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Lecture 4: Outline

• Process-based Models of Computation (MoCs)

• Processes and threads

• (Kahn) Process networks

• Dataflow

• Process calculi
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Types of Parallelism

• Task parallelism (MIMD)

• Multiple independent processes/threads
– Separate code and data

• Asynchronous operation
– Explicit data communication & synchronization 

• Data parallelism (SIMD/SPMD)

• Multiple instances of same thread
– Operating on independent pieces of data

• Lockstep or bulk synchronous operation
– Implicit barrier type of synchronization (fork-join)

 Ideally independent of implementation model

• Shared (SMP) vs. distributed (AMP) memory, SMT vs. SIMT

 Some combinations better implementable than others
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Process-Based Models 

 Activity and causality (data flow)
 Asynchronous, coarse-grain concurrency

• Set of processes/threads
• Execute in parallel

– Concurrent composition

• Each process is internally sequential
– Imperative program

• Inter-process communication
• Shared memory 

– Synchronization: critical section/mutex, monitor, …

• Incomprehensible [Lee’06]
– Non-determinism, race conditions, deadlocks, …

 Traditional models are poor match [OS, Java]
• Best effort, no correctness guarantees

Producer

Consumer

Process1 Process2
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Consider a Simple Example

“The Observer pattern defines a one-to-many dependency 
between a subject object and any number of observer 
objects so that when the subject object changes state, all 
its observer objects are notified and updated 
automatically.”

Eric Gamman Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-
Wesley, 1995

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Example: Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Will this work in a multithreaded context?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Observer Pattern with Mutexes

public synchronized void addListener(listener) 
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Javasoft recommends against this.
What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Mutexes using Monitors are Minefields

public synchronized void addListener(listener) 
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

• valueChanged() may attempt to acquire 
a lock on some other object and stall. 

• If the holder of that lock calls 
addListener(): deadlock!

x calls addListener

lock

mutex

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Observer Pattern Gets Complicated

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

while holding lock, make a copy of 
listeners to avoid race conditions

notify each listener outside of the 
synchronized block to avoid deadlock

This still isn’t right. What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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How to Make it Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

Suppose two threads call setValue(). One of them will set the value last, 
leaving that value in the object, but listeners may be notified in the opposite 
order. The listeners may be alerted to the value-changes in the wrong order!

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Problems with Thread-Based Concurrency

• Nontrivial software written with threads, semaphores, and 
mutexes is incomprehensible to humans

• Nondeterministic, best effort
– Explicitly prune away nondeterminism

• Poor match for embedded systems
– Lack of timing abstraction

• Termination in reactive systems
– Composability?

 Search for non-thread-based models: which are the 
requirements for appropriate specification techniques?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007
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Kahn Process Network (KPN) [Kahn74]

• C-like processes communicating via FIFO channels
• Unbounded, uni-directional, point-to-point queues 

– Sender (send()) never blocks
– Receiver (wait()) blocks until data available

 Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation 

independent)

P1 P3

P2 P4
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Kahn Process Network (KPN) (2)

• Determinism

• Process can’t peek into channels and can only wait on one 
channel at a time

• Output data produced by a process does not depend on 
the order of its inputs

 Terminates on global deadlock
 All process blocked on receive() (or have otherwise ended)

• Formal mathematical representation

• Process = continuous function mapping input to output 
streams

• Turing-complete, undecidable (in finite time)

• Terminates (deadlocks)?

• Can run in bounded buffers (memory)?
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KPN Scheduling

• Scheduling determines memory requirements

• Data-driven scheduling

• Run processes whenever they are ready:

Always emit tokens

Only consumes 
tokens from P1

Tokens will 
accumulate 

here

P1

P2

P3

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Demand-Driven Scheduling

• Only run a process whose outputs are being solicited

• Synchronous, unbuffered message-passing

• However...

Always 
consume 

tokens

Always 
produce 
tokens

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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KPN Scheduling

• Inherent tradeoffs
• Completeness

• Run processes as long as they are ready
 Might require unbounded memory

• Boundedness
• Block senders when reaching buffer limits
 Potentially incomplete, artificial deadlocks and early termination

 Data driven: completeness over boundedness
 Demand driven: boundedness over completeness and 

even non-termination

 Hybrid approach [Parks95]
• Start with smallest bounded buffers
• Schedule with blocking send() until artificial deadlock

– At least one process blocked on send()

• Increase size of smallest blocked buffer and continue
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Parks’ Algorithm

• Start with buffer size 1

• Run P1

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

• Start with buffer size 1

• Run P1, P2

• Start with buffer size 1

• Run P1, P2, P3

• Start with buffer size 1

• Run P1, P2, P3, P4
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Parks’ Algorithm

• P2 blocked 

• Run P1, P3, P1, … indefinitely

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Parks’ Algorithm

• But …

P1

P2

P3

P4
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Kahn Process Networks (KPN)

• Difficult to implement right

• Size of infinite FIFOs in limited physical memory?

