
EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 1

EE382N.23:
Embedded System Design and Modeling

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 4 – Process-Based MoCs

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 2

Lecture 4: Outline

• Process-based Models of Computation (MoCs)

• Processes and threads

• (Kahn) Process networks

• Dataflow

• Process calculi

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 2

Types of Parallelism

• Task parallelism (MIMD)

• Multiple independent processes/threads
– Separate code and data

• Asynchronous operation
– Explicit data communication & synchronization

• Data parallelism (SIMD/SPMD)

• Multiple instances of same thread
– Operating on independent pieces of data

• Lockstep or bulk synchronous operation
– Implicit barrier type of synchronization (fork-join)

 Ideally independent of implementation model

• Shared (SMP) vs. distributed (AMP) memory, SMT vs. SIMT

 Some combinations better implementable than others

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 3

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 4

Process-Based Models

 Activity and causality (data flow)
 Asynchronous, coarse-grain concurrency

• Set of processes/threads
• Execute in parallel

– Concurrent composition

• Each process is internally sequential
– Imperative program

• Inter-process communication
• Shared memory

– Synchronization: critical section/mutex, monitor, …

• Incomprehensible [Lee’06]
– Non-determinism, race conditions, deadlocks, …

 Traditional models are poor match [OS, Java]
• Best effort, no correctness guarantees

Producer

Consumer

Process1 Process2

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 3

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 5

Consider a Simple Example

“The Observer pattern defines a one-to-many dependency
between a subject object and any number of observer
objects so that when the subject object changes state, all
its observer objects are notified and updated
automatically.”

Eric Gamman Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-
Wesley, 1995

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 6

Example: Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Will this work in a multithreaded context?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 4

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 7

Observer Pattern with Mutexes

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Javasoft recommends against this.
What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 8

Mutexes using Monitors are Minefields

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

• valueChanged() may attempt to acquire
a lock on some other object and stall.

• If the holder of that lock calls
addListener(): deadlock!

x calls addListener

lock

mutex

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 5

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 9

Observer Pattern Gets Complicated

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

while holding lock, make a copy of
listeners to avoid race conditions

notify each listener outside of the
synchronized block to avoid deadlock

This still isn’t right. What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 10

How to Make it Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value-changes in the wrong order!

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 6

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 11

Problems with Thread-Based Concurrency

• Nontrivial software written with threads, semaphores, and
mutexes is incomprehensible to humans

• Nondeterministic, best effort
– Explicitly prune away nondeterminism

• Poor match for embedded systems
– Lack of timing abstraction

• Termination in reactive systems
– Composability?

 Search for non-thread-based models: which are the
requirements for appropriate specification techniques?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 12

Kahn Process Network (KPN) [Kahn74]

• C-like processes communicating via FIFO channels
• Unbounded, uni-directional, point-to-point queues

– Sender (send()) never blocks
– Receiver (wait()) blocks until data available

 Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation

independent)

P1 P3

P2 P4

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 7

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 13

Kahn Process Network (KPN) (2)

• Determinism

• Process can’t peek into channels and can only wait on one
channel at a time

• Output data produced by a process does not depend on
the order of its inputs

 Terminates on global deadlock
 All process blocked on receive() (or have otherwise ended)

• Formal mathematical representation

• Process = continuous function mapping input to output
streams

• Turing-complete, undecidable (in finite time)

• Terminates (deadlocks)?

• Can run in bounded buffers (memory)?

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 14

KPN Scheduling

• Scheduling determines memory requirements

• Data-driven scheduling

• Run processes whenever they are ready:

Always emit tokens

Only consumes
tokens from P1

Tokens will
accumulate

here

P1

P2

P3

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 8

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 15

Demand-Driven Scheduling

• Only run a process whose outputs are being solicited

• Synchronous, unbuffered message-passing

• However...

Always
consume

tokens

Always
produce
tokens

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 16

KPN Scheduling

• Inherent tradeoffs
• Completeness

• Run processes as long as they are ready
 Might require unbounded memory

• Boundedness
• Block senders when reaching buffer limits
 Potentially incomplete, artificial deadlocks and early termination

 Data driven: completeness over boundedness
 Demand driven: boundedness over completeness and

even non-termination

 Hybrid approach [Parks95]
• Start with smallest bounded buffers
• Schedule with blocking send() until artificial deadlock

– At least one process blocked on send()

• Increase size of smallest blocked buffer and continue

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 9

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 17

Parks’ Algorithm

• Start with buffer size 1

• Run P1

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

• Start with buffer size 1

• Run P1, P2

• Start with buffer size 1

• Run P1, P2, P3

• Start with buffer size 1

• Run P1, P2, P3, P4

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 18

Parks’ Algorithm

• P2 blocked

• Run P1, P3, P1, … indefinitely

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 10

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 19

Parks’ Algorithm

• But …

P1

P2

P3

P4

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 20

Kahn Process Networks (KPN)

• Difficult to implement right

• Size of infinite FIFOs in limited physical memory?

