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Module 1

Objectives:

 The scheduling problem

 Case analysis

 Scheduling without constraints

 Scheduling with timing constraints
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Scheduling

Circuit model:
 Sequencing graph

 Cycle-time is given

 Operation delays expressed in cycles

Scheduling:
 Determine the start times for the operations

 Satisfying all the sequencing (timing and resource) constraint

Goal:
 Determine area/latency trade-off
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Example
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Taxonomy

Unconstrained scheduling

Scheduling with timing constraints:
 Latency

 Detailed timing constraints

Scheduling with resource constraints

Related problems:
 Chaining

 Synchronization

 Pipeline scheduling
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Operation Scheduling

 Input:
 Sequencing graph G(V, E), with n vertices

 Cycle time .
 Operation delays D = {di: i=0..n}.

Output:
 Schedule  determines start time ti of operation vi.

 Latency  = tn – t0.

Goal: determine area / latency tradeoff

Classes:
 Non-hierarchical and unconstrained

 Latency constrained

 Resource constrained

 Hierarchical

© R. Gupta
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Simplest method

All operations have bounded delays

All delays are in cycles:

 Cycle-time is given

No constraints – no bounds on area

Goal:

 Minimize latency
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Min Latency Unconstrained Scheduling

Simplest case: no constraints, find min latency

Given set of vertices V, delays D and a partial order > on operations 

E, find an integer labeling of operations   : V  Z+ Such that:

 ti = (vi).

 ti  tj + dj  (vj, vi)  E.

  = tn – t0 is minimum.

Solvable in polynomial time

Bounds on latency for resource constrained problems

ASAP algorithm used: topological order

© R. Gupta
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ASAP Schedules

 Schedule v0 at t0=0.

 While (vn not scheduled)
 Select vi with all scheduled predecessors

 Schedule vi at ti = max {tj+dj}, vj being a predecessor of vi.

 Return tn.
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ALAP Schedules

 Schedule vn at tn=.

 While (v0 not scheduled)
 Select vi with all scheduled successors

 Schedule vi at ti = min {tj-dj}, vj being a succecessor of vi.
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Remarks

ALAP solves a latency-constrained problem

Latency bound can be set to latency computed by ASAP 

algorithm

Mobility:

 Defined for each operation

 Difference  between ALAP and ASAP schedule

Slack on the start time
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Example

 Operations with zero mobility:

 { v1, v2, v3, v4, v5 }

 Critical path

 Operations with mobility one:
 { v6, v7 }

 Operations with mobility two:
 { v8, v9, v10, v11 }
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Scheduling under detailed timing constraints

Motivation:

 Interface design

 Control over operation start time

Constraints:

 Upper/lower bounds on start-time difference of any operation pair

Feasibility of a solution
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Constraint graph model

Start from sequencing graph
 Model delays as weights on edges

Add forward edges for minimum constraints:
 Edge ( vi , vj ) with weight lij → tj ≥ ti + lij

Add backward edges for maximum constraints:
 That is, for constraint from vi to vj

add backward edge ( vj , vi ) with weight: -uij
 because tj ≤ ti + uij→ ti ≥ tj - uij
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Example
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Methods for scheduling under detailed timing constraints

Assumption:

 All delays are fixed and known

Set of linear inequalities

Longest path problem

Algorithms:

 Bellman-Ford, Liao-Wong

Extensions:

 Unbounded delays, relative scheduling
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Method for scheduling with unbounded-delay operations

Unbounded delays:
 Synchronization

 Unbounded-delay operations (e.g. loops)

Anchors:
 Unbounded-delay operations

Relative scheduling:
 Schedule ops w.r. to the anchors

 Combine schedules
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Example

 t3 = max { t1 + d1; ta + da }
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Relative scheduling method

For each vertex:

 Determine relevant anchor set R (vi )

 Anchors affecting start time

 Determine time offsets from anchors

Start-time:

 Expressed by : ti = max { ta + da + ti }

 Computed only at run-time because delays of anchors are 
unknