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* Hardware/software co-design
» Separate partitioning & scheduling definitions
+ Traditional partitioning & scheduling algorithms

» System-level design
« Combined partitioning & scheduling
* MPSoC mapping algorithms

» Design space exploration
» Multi-objective optimization
* Exploration algorithms
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Traditional Hardware/Software Co-Design
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» Limited target architecture model

» Single CPU plus N hardware accelerators/co-processors

» Often limited to single optimization objective
— Minimize cost under performance constraints
— Maximize performance under resource constraints

» Classical approaches for partitioning & scheduling
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Partitioning

* The partitioning problem is to assign n objects
O ={o4, ..., 0,} to m blocks (also called partitions)
P={py .-y Py}, Such that

s pup, U...up,=0
* ppp={} Vijizjand
 cost ¢(P) is minimized

» In system-level design:
* 0, = processes/actors
* p; = processing elements (hardware/software processors)

* ¢(P) = X cost of processor p; (zero if unused) and/or
communication cost between partitions
« Constrain processor load and/or number of partitions

» Bin packing and/or graph partitioning (both NP-hard)
Source: L. Thiele
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Hardware/Software Partitioning

e Constructive heuristics

 Hierarchical clustering
— Minimize notion of communication cost between partitions

» lterative heuristics
» Kernighan-Lin (min-cut)
— Minimize notion of communication cost between partitions

 Meta-heuristics

» Simulated annealing
— Generic optimization approach
» Extends to multi-processor system-level design
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Scheduling

+ Assume that we are given a specification graph G=(V,E)

* A schedule rof Gis a mapping V — D, of a set of tasks V
to start times from domain D,, such that none overlap

G=(VE) @\@

T

D B \\‘< \\“u . t

t

» In system-level design:
« Static vs. dynamic vs. quasi-static (static order)
* Preemptive vs. non-preemptive (atomic)
» Optimize throughput (rate of G), latency (makespan of G)
* Resource, dependency, real-time (deadline) constraints
> Implicit or explicit multi-processor partitioning (NP-hard)

Source: P. Marwedel
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Hardware/Software Scheduling

* Uni-processor scheduling
» General-purpose OS schedulers
— Balance average performance, fairness, responsiveness
» Exact real-time scheduling methods
— RMS, EDF for independent periodic real-time task sets
— EDD, EDF for independent aperiodic real-time task sets
— LDF, EDF* for dependent (real-time) task graphs
» Throughput/makespan fixed, minimize latency (= meet deadlines)
» Schedulability (maximize utilization while guaranteeing deadlines)
» Analytical cost models based on estimated task execution times
* KPN, SDF scheduling of generalized task graphs
— Constructive methods, focus on buffer/code sizing, completeness, ..
» Hardware accelerators as special cases

» Extensions for (homogeneous) multi-cores
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Multi-Processor Systems-on-Chip (MPSo0Cs)

* Multi-processor CPU
. Mem DSP
Heterogen.eous . -
* Asymmetric multi- oS v o570
processing (AMP) CPU Bus 3 DSP Bus#

l Bridge I
\J

 Distributed memory
& operating system

HW Router P

* Multi-core
» Heterogeneous or homogeneous or identical
* Symmetric multi-processing (SMP)
+ Shared memory & operating system
» Multi-core processors in a multi-processor system

* Many-core
» > 10 processors/cores ...
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Multi-Processor Mapping

» Partitioning
» Possible extensions of classical two-partition approaches
— Min-cut, clustering, annealing

» Truly parallel execution (not just accelerators)
— Need to consider effect on scheduling

Global queue (+ affinity)

* Scheduling
» Multi-core scheduling (SMP) Reatyaueve ki
— Periodic, independent tasks @
— Homogeneous processors/cores F ' o
» Real-time extensions [EDF, P-Fair, ...] j

* Multi-processor scheduling (AMP) Partitioned queue (+ load balancing)

— General (dependent/aperiodic) tasks [ Eae
Ti_) Il/s—) Core 0

- Heterogeneous processors ReadyGueuel

& :
» Schedule & partitioning inter-dependent! ®®

ReadyQueus

5 OO o]

» Integrated partitioning & scheduling
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Multi-Processor Mapping Formulations (1)

* Models of computation
+ Set of tasks (processes/actors) { T}, T5, ... }

— Independent
— Task graph = data-flow/precedence graph (DFG/HSDF)
= directed, acylic graph (DAG)
— Generalized task models (KPN, SDF)
* Timed models
— Arrival/release times q, (periods ¢,), soft/hard deadlines d; (=¢,)