• Dynamic memory allocation, dependent on schedule

• Dynamic scheduling & context switching

• Boundedness vs. completeness vs. non-termination
(deadlocks), are undecidable, depend on runtime schedule

• Message-passing communication [MPI, Unix pipes]

• How to model non-determinism? (e.g. merge process)

• Parks’ algorithm

• Bounded over complete (non-terminating) execution

 Does not find every complete, bounded schedule [Geilen03]

 Does not guarantee minimum memory usage

 Deadlock detection?

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 11

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 21

Dataflow [Dennis74]
• Breaking processes down into network of actors

• Atomic blocks of computation, executed when firing
– Functional, no side effects, no state: outputs purely a function of inputs

• Fire when required number of input tokens are available
– Consume required number of tokens on input(s)
– Produce number of tokens on output(s)

 Separate computation & communication/synchronization
 Actors (indivisible units of computation) may fire simultaneously, any order
 Tokens (units of communication) can carry arbitrary pieces of data

• Directed graph of infinite FIFO arcs between actors

 Signal-processing, dataflow machines [MIT in the 80s]

f1() f3()f2()

f4()

Firing Rules (1)

• An actor with p 1 input streams can have N firing rules

• The actor can fire if and only if one or more of the firing
rules is satisfied

• Each firing rule constitutes a set of patterns, one for each
of the p inputs

• A pattern Ri,j is a (finite) sequence

• An actor with p = 0 input streams is always enabled
(source actor)

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 22

 = {R1, R2,…, RN}

Ri = {Ri,1, Ri,2,…,Ri,p}

A

Ri,j
j

pattern
for input j

For firing rule i to be satisfied, each pattern Ri,j must form a prefix
of the sequence of unconsumed tokens at input j.

Source: M. Jacome, UT Austin.

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 12

Firing Rules (2)

• For some firing rules, some patterns may be empty lists,
Ri,j =
• This means that any available sequence at input j is

acceptable, because X for any sequence X

• It does NOT mean that input j must be empty

• Generalization of a prefix algebra

• The symbol “*” denotes a token wildcard

• The sequence [*] is a prefix of any sequence with at least
one token

• The sequence [*,*] is a prefix of any sequence with at least
two tokens

• …

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 23

Source: M. Jacome, UT Austin.

Firing Rules (3)

• Let Aj, for j = 1,…,p, denote the sequence of available
unconsumed tokens on the jth input of actor A

• Then the firing rule Ri is enabled if

 Dataflow is deterministic if firing rules are sequential

• Sequence of blocking reads determines rule to apply
• Blocking read of input one, followed by read of input two, etc.

 Execute by repeatedly checking rules and firing
 In some actor order scheduling of actor firings (by some “interpreter”)

 Boundedness, completeness, non-termination?

 Still undecidable, still Turing-complete…

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 24

A

Ri,j

jAj

Ri,j Aj , for all j = 1,…,p

sequence Ri,j is a prefix of sequence Aj

Source: M. Jacome, UT Austin.

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 13

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 25

Synchronous Dataflow (SDF) [Lee86]

• Fixed number of tokens per firing
• Consume fixed number of inputs

– Single firing rule with fixed wildcard patterns

• Produce fixed number of outputs

 Can be scheduled statically
 Flow of data through system does not depend on values

 Find a repeated sequence of firings
 Run actors in proportion to their rates
 Fixed buffer sizes, no under- or over-flow

a cb

d

1 2 1
2

2

2 1 8

1

2
Initialization
 Delay
 Prevent deadlock

Actors are stateless
 Explicit self-loop

to model state

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 26

SDF Scheduling (1)

• Solve system of linear rate equations
• Balance equations per arc

– 2a = b
– 2b = c
– b = d
– 2d = c

 4a = 2b = c = 2d

• Inconsistent systems
– Only solvable by setting rates to zero
– Would otherwise (if scheduled dynamically) accumulate tokens

• Underconstrained systems
– Disjoint, independent parts of a design

 Compute repetitions vector
 Linear-time depth-first graph traversal algorithm

a cb

d

1 2 1
2

2

2 1 8

1

2

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 14

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 27

SDF Scheduling (2)

• Periodically schedule actors in proportion to their rates
• Smallest integer solution

– 4a = 2b = c = 2d
 a = 1, b = 2, c = 4, d = 2

• Symbolically simulate one iteration
of graph until back to initial state

– Admissible iff no deadlock
– Repeatedly execute this schedule
 adbccdbcc = a(2db(2c))
 a(2db)(4c)

