
1

ArchitecturalArchitectural--Level SynthesisLevel Synthesis

Giovanni De Micheli
Integrated Systems Centre

EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module1

Objectives

 Motivation

 Compiling language models into abstract models

 Behavioral-level optimization and program-level transformations

2

(c) Giovanni De Micheli 3

Synthesis

Transform behavioral into structural view

Architectural-level synthesis:
 Architectural abstraction level

 Determine macroscopic structure

 Example: major building blocks

Logic-level synthesis:
 Logic abstraction level

 Determine microscopic structure

 Example: logic gate interconnection

(c) Giovanni De Micheli 4

Models and flows

LANGUAGE MODELS ABSTRACT MODELS

HDL

HDL

HDL

compilation

compilation

translation

Operations and dependencies
(Data-flow & sequencing

graphs)

FSMs – Logic functions
(State-diagrams & logic

networks)

Interconnected logic blocks
(Logic networks)

B
E

H
A

V
IO

R
A

L
 V

IE
W

S
T

R
U

C
T

U
R

A
L

 V
IE

W

A
R

C
H

IT
E

C
T

U
R

A
L

 L
E

V
E

L
L

O
G

IC
 L

E
V

E
L

Physical design
(mask layout)

Verilog

VHDL

SystemC

Esterel

Statecharts

Schematics

GDS2

3

(c) Giovanni De Micheli 5

Example

diffeq {
read (x; y; u; dx; a);

repeat {
xl = x+dx;

ul = u –(3 . x . u . dx) – (3 . y . dx)

yl = y + u . dx ;

c = x < a;

X = xl; u = ul; y = yl;

}

until (c)

write (y)

(c) Giovanni De Micheli 6

Example of structures

* ALU
STEERING

&
MEMORY

CONTROL
UNIT

* ALU
STEERING

&
MEMORY

CONTROL
UNIT* ALU

4

(c) Giovanni De Micheli 7

Example

1 2 3 4 5 6 7 8

5

10

15

7
8

12

13

(2,2)

(2,1)

(1,2)

(1,1)

Area

Latency

X

(c) Giovanni De Micheli 8

Architectural-level synthesis motivation

Raise input abstraction level

 Reduce specification of details

 Extend designer base

 Self-documenting design specifications

 Ease modifications and extensions

Reduce design time

Explore and optimize macroscopic structure:

 Series/parallel execution of operations

5

(c) Giovanni De Micheli 9

Architectural-level synthesis

Translate HDL models into sequencing graphs

Behavioral-level optimization:

 Optimize abstract models independently from the
implementation parameters

Architectural synthesis and optimization:

 Create macroscopic structure:
 Data-path and control-unit

 Consider area and delay information of the implementation

(c) Giovanni De Micheli 10

Compilation and behavioral optimization

Software compilation:

 Compile program into intermediate form

 Optimize intermediate form

 Generate target code for an architecture

Hardware compilation:

 Compile HDL model into sequencing graph

 Optimize sequencing graph

 Generate gate-level interconnection for a cell library

6

(c) Giovanni De Micheli 11

Hardware and software compilation

lex parse optimization codegen

front-end Intermediate form back-end

lex parse
behavioral

optimization

front-end Intermediate form back-end

a-synthesis

l-synthesis

l-binding

(c) Giovanni De Micheli 12

Compilation

Front-end:

 Lexical and syntax analysis

 Parse-tree generation

 Macro-expansion

 Expansion of meta-variables

Semantic analysis:

 Data-flow and control-flow analysis

 Type checking

 Resolve arithmetic and relational operators

7

(c) Giovanni De Micheli 13

Parse tree example

a = p + q * r

assignment

identifier expression

expressionidentifier

identifier identifier

a

=

+

*p

q r

(c) Giovanni De Micheli 14

Behavioral-level optimization

Semantic-preserving transformations aiming at

simplifying the model

Applied to parse-trees or during their generation

Taxonomy:

 Data-flow based transformations

 Control-flow based transformations

8

(c) Giovanni De Micheli 15

Data-flow based transformations

Tree-height reduction

Constant and variable propagation

Common sub-expression elimination

Dead-code elimination

Operator-strength reduction

Code motion

(c) Giovanni De Micheli 16

Tree-height reduction

Applied to arithmetic expressions

Goal:
 Split into two-operand expressions to exploit hardware

parallelism at best

Techniques:
 Balance the expression tree
 Exploit commutativity, associativity and distributivity

9

(c) Giovanni De Micheli 17

Example of tree-height reduction using
commutativity and associativity

+

+

*

*+

+

a ab bc cd d

x = a + b * c + d → x = (a + d) + b * c

(c) Giovanni De Micheli 18

Example of tree-height reduction using distributivity

*

+

*

*

+

* *

* *

a ab bc cd de ea

x = a * (b * c * d + e) → x = a * b * c * d + a * e;

10

(c) Giovanni De Micheli 19

Examples of propagation

Constant propagation

a = 0; b = a + 1; c = 2 * b;

a = 0; b = 1; c = 2;

Variable propagation:

a = x; b = a + 1; c = 2 * x;

a = x; b = x + 1; c = 2 * x;

(c) Giovanni De Micheli 20

Sub-expression elimination

Logic expressions:

 Performed by logic optimization

 Kernel-based methods

Arithmetic expressions:

 Search isomorphic patterns in the parse trees

 Example:

a = x + y; b = a +1; c = x + y

a = x + y; b = a + 1; c = a;

11

(c) Giovanni De Micheli 21

Examples of other transformations

Dead-code elimination:

a = x; b = x + 1; c = 2 * x;

a = x; can be removed if not referenced

Operator-strength reduction:

a = x2, b = 3 * x;

a = x * x; t = x << 1; b = x + t;