* Models of Architecture
+ Set of processing elements (processors) { P, P,, ... }
— Number and type fixed, constrained, or flexible
— With or without migration, homogeneous or heterogeneous
» Set of communication media (busses) { B, B,, ... }
— Shared, point-to-point, fully connected
+ Set of storage elements (memories) { M,, M,, ... }
— Shared, distributed
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Multi-Processor Mapping Formulations (2)

* Optimization problems

» Cost models
— Analytical: execution times ¢, (best/worst/average?), real-time calc.
— Simulation (dynamic scheduling, timing variations)

» Objectives/constraints
— Latency: response time r; = finish time f; — a,, lateness [, =r, - d,
— Throughput: 1 / makespan (schedule length)
— Cost: chip area, code/memory size, ...

» Examples (all at least NP-complete):

» General job-shop scheduling
— Minimize makespan of independent task set on m processors
— Classical multi-processor scheduling: atomic jobs, no migration
» General DAG/DFG scheduling
— Minimize makespan for dependent task graph on m resources
— Minimize resources under makespan constraint
— Pipelined variants for periodic task graph invocations
» KPN, SDF scheduling
— Optimize latency, throughput, buffers, cost, ... under x constraints
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Multi-Processor Mapping Approaches

+ Exact methods
* Integer linear programming (ILP)

e Constructive heuristics

 List schedulers to minimize latency/makespan
— Hu’s algorithm as optimal variant for uniform tasks & resources
* Force-directed schedulers to minimize resources

« Generic iterative heuristics
+ Simulated annealing
» Set-based multi-objective DSE approaches

» Many of these adapted from other domains
» DAG/DFG scheduling in compilers & high-level synthesis
» Production planning, operations research, ...
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Multi-Processor Mapping Approaches

+ Exact methods
* Integer linear programming (ILP)
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Integer Linear Programming

* Linear expressions over integer variables

» Cost function C= Zaixl. witha. eR,x, e N (1)
x;eX
» Constraints Vj e J: Zbl.,j x; 2c,withd, .,c,eR (2)
x;eX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all x; are constrained to be either 0 or 1, the ILP problem said
to be a 0/1 (or binary) integer linear programming problem.

Source: L. Thiele
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Integer Linear Program for Partitioning (1)

* Inputs

» Taskst,1<i<n

* Processorsp,, | <k<m

+ Cost ¢, if task ¢, is in processor p,
+ Binary variables x;

* x;; = 1: task ¢, in block p,

* x;; = 0: task ¢, not in block p,

* Integer linear program:
Xikel0l} 1<i<nl<k<m

m -

inkzl 1<1<n

k=l

. . . m n -

minimize ¥ Y Xj-Cjx 1<k<m,1<i<n
k=li=l ’

Source: L. Thiele
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Integer Linear Program for Partitioning (2)

« Additional constraints
+ example: maximum number of 4, objects in block &

n
ZXi,kSh( 1<k<m
i=1

* Popular approach
» Various additional constraints can be added

* If not solving to optimality, run times are acceptable and a
solution with a guaranteed quality can be determined

» Can provide reference to provide optimality bounds of
heuristic approaches

* Finding the right equations to model the constraints is an
art... (but good starting point to understand a problem)

» Static scheduling can be integrated (SDFs)

Source: L. Thiele
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Integer Linear Program for Scheduling

* Inputs
* Task graph 7G: tasks 7, 1 <i <n with edges (7,)
* Discrete time window: 0<¢<T, .

Decision variables
+ s5;,€{0,1}: task ¢, executes at time ¢

e Constraints

+ Single task execution: 28, =1, 1<i<n
+ Sequential task execution: 28, <1, 0<¢t<T
* Task dependencies 7, —1;: 2als; =2, ts, 1
- Objective Start time of task ¢,

* Minimize latency (task ¢, is sink): minimize }, ¢,
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Integer Linear Program for Scheduling (2)

* Inputs
* Task graph TG: tasks 7, 1 <i <n with edges (1)
» Execution time ¢, of task ¢, 1 <i<n
 Discrete time window: 0<¢<T,, .
Decision variables
. s;,€{0,1}: task ¢, starts execution at time ¢
+ Constraints
+ Single task execution: 28 =1, 1<i<nm
* Sequential task execution: ¥, ;. 15,<1, 0<¢<T
\—Y—}

