
Optimized 
solutions

MOEAMOEA
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Source: C. Haubelt, J. Teich
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Hierarchical Optimization 

• SDF mapping heuristics

• Multi-objective evolutionary algorithm (MOEA) + ILP
– Partitioning + scheduling
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SDF Mapping Heuristics

• MOEA with Scheduling ILP

Single Solution Pareto Front

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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• Run-time comparison

• Artificial cyclic/acyclic SDF graphs mapped to 3 processors

SDF Mapping Results (1)

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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SDF Mapping Results (2)

• Design space exploration for an MP3 decoder

• Convergence to Pareto front

• Within 10-6 of optimum

• 12x better runtime
– <1 hour execution time

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Lecture 10: Summary

• System-level mapping

• Formalization as a basis for automation
– Partitioning (allocation, binding) & scheduling

– General optimization problems

• Classical HW/SW co-design approaches
– Single processor + co-processors

– Real-time scheduling theory

• Multi-processor mapping heuristics
– ILPs, list scheduling, simulated annealing

• Design space exploration (DSE)
– Multi-objective optimization (MOO)

– Set-based iterative methods: MOEAs