 Periodic admissible sequential scheduling (PASS)
 Single processor: memory requirements (buffer size) vs. code size

• a(2db(2c)): 2 token slots on each arc for total of 8 token buffers
• a(2db)(4c): 12 token buffers
 Single appearance schedule & looped code generation

 Periodic admissible parallel scheduling (PAPS)
 Multi-processor: latency/throughput vs. buffer sizes

a cb

d

1 2 1
2

2

2 1 8

1

2

SDF Scheduling (3)

• Precedence graph

• Homogeneous SDF (HSDF) conversion
– All rates are 1, each node represents one actor instance/firing

 Scheduling = graph traversal

 Worst-case exponential complexity

• Number of nodes in HSDF vs. SDF

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 28

a0

c0

b0

d0

b1

d1

c1 c2 c3

a cb
1 m 1 m

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 15

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 29

Cyclo-Static Dataflow (CSDF)

• Periodic firings (cyclic pattern of token rates)

• Example: 8:1 Downsampler

• First firing (phase): consume 1, produce 1

• Second through eighth firing (phase): consume 1, produce 0 (discard)

• Downsampler in SDF
– Wait for and store all 8 input tokens before output

 Static scheduling in similar manner as SDF

 Convert to SDF by lumping phases into actor cycles

 Compute cycle-level repetition vector

 Schedule phase-level precedence graph

[1,1,1,1,1,1,1,1] [1,0,0,0,0,0,0,0]

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

8 1

Composability

• Hierarchically compose subgraphs into super-actors

• SDF is not composable, but CSDF is

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 30

a c

b
1 1

11

1 1

1 1

ac

11

 Deadlocks!
 Not a valid composition

a c

b
1 1

[0,1][1,0]

[1,0] [0,1]

1 1

ac

 SDF → CSDF conversion
can similarly introduce
deadlock (see here)

Source: T. Parks et al.. “A Comparison of synchronous and Cyclo-Static Dataflow”, Asilomar, 1995.

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 16

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 31

Boolean Dataflow (BDF)

• Allow actors with boolean control inputs

• Select actor

• Switch actor

 Touring complete

 Loops, branches

 Quasi-static scheduling [Buck’93]

S
E

L
E

C
T

T

S
E

L
E

C
T

T

F

Control

S
W

IT
C

H

T

F
Control

S
W

IT
C

H

T

F

T

Source: M. Jacome, UT Austin.

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 32

Process-Based MoCs

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN

RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF

Yellow: Turing complete

Source: T. Basten, MoCC 2008.

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 17

Dataflow Variants

• Dynamic dataflow extensions
• Structured dataflow [LabView’s G language]

– If-then-else, switch-case with analyzable semantics

• Modal models
– Reactive process networks (RPN) [Geilen’04]
– Parameterized dataflow (PDF) [Bhattacharya’01]
– Heterochronous dataflow (HDF) [Lee’05]
– Scenario-aware dataflow (SADF) [Theelen’06]
 Parameter changes between iterations driven by state machine model

• Dataflow languages [StreamIt]
– Deterministic peeking, teleport messages that bypass regular flow

• Timed (cyber-physical) dataflow extensions
• Time synchronous dataflow (TSDF) [Agilent ADS]

– Fixed sampling/execution rates on arcs and actors

• Hybrid continuous-discrete time models
– Discrete models as piecewise constant continuous signals [Simulink]
– Sampling at discrete/continuous interfaces [SystemC-AMS]

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 33

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 34

Process Calculi

• Rendezvous-style, synchronous communication
• Communicating Sequential Processes (CSP) [Hoare78]
• Calculus of Communicating Systems (CCS) [Milner80]
 Restricted interactions

 Formal, mathematical framework: process algebra
• Algebra = <objects, operations, axioms>

– Objects: processes {P, Q, …}, channels {a, b, …}
– Composition operators: parallel (P║Q), prefix/sequential (a→P),

choice (P+Q)
– Axioms: indemnity (Ø║P = P), commutativity (P+Q=Q+P, P║Q = Q║P)

Manipulate processes by manipulating expressions

 Parallel programming languages
 CSP-based [Occam/Transputer, Handle-C]

EE382N.23: Embedded Sys Dsg/Modeling Lecture 4

© 2019 A. Gerstlauer 18

EE382N.23: Embedded Sys Dsgn/Modeling, Lecture 4 © 2019 A. Gerstlauer 35

Lecture 4: Summary

• Models of Computation (MoCs)

• Formally express behavior

• Process-based models

• OS processes/threads not manageable

• Restricted models of communication (KPN)

• Restricted models of computation (dataflow)

 Tradeoffs between analyzability vs. expressiveness

 Task-level parallelism, dataflow driven