Is task ¢, executing at time ¢ ? = Did it startin ¢, 1, ... ?
- Task dependencies t,—t;: 3, ts;,, =3, ts;, e
* Objective
* Minimize latency (task ¢, is sink): minimize ), ts,, + ¢,
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ILP for Partitioning & Scheduling

* Inputs
+ Tasks ¢, 1 <i<n, edges (¢,¢), time window: 0<¢<T,,,
* Processors p;, 1 <k<m, cost c;, if task ¢, in processor p,
+ Execution time ¢, of task ¢, on processor p,
Decision variables
* x;; € {0,1}: task 1, mapped to processor p;
+ s;,€ {0,1}: task ¢ starts execution at time ¢
+ Constraints

* Unique task mapping: 2uXp=1 1<k<m
» Single task execution: 28, =1, 1<i<n
» Sequential task execution on each processor:

t )
YiXr=t—e; 1, 0<t<T 1<k=m
+ Task dependencies ¢, —1;: 2t 2 S T e
* Objective Non-linear!

+ Weighted cost & latency: min w, », > x, ¢, +W, (3, 5, + 24X, 1€,)

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 19

ILP for Partitioning & Scheduling (2)

* Inputs
 Tasks 1, 1 <i<n, edges (1,¢), time window: 0<¢<T,,.
* Processors p,, 1 <k<m, cost c;, if task ¢, in processor p,
* Execution time e, of task #, on processor p,
» Decision variables
* 5., € 10,1}: task ¢ starts at time 7 on processor p,
+ Constraints
+ Single & unique task mapping: > >, s,,, =1, 1<i<n
« Sequential, non-overlapping execution on each processor:
Yidimtoeyt1Sik <1, 0<t<T 1<k<m
+ Task dependencies ¢, —t;:
2 Ui Z 22 USine T 2adsSins ik
+ Objective
* Weighted cost & latency:
minimize w2 2 2 Cip Sipe) T W U8k 2kt Sks €
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SDF Partitioning & Scheduling

* Inputs
* Actors aq;, 1 <i<n, channels (4,4, time window: 0<¢<T,,,.
* Production, consumption, initial rates/tokens on (a,a)): ¢;;, p;; 0;;
* Repetitions for actor a;: r,
* Processors p,, 1 <k<m, costc,, if actor g, in processor p,
 Execution time e, of actor a; on processor p,
+ Decision variables
* s € {0,1}: actor ¢, starts at time 7 on processor p,
+ Constraints
+ Single & unique actor mapping: >, 5,;, =75
» Sequential, non-overlapping execution on each processor:
Zizgzt_ei‘kﬂ Sixs<1, 0<t<T, 1<k<m
+ Token balance equations for each channel ¢, —a;:
YiXe=0Cij Sjkr < Xk ZZZ”‘ Dij Sikr T 0pj, 0=t<T
* Objective
* Weighted cost & latency (unique sink a, with r, = 1):
minimize w3 X € I8 700 T Wo(ds 08kt 22 Snke €nic)
.
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Indicator function

1<i<n

Pipelined Scheduling

* Allocation and partitioning
* Resource sharing

R V I
a

. . ARM
* Static scheduling
* Plpe“nlng [ \/]atency \/
T T R O (N O B T T T T T T 1 l T T T ™
| | | I | | | | | | | | | | | | | | 1 | |
ARM ! Ll 5 [P T4 [ P |5 [ ¥ |5
FPGA | || P G EHES I £l S F N N ES E e
DSP | |
| | | | | | | | |
time 01" o © period1 " period2 " ‘period 3

startup phase - stable periodic phase
Throughput =1/ Period
Latency = (End of the n-th exec. of sink) — (Start of the n-th exec. of source)

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP'11
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Pipelined Scheduling ILP (1)

* Multi-objective cost function
* Minimize: w,-Throughput + w,-Latency + w-Cost

e Decision variables
 Actor to processor binding
e Actor start times

+ Constraints
» Execution precedence according to SDF semantics
» Unique actor mapping
» Processor-dependent actor execution times
» Sequential execution on each processor
» Stable periodic phase

» Optimize partition and schedule simultaneously

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Pipelined Scheduling ILP (2)

