
1

ArchitecturalArchitectural--Level SynthesisLevel Synthesis

Giovanni De Micheli
Integrated Systems Centre

EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module1

Objectives

 Motivation

 Compiling language models into abstract models

 Behavioral-level optimization and program-level transformations

2

(c) Giovanni De Micheli 3

Synthesis

Transform behavioral into structural view

Architectural-level synthesis:
 Architectural abstraction level

 Determine macroscopic structure

 Example: major building blocks

Logic-level synthesis:
 Logic abstraction level

 Determine microscopic structure

 Example: logic gate interconnection

(c) Giovanni De Micheli 4

Models and flows

LANGUAGE MODELS ABSTRACT MODELS

HDL

HDL

HDL

compilation

compilation

translation

Operations and dependencies
(Data-flow & sequencing

graphs)

FSMs – Logic functions
(State-diagrams & logic

networks)

Interconnected logic blocks
(Logic networks)

B
E

H
A

V
IO

R
A

L
 V

IE
W

S
T

R
U

C
T

U
R

A
L

 V
IE

W

A
R

C
H

IT
E

C
T

U
R

A
L

 L
E

V
E

L
L

O
G

IC
 L

E
V

E
L

Physical design
(mask layout)

Verilog

VHDL

SystemC

Esterel

Statecharts

Schematics

GDS2

3

(c) Giovanni De Micheli 5

Example

diffeq {
read (x; y; u; dx; a);

repeat {
xl = x+dx;

ul = u –(3 . x . u . dx) – (3 . y . dx)

yl = y + u . dx ;

c = x < a;

X = xl; u = ul; y = yl;

}

until (c)

write (y)

(c) Giovanni De Micheli 6

Example of structures

* ALU
STEERING

&
MEMORY

CONTROL
UNIT

* ALU
STEERING

&
MEMORY

CONTROL
UNIT* ALU

4

(c) Giovanni De Micheli 7

Example

1 2 3 4 5 6 7 8

5

10

15

7
8

12

13

(2,2)

(2,1)

(1,2)

(1,1)

Area

Latency

X

(c) Giovanni De Micheli 8

Architectural-level synthesis motivation

Raise input abstraction level

 Reduce specification of details

 Extend designer base

 Self-documenting design specifications

 Ease modifications and extensions

Reduce design time

Explore and optimize macroscopic structure:

 Series/parallel execution of operations

5

(c) Giovanni De Micheli 9

Architectural-level synthesis

Translate HDL models into sequencing graphs

Behavioral-level optimization:

 Optimize abstract models independently from the
implementation parameters

Architectural synthesis and optimization:

 Create macroscopic structure:
 Data-path and control-unit

 Consider area and delay information of the implementation

(c) Giovanni De Micheli 10

Compilation and behavioral optimization

Software compilation:

 Compile program into intermediate form

 Optimize intermediate form

 Generate target code for an architecture

Hardware compilation:

 Compile HDL model into sequencing graph

 Optimize sequencing graph

 Generate gate-level interconnection for a cell library

6

(c) Giovanni De Micheli 11

Hardware and software compilation

lex parse optimization codegen

front-end Intermediate form back-end

lex parse
behavioral

optimization

front-end Intermediate form back-end

a-synthesis

l-synthesis

l-binding

(c) Giovanni De Micheli 12

Compilation

Front-end:

 Lexical and syntax analysis

 Parse-tree generation

 Macro-expansion

 Expansion of meta-variables

Semantic analysis:

 Data-flow and control-flow analysis

 Type checking

 Resolve arithmetic and relational operators

7

(c) Giovanni De Micheli 13

Parse tree example

a = p + q * r

assignment

identifier expression

expressionidentifier

identifier identifier

a

=

+

*p

q r

(c) Giovanni De Micheli 14

Behavioral-level optimization

Semantic-preserving transformations aiming at

simplifying the model

Applied to parse-trees or during their generation

Taxonomy:

 Data-flow based transformations

 Control-flow based transformations

8

(c) Giovanni De Micheli 15

Data-flow based transformations

Tree-height reduction

Constant and variable propagation

Common sub-expression elimination

Dead-code elimination

Operator-strength reduction

Code motion

(c) Giovanni De Micheli 16

Tree-height reduction

Applied to arithmetic expressions

Goal:
 Split into two-operand expressions to exploit hardware

parallelism at best

Techniques:
 Balance the expression tree
 Exploit commutativity, associativity and distributivity

9

(c) Giovanni De Micheli 17

Example of tree-height reduction using
commutativity and associativity

+

+

*

*+

+

a ab bc cd d

x = a + b * c + d → x = (a + d) + b * c

(c) Giovanni De Micheli 18

Example of tree-height reduction using distributivity

*

+

*

*

+

* *

* *

a ab bc cd de ea

x = a * (b * c * d + e) → x = a * b * c * d + a * e;

10

(c) Giovanni De Micheli 19

Examples of propagation

Constant propagation

a = 0; b = a + 1; c = 2 * b;

a = 0; b = 1; c = 2;

Variable propagation:

a = x; b = a + 1; c = 2 * x;

a = x; b = x + 1; c = 2 * x;

(c) Giovanni De Micheli 20

Sub-expression elimination

Logic expressions:

 Performed by logic optimization

 Kernel-based methods

Arithmetic expressions:

 Search isomorphic patterns in the parse trees

 Example:

a = x + y; b = a +1; c = x + y

a = x + y; b = a + 1; c = a;

11

(c) Giovanni De Micheli 21

Examples of other transformations

Dead-code elimination:

a = x; b = x + 1; c = 2 * x;

a = x; can be removed if not referenced

Operator-strength reduction:

a = x2, b = 3 * x;

a = x * x; t = x << 1; b = x + t;