Code motion:

for (i = 1; i < a * b) { }

t = a * b; for (i = 1; i < t) { }

(c) Giovanni De Micheli 22

Control-flow based transformations

Model expansion

Conditional expansion

Loop expansion

Block-level transformations

12

(c) Giovanni De Micheli 23

Model expansion

Expand subroutine
 Flatten hierarchy

 Expand scope of other optimization techniques

Problematic when model is called more than once

Example:

x = a + b; y = a * b; z = foo (x , y);

foo(p,q) { t=q - p; return (t); }

By expanding foo:

x = a + b; y = a*b; z = y – x;

(c) Giovanni De Micheli 24

Conditional expansion

Transform conditional into parallel execution with test at
the end

Useful when test depends on late signals

May preclude hardware sharing

Always useful for logic expressions

Example:

y = ab; if (a) {x = b + d; } else { x = bd; }
 Can be expanded to: x = a (b + d) + a’bd

 And simplified as: y = ab; x = y + d (a + b)

13

(c) Giovanni De Micheli 25

Loop expansion

Applicable to loops with data-independent exit conditions

Useful to expand scope of other optimization techniques

Problematic when loop has many iterations

Example:

x = 0; for (I = 1; I < 3; I ++) { x = x + 1; }

Expanded to:

x = 0; x = x + 1; x = x + 2; x = x + 3

(c) Giovanni De Micheli 26

Module2

Objectives

 Architectural optimization

 Scheduling, resource sharing, estimation

14

(c) Giovanni De Micheli 27

Architectural synthesis and optimization

Synthesize macroscopic structure in terms of building-

blocks

Explore area/performance trade-off:

 maximize performance implementations subject to area
constraints

 minimize area implementations subject to performance
constraints

Determine an optimal implementation

Create logic model for data-path and control

(c) Giovanni De Micheli 28

Design space and objectives

Design space:

 Set of all feasible implementations

 Implementation parameters:

 Area

 Performance:
 Cycle-time

 Latency

 Throughput (for pipelined implementations)

 Power consumption

15

(c) Giovanni De Micheli 29

Design evaluation space

Area

Area

Area

Latency

Latency

Latency

Latency
Max

Area
Max

Cycle-ti
me

(c) Giovanni De Micheli 30

Hardware modeling

Circuit behavior:

 Sequencing graphs

Building blocks:

 Resources

Constraints:

 Timing and resource usage

16

(c) Giovanni De Micheli 31

Resources

Functional resources:
 Perform operations on data

 Example: arithmetic and logic blocks

Storage resources:
 Store data

 Example: memory and registers

 Interface resources:
 Example: busses and ports

(c) Giovanni De Micheli 32

Resources and circuit families

Resource-dominated circuits.

 Area and performance depend on few, well-characterized
blocks

 Example: DSP circuits

Non resource-dominated circuits

 Area and performance are strongly influenced by sparse logic,
control and wiring

 Example: some ASIC circuits

17

(c) Giovanni De Micheli 33

Implementation constraints

Timing constraints:

 Cycle-time

 Latency of a set of operations

 Time spacing between operation pairs

Resource constraints:

 Resource usage (or allocation)

 Partial binding

(c) Giovanni De Micheli 34

Synthesis in the temporal domain

Scheduling:

 Associate a start-time with each operation

 Determine latency and parallelism of the implementation

Scheduled sequencing graph:

 Sequencing graph with start-time annotation

18

(c) Giovanni De Micheli 35

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(c) Giovanni De Micheli 36

Synthesis in the spatial domain

Binding:

 Associate a resource with each operation with the same type

 Determine the area of the implementation

Sharing:

 Bind a resource to more than one operation

 Operations must not execute concurrently

Bound sequencing graph:

 Sequencing graph with resource annotation

19

(c) Giovanni De Micheli 37

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(1,1) (1,2) (1,3) (1,4) (2,2)

(2,1)

(c) Giovanni De Micheli 38

Estimation

 Resource-dominated circuits.

 Area = sum of the area of the resources bound to the
operations
 Determined by binding

 Latency = start time of the sink operation (minus start time
of the source operation)
 Determined by scheduling

 Non resource-dominated circuits

 Area also affected by:
 Registers, steering logic, wiring and control

 Cycle-time also affected by:
 Steering logic, wiring and (possibly) control

20

(c) Giovanni De Micheli 39

Approaches to architectural optimization

Multiple-criteria optimization problem:

 Area, latency, cycle-time

Determine Pareto optimal points:

 Implementations such that no other has all parameters with
inferior values

Draw trade-off curves:

 Discontinuous and highly nonlinear

(c) Giovanni De Micheli 40

Approaches to architectural optimization

Area/latency trade-off

 for some values of the cycle-time.

Cycle-time/latency trade-off

 for some binding (area)

Area/cycle-time trade-off

 for some schedules (latency)

21

(c) Giovanni De Micheli 41

Area-latency trade-off

Rationale:
 Cycle-time dictated by system constraints

Resource-dominated circuits:
 Area is determined by resource usage

Approaches:
 Schedule for minimum latency under resource usage

constraints

 Schedule for minimum resource usage under latency
constraints
 for varying cycle-time constraints

(c) Giovanni De Micheli 42

Area/latency trade-off

1 2 3 4 5 6 7 8

5

10

15

7

8

12

13

(3,2)

(2,1)

(3,1)

Area

Latency

20

18

17

30

40

(2,2)

(2,1)

(1,2)

(1,1)

Cycle-ti
me

X

22

(c) Giovanni De Micheli 43

Summary

Behavioral optimization:

 Create abstract models from HDL models

 Optimize models without considering implementation parameters

Architectural synthesis and optimization

 Consider resource parameters

 Multiple-criteria optimization problem:
 area, latency, cycle-time