* ILP formulation of multi-processor SDF mapping

* Inputs
— Time window: 0<¢<T
— Repetition vector: number of executions r; for actor i
— Production and consumption rates on edge i/->i2: ¢;; ;5 p;; i
— Initial tokens on edge i/->i2: 0, ;,
— Execution time of actor i on processor: d,;
— Cost of processor j: pc;
* Decision variables
- 4,;€ {0,1} : Actor i mapped to processor j
- S,(?),E.(t) : Number of started/ended executions of actor i till time ¢
— start(t) : Indicator for start of periodic phase
» Helper variables
- W)= Z::O (S;(r)— E.(r)) : number of executions of i at time ¢
— F,(¢) : step function indicating first start of i in stable phase

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP'11
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Pipelined Scheduling ILP (3)

* ILP formulation of multi-processor SDF mapping (cont’d)

» Constraints

— Unique actor mapping: Z; 4,,=1

— Actor execution time: S,(¢) = 2,« A E(t+d,))

— Token balance equations: Ci125:2(t) < Py n By (6) + 051

— Sequential (non-overlapping) execution: Y 4; ,(S,(t)— E,(1)) <1

— Periodicity of schedule: W,(T)~ " W,(t)start(t) =r, Z_/ 4..d,
» Objectives

— Period= T =Y t-start()

— Cost= ZjAllocj - pe;

— Latency =Y (KO~ F,(0)+ ) 4, d, ;+(S,(T)~S,(T))- Period

Y Y
Time interval between source’s 15t start Difference in iteration

and sink’s 1stend in the periodic phase numbers

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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SDF Mapping Optimizations

* Integer Linear Programming (ILP) formulation
« Optimal, but single solution only and exponential

» Heuristics
+ Maximum throughput partition L

3 :I |
— For fixed partition, the best throughput is | 211 345 FREY Critical
determined by the critical processor -— processor
— Best throughput achievable if acyclic SDF or ‘
enough initial tokens " period 1

» Two-stage ILP optimization process

Stage |: Partitioning -\ Stage lI: Scheduling
Maximize throughput w Minimize latency
and minimize cost under throughput constraint

» Throughput and cost are prioritized over latency

» Integrate communication model

» J. Lin, A. Gerstlauer, B. Evans, “Communication-aware Heterogeneous
Multiprocessor Mapping for Real-time Streaming Systems,” JSP’12
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Multi-Processor Mapping Approaches

* Constructive heuristics
« Random mapping
 List schedulers to minimize latency/makespan
— Hu’s algorithm as optimal variant for uniform tasks & resources
* Force-directed schedulers to minimize resources
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Constructive Methods — List Scheduling

* Greedy heuristic

» Process graph in topology order (source to sink)

» Process ready nodes in order of priority (criticality)

» List scheduling variants only differ in priority function
— Highest level first (HLF), i.e. distance to the sink
— Critical path, i.e. longest path to the sink

* Widely used scheduling heuristic

» Operation scheduling in compilation & high-level synthesis
* Hu’s algorithm for uniform delay/resources (HLF, optimal)
+ Iterative modulo scheduling for software pipelining

» Job-shop/multi-processor scheduling
* Graham'’s algorithm (optimal online algorithm for < 3 processors)
» Heterogeneous earliest-finish time first (HEFT)

» Natural fit for minimizing makespan/latency
» O(n) complexity

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 28
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Constructive Methods — List Scheduling

1 =0;
i = 0.n: p;, « ldle;
Ready < Initial tasks (no dependencies);
while (!empty(Ready)) {
forall p,: status(p;) == ldle {
t = first(Ready, p;); 7/ by priority
p; « (t, 1, 1 + exec time(t));

}

1 =min(l + 1, finish time(p;));

forall p,: finish time(p;) == 1 {
Ready « successors (current (p;));

}

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer
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Multi-Processor Mapping Approaches

* Generic iterative heuristics
+ Random search
* lterative improvement/hill climbing
+ Simulated annealing

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer
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lterative Methods

« Basic principle
« Start with some initial configuration (e.g. random)

* Repeatedly search neighborhood (similar configuration)
— Select neighbor as candidate (make a move)

« Evaluate fitness (cost function) of candidate
— Accept candidate under some rule, select another neighbor

 Stop if quality is sufficient, no improvement, or end time

* Ingredients
+ Way to create an initial configuration
* Function to find a neighbor as next candidate (make move)

+ Cost function (single objective)
— Analytical or simulation

» Acceptance rule, stop criterion
» No other insight into problem needed

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 31

Source: L. Thiele

lterative Improvement

* Greedy “hill climbing” approach
» Always and only accept if cost is lower (fitness is higher)
» Stop when no more neighbor (move) with lower cost