Code motion:

for (i = 1; i < a * b) { }

t = a * b; for (i = 1; i < t) { }

(c) Giovanni De Micheli 22

Control-flow based transformations

Model expansion

Conditional expansion

Loop expansion

Block-level transformations

12

(c) Giovanni De Micheli 23

Model expansion

Expand subroutine
 Flatten hierarchy

 Expand scope of other optimization techniques

Problematic when model is called more than once

Example:

x = a + b; y = a * b; z = foo (x , y);

foo(p,q) { t=q - p; return (t); }

By expanding foo:

x = a + b; y = a*b; z = y – x;

(c) Giovanni De Micheli 24

Conditional expansion

Transform conditional into parallel execution with test at
the end

Useful when test depends on late signals

May preclude hardware sharing

Always useful for logic expressions

Example:

y = ab; if (a) {x = b + d; } else { x = bd; }
 Can be expanded to: x = a (b + d) + a’bd

 And simplified as: y = ab; x = y + d (a + b)

13

(c) Giovanni De Micheli 25

Loop expansion

Applicable to loops with data-independent exit conditions

Useful to expand scope of other optimization techniques

Problematic when loop has many iterations

Example:

x = 0; for (I = 1; I < 3; I ++) { x = x + 1; }

Expanded to:

x = 0; x = x + 1; x = x + 2; x = x + 3

(c) Giovanni De Micheli 26

Module2

Objectives

 Architectural optimization

 Scheduling, resource sharing, estimation

14

(c) Giovanni De Micheli 27

Architectural synthesis and optimization

Synthesize macroscopic structure in terms of building-

blocks

Explore area/performance trade-off:

 maximize performance implementations subject to area
constraints

 minimize area implementations subject to performance
constraints

Determine an optimal implementation

Create logic model for data-path and control

(c) Giovanni De Micheli 28

Design space and objectives

Design space:

 Set of all feasible implementations

 Implementation parameters:

 Area

 Performance:
 Cycle-time

 Latency

 Throughput (for pipelined implementations)

 Power consumption

15

(c) Giovanni De Micheli 29

Design evaluation space

Area

Area

Area

Latency

Latency

Latency

Latency
Max

Area
Max

Cycle-ti
me

(c) Giovanni De Micheli 30

Hardware modeling

Circuit behavior:

 Sequencing graphs

Building blocks:

 Resources

Constraints:

 Timing and resource usage

16

(c) Giovanni De Micheli 31

Resources

Functional resources:
 Perform operations on data

 Example: arithmetic and logic blocks

Storage resources:
 Store data

 Example: memory and registers

 Interface resources:
 Example: busses and ports

(c) Giovanni De Micheli 32

Resources and circuit families

Resource-dominated circuits.

 Area and performance depend on few, well-characterized
blocks

 Example: DSP circuits

Non resource-dominated circuits

 Area and performance are strongly influenced by sparse logic,
control and wiring

 Example: some ASIC circuits

17

(c) Giovanni De Micheli 33

Implementation constraints

Timing constraints:

 Cycle-time

 Latency of a set of operations

 Time spacing between operation pairs

Resource constraints:

 Resource usage (or allocation)

 Partial binding

(c) Giovanni De Micheli 34

Synthesis in the temporal domain

Scheduling:

 Associate a start-time with each operation

 Determine latency and parallelism of the implementation

Scheduled sequencing graph:

 Sequencing graph with start-time annotation

18

(c) Giovanni De Micheli 35

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(c) Giovanni De Micheli 36

Synthesis in the spatial domain

Binding:

 Associate a resource with each operation with the same type

 Determine the area of the implementation

Sharing:

 Bind a resource to more than one operation

 Operations must not execute concurrently

Bound sequencing graph:

 Sequencing graph with resource annotation

19

(c) Giovanni De Micheli 37

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(1,1) (1,2) (1,3) (1,4) (2,2)

(2,1)

(c) Giovanni De Micheli 38

Estimation

 Resource-dominated circuits.

 Area = sum of the area of the resources bound to the
operations
 Determined by binding

 Latency = start time of the sink operation (minus start time
of the source operation)
 Determined by scheduling

 Non resource-dominated circuits

 Area also affected by:
 Registers, steering logic, wiring and control

 Cycle-time also affected by:
 Steering logic, wiring and (possibly) control

20

(c) Giovanni De Micheli 39

Approaches to architectural optimization

Multiple-criteria optimization problem:

 Area, latency, cycle-time

Determine Pareto optimal points:

 Implementations such that no other has all parameters with
inferior values

Draw trade-off curves:

 Discontinuous and highly nonlinear

(c) Giovanni De Micheli 40

Approaches to architectural optimization

Area/latency trade-off

 for some values of the cycle-time.

Cycle-time/latency trade-off

 for some binding (area)

Area/cycle-time trade-off

 for some schedules (latency)

21

(c) Giovanni De Micheli 41

Area-latency trade-off

Rationale:
 Cycle-time dictated by system constraints

Resource-dominated circuits:
 Area is determined by resource usage

Approaches:
 Schedule for minimum latency under resource usage

constraints

 Schedule for minimum resource usage under latency
constraints
 for varying cycle-time constraints

(c) Giovanni De Micheli 42

Area/latency trade-off

1 2 3 4 5 6 7 8

5

10

15

7

8

12

13

(3,2)

(2,1)

(3,1)

Area

Latency

20

18

17

30

40

(2,2)

(2,1)

(1,2)

(1,1)

Cycle-ti
me

X

22

(c) Giovanni De Micheli 43

Summary

Behavioral optimization:

 Create abstract models from HDL models

 Optimize models without considering implementation parameters

Architectural synthesis and optimization

 Consider resource parameters

 Multiple-criteria optimization problem:
 area, latency, cycle-time