• Dynamic memory allocation, dependent on schedule

• Dynamic scheduling & context switching 

• Boundedness vs. completeness vs. non-termination 
(deadlocks), are undecidable, depend on runtime schedule

• Message-passing communication [MPI, Unix pipes]

• How to model non-determinism? (e.g. merge process)

• Parks’ algorithm

• Bounded over complete (non-terminating) execution

 Does not find every complete, bounded schedule [Geilen03]

 Does not guarantee minimum memory usage

 Deadlock detection?
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Dataflow [Dennis74]
• Breaking processes down into network of actors

• Atomic blocks of computation, executed when firing
– Functional, no side effects, no state: outputs purely a function of inputs

• Fire when required number of input tokens are available
– Consume required number of tokens on input(s)
– Produce number of tokens on output(s)

 Separate computation & communication/synchronization
 Actors (indivisible units of computation) may fire simultaneously, any order
 Tokens (units of communication) can carry arbitrary pieces of data

• Directed graph of infinite FIFO arcs between actors

 Signal-processing, dataflow machines [MIT in the 80s]

f1() f3()f2()

f4()

Firing Rules (1)

• An actor with p  1 input streams can have N firing rules

• The actor can fire if and only if one or more of the firing  
rules is satisfied

• Each firing rule constitutes a set of patterns, one for each 
of the p inputs

• A pattern Ri,j is a (finite) sequence  

• An actor with p = 0 input streams is always enabled 
(source actor)
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 = {R1, R2,…, RN}

Ri = {Ri,1, Ri,2,…,Ri,p}

A

Ri,j
j

pattern 
for input j

For firing rule i to be satisfied, each pattern Ri,j must form a prefix
of the sequence of unconsumed tokens at input j. 

Source: M. Jacome, UT Austin.
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Firing Rules (2)

• For some firing rules, some patterns may be empty lists, 
Ri,j = 
• This means that any available sequence at input j is 

acceptable, because  X for any sequence X

• It does NOT mean that input j must be empty

• Generalization of a prefix algebra

• The symbol “*” denotes a token wildcard

• The sequence [*] is a prefix of any sequence with at least 
one token

• The sequence [*,*] is a prefix of any sequence with at least 
two tokens

• …
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Source: M. Jacome, UT Austin.

Firing Rules (3)

• Let Aj, for j = 1,…,p, denote the sequence of available 
unconsumed tokens on the jth input of actor A

• Then the firing rule Ri is enabled if 

 Dataflow is deterministic if firing rules are sequential

• Sequence of blocking reads determines rule to apply
• Blocking read of input one, followed by read of input two, etc.

 Execute by repeatedly checking rules and firing
 In some actor order  scheduling of actor firings (by some “interpreter”)

 Boundedness, completeness, non-termination?

 Still undecidable, still Turing-complete…
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A

Ri,j

jAj

Ri,j Aj ,       for all j = 1,…,p

sequence Ri,j is a prefix of sequence Aj

Source: M. Jacome, UT Austin.
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Synchronous Dataflow (SDF) [Lee86]

• Fixed number of tokens per firing
• Consume fixed number of inputs

– Single firing rule with fixed wildcard patterns

• Produce fixed number of outputs

 Can be scheduled statically
 Flow of data through system does not depend on values

 Find a repeated sequence of firings
 Run actors in proportion to their rates
 Fixed buffer sizes, no under- or over-flow

a cb

d

1 2 1
2

2

2 1 8

1

2
Initialization
 Delay
 Prevent deadlock

Actors are stateless
 Explicit self-loop 

to model state
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SDF Scheduling (1)

• Solve system of linear rate equations
• Balance equations per arc

– 2a = b
– 2b = c
– b   = d
– 2d = c

 4a = 2b = c = 2d

• Inconsistent systems
– Only solvable by setting rates to zero
– Would otherwise (if scheduled dynamically) accumulate tokens

• Underconstrained systems
– Disjoint, independent parts of a design

 Compute repetitions vector
 Linear-time depth-first graph traversal algorithm

a cb

d

1 2 1
2

2

2 1 8

1

2
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SDF Scheduling (2)

• Periodically schedule actors in proportion to their rates
• Smallest integer solution