« Disadvantages

» Can get trapped in local optimum as best result
— Highly dependent on initial configuration

» Generally no upper bound on iteration length

» How to cope with disadvantages?
* Repeat with many different initial configurations
» Retain information gathered in previous runs
» Use a more complex strategy to avoid local optima
» Random moves & accept cost increase with probability > 0

Source: L. Thiele

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 32
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Iterative Methods - Simulated Annealing

* From Physics
* Metal and gas take on a minimal-energy state during
cooling down (under certain constraints)
— At each temperature, the system reaches a thermodynamic
equilibrium
— Temperature is decreased (sufficiently) slowly
» Probability that a particle “jumps” to a higher-energy state:

€i—€ivl
P(e;, e 1, T)=e kpT
« Application to combinatorial optimization
» Energy = cost of a solution (cost function)
— Can use simulation or any other evaluation model (KPN, DDF, ...)

* lteratively decrease temperature
— In each temperature step, perform random moves until equilibrium

— Increases in cost are accepted with certain probability
(depending on cost difference and “temperature”)

Source: L. Thiele

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 33

Iterative Methods - Simulated Annealing
temp = temp start;
cost = c(P);
while (Frozen() == FALSE) {
while (Equilibrium() == FALSE) {
P’ = RandomMove (P) ;
cost’ = c(P");
deltacost = cost’ - cost;
if (Accept (deltacost, temp) > random[0,1)) {
P =P;
cost = cost’; _ deltacost
} Accept(deltacost,temp)=e  *1€mP
b
temp = DecreaseTemp (temp);
}
Source: L. Thiele
EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 34
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Iterative Methods - Simulated Annealing

* Random moves: RandomMove (P)
» Choose a random solution in the neighborhood of P

* Cooling Down: DecreaseTemp(), Frozen()
* Initialize: temp_start=1.0
* DecreaseTemp: temp = a «temp (typical: 0.8 < a <0.99)
+ Terminate (frozen): temp < temp_min or no improvement

* Equilibrium: EquilibriumQ

» After defined number of iterations or when there is no more
improvement

» Complexity
+ From exponential to constant, depending on the
implementation of the cooling down/equilibrium functions
» The longer the runtime, the better the quality of results

Source: L. Thiele

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 35

Lecture 10: QOutline

* Design space exploration
* Multi-objective optimization
» Exploration algorithms

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10 © 2019 A. Gerstlauer 36
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Multi-Objective Exploration

throughput, etc.
(conflicting) objectives

optimization

* Multi-objective optimization (MOO)
* In general, several solutions (implementations) exist with
different properties, e.g., area and power consumption,

* Implementations are often optimized with respect to many

» Finding best implementations is task of multi-objective

» Exact, constructive & iterative methods are prohibitive

» Large design space, multiple objectives, dynamic behavior
» Set-based iterative approaches (EA, ACO, PSO)

» Randomized, problem independent (black box)

» Often inspired by processes in nature
(evolution, ant colonies, diffusion)

Source: C. Haubelt, J. Teich

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10
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Objective Space
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Source: C. Haubelt, J. Teich
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Pareto Dominance

« Given: two decision vectors x,; and X,
* X,>>X, (strongly dominates) if

°* X>X, (dominates) if
* Xy4~Xy (indifferent) if
o X4[|%s (incomparable) if

1
c:, incomparable | dominates
= & :
3 I
o) ® :
S 9 e
|
1
' &
® ®
dominated
®
incomparable
objective 1

Vi fi(xq)<fi(x2)

Vi fi(xq)=fi(x2) A 3j: fi(xq)<fi(x2)
Vi fi(xq)=fi(x2)

3ij: fi(xq)<fi(x2) A fi(xp)<fi(x4)

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10
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Pareto Optimality

e Set of all solutions X

if Aye Xy >X

objective 2
©

A decision vector x € X is said to be Pareto-optimal

Pareto front

objective 1
Source: C. Haubelt, J. Teich
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Optimization Goals

Find Pareto-optimal solutions (Pareto front)

Or a good approximation (convergence, diversity)
With a minimal number of iterations

N
o
=2
k3] @
QL
o]
° &
[ . .
objective 1
Source: C. Haubelt, J. Teich
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Design Space Exploration (DSE)

Functional Constraints Non-Functional Constraints

|nfeasib|e invalid L e )
Decoding Evaluation °
Encoding of ¢  and setting of —=o0
decisions unobservable Valid Region o
decisions ° o

Search Space

Decision Space Objective Space

Search space vs. decision space vs. design space
» Encoding of decisions defines search space

— Focus on observable decisions, hardcode unobservable ones
» No observable effect on design quality, e.g. address mappings
* Functional & architecture constraints define decision space
— Quickly prune & reject infeasible decisions
» Smart encoding, avoid during construction, attach large quality penalty
* Quality constraints restrict objective space
— Invalid solutions outside of valid quality range

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10
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Design Space Exploration (DSE)

» Design Space Exploration is an iterative process

* How can a single design point be evaluated?
— Most DSE approaches rely on simulation-based cost models

* How can the design space be covered during the
exploration process?

T N

Evaluating Covering the

design points design space
(Refinement) (Decision making)

<7

Source: C. Haubelt, J. Teich, Univ. of Erlangen-Nuremberg
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Design Space Exploration (DSE)

* Multi-objective evolutionary algorithms (MOEAS)

« Capable to explore the search space very fast, i.e., they
can find some good solutions after a few iterations
(generations)

+ Explore high dimensional search spaces

« Can solve variety of problems (discrete, continuous, ...)
« Work on a population of individuals in parallel

» Black box optimization (generic evaluation model)

» Fitness evaluation
« Simulation, analysis or hybrid
— Tradeoff between accuracy and speed
» Hierarchical optimization
— Combination with second-level optimization

Source: C. Haubelt, J. Teich
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Multi-Objective Evolutionary Algorithm

Init Population

selection
Recombination

f(x1,x2)

Problem Solved ©

Source: C. Haubelt, J. Teich
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+ Pareto ranking
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f1(x)
Source: C. Haubelt, J. Teich
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Recombination

Optimized
solutions

Source: C. Haubelt, J. Teich
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Hierarchical Optimization
Evolutionary Algorithm Evaluation
' Performance metrics
Select
S NI (SRR, [ ) I S
o A £l £ |
=Bl Cross-over =B 2 —
o e o ILP < Analysis/ H
= < =M solver 4 simulation |
E ) E 4 2 i i
i g | g '
L N ——
Mutate - ‘ e
S
Mapping solutions

___________________________

SDF mapping heuristics

* Multi-objective evolutionary algorithm (MOEA) + ILP
— Partitioning + scheduling

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 10
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SDF Mapping Heuristics

* MOEA with Scheduling ILP

Single Solution Pareto Front
Throughput/Cost || | Two-Objective l Ehroughpuil j [ Sohedu!lng ]
Computation | MOEA

Three-Objective
MOEA

Throughput/Cost/Latency
3-D Pareto Front

Throughput/Cost
2-D Pareto Front

Scheduling l

ILP

Best Mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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SDF Mapping Results (1)

* Run-time comparison
» Artificial cyclic/acyclic SDF graphs mapped to 3 processors

1200 B T T T T T T T T T
—F—1-ILP, cyc h
ook | B 1-‘|LF', acyc ]
—&— SingleEA, cyc
I sao | —#— SingleEA, acyc ]
2 —&—2ILP, cyc
g son - —B—2ILP, acyc i
<
3
o 400+ -
200 - B

5 B z 8 9 10 1 12 13 14 15
MNumber of Actors

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP'11
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SDF Mapping Results (2)

* Design space exploration for an MP3 decoder

ReOrderd

Req0 —

N TN N

1w 3 ) 3 Ere:

- ') A ’ Freqlnv

0K sy wlo 7))o
SN N ./ ./ \_/ N/
Hot W23 l Alias IMDCT Synth

NN Reduction

Reql S~ Stereo
ReOrder]

» Convergence to Pareto front
* Within 106 of optimum
* 12x better runtime

— <1 hour execution time

Solution of global ILP
with Ay = 0.8 and A, = 0.2

0

g0

T

507
4

30
3
Processor Cost 0 20 Iteration Period

40

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11
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Lecture 10: Summary

« System-level mapping
» Formalization as a basis for automation
— Partitioning (allocation, binding) & scheduling
— General optimization problems
 Classical HW/SW co-design approaches
— Single processor + co-processors
— Real-time scheduling theory
» Multi-processor mapping heuristics
— ILPs, list scheduling, simulated annealing
 Design space exploration (DSE)
— Multi-objective optimization (MOO)
— Set-based iterative methods: MOEAs
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