– 4a = 2b = c = 2d
 a = 1, b = 2, c = 4, d = 2  

• Symbolically simulate one iteration 
of graph until back to initial state

– Admissible iff no deadlock
– Repeatedly execute this schedule
 adbccdbcc = a(2db(2c))
 a(2db)(4c)

 Periodic admissible sequential scheduling (PASS)
 Single processor: memory requirements (buffer size) vs. code size

• a(2db(2c)): 2 token slots on each arc for total of 8 token buffers
• a(2db)(4c): 12 token buffers
 Single appearance schedule & looped code generation 

 Periodic admissible parallel scheduling (PAPS)
 Multi-processor: latency/throughput vs. buffer sizes

a cb

d

1 2 1
2

2

2 1 8

1

2

SDF Scheduling (3)

• Precedence graph

• Homogeneous SDF (HSDF) conversion
– All rates are 1, each node represents one actor instance/firing

 Scheduling = graph traversal

 Worst-case exponential complexity

• Number of nodes in HSDF vs. SDF
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a0

c0

b0

d0

b1

d1

c1 c2 c3

a cb
1 m 1 m
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Cyclo-Static Dataflow (CSDF)

• Periodic firings (cyclic pattern of token rates)

• Example: 8:1 Downsampler

• First firing (phase): consume 1, produce 1

• Second through eighth firing (phase): consume 1, produce 0 (discard)

• Downsampler in SDF
– Wait for and store all 8 input tokens before output

 Static scheduling in similar manner as SDF

 Convert to SDF by lumping phases into actor cycles

 Compute cycle-level repetition vector

 Schedule phase-level precedence graph

[1,1,1,1,1,1,1,1] [1,0,0,0,0,0,0,0]

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

8 1

Composability

• Hierarchically compose subgraphs into super-actors

• SDF is not composable, but CSDF is
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a c

b
1 1

11

1 1

1 1

ac

11

 Deadlocks!
 Not a valid composition

a c

b
1 1

[0,1][1,0]

[1,0] [0,1]

1 1

ac

 SDF → CSDF conversion
can similarly introduce 
deadlock (see here)

Source: T. Parks et al.. “A Comparison of synchronous and Cyclo-Static Dataflow”, Asilomar, 1995.
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Boolean Dataflow (BDF)

• Allow actors with boolean control inputs

• Select actor

• Switch actor

 Touring complete

 Loops, branches

 Quasi-static scheduling [Buck’93]
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Source: M. Jacome, UT Austin.
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Process-Based MoCs

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN

RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF

Yellow: Turing complete

Source: T. Basten, MoCC 2008.
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Dataflow Variants

• Dynamic dataflow extensions
• Structured dataflow [LabView’s G language]

– If-then-else, switch-case with analyzable semantics

• Modal models
– Reactive process networks (RPN) [Geilen’04]
– Parameterized dataflow (PDF) [Bhattacharya’01]
– Heterochronous dataflow (HDF) [Lee’05]
– Scenario-aware dataflow (SADF) [Theelen’06]
 Parameter changes between iterations driven by state machine model

• Dataflow languages [StreamIt]
– Deterministic peeking, teleport messages that bypass regular flow

• Timed (cyber-physical) dataflow extensions
• Time synchronous dataflow (TSDF) [Agilent ADS]

– Fixed sampling/execution rates on arcs and actors

• Hybrid continuous-discrete time models
– Discrete models as piecewise constant continuous signals [Simulink]
– Sampling at discrete/continuous interfaces [SystemC-AMS]
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Process Calculi

• Rendezvous-style, synchronous communication
• Communicating Sequential Processes (CSP) [Hoare78]
• Calculus of Communicating Systems (CCS) [Milner80]
 Restricted interactions

 Formal, mathematical framework: process algebra
• Algebra = <objects, operations, axioms>

– Objects: processes {P, Q, …}, channels {a, b, …}
– Composition operators: parallel (P║Q), prefix/sequential (a→P), 

choice (P+Q)
– Axioms: indemnity (Ø║P = P), commutativity (P+Q=Q+P, P║Q = Q║P)

Manipulate processes by manipulating expressions

 Parallel programming languages
 CSP-based [Occam/Transputer, Handle-C]
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Lecture 4: Summary

• Models of Computation (MoCs)

• Formally express behavior

• Process-based models

• OS processes/threads not manageable

• Restricted models of communication (KPN)

• Restricted models of computation (dataflow)

 Tradeoffs between analyzability vs. expressiveness

 Task-level parallelism, dataflow driven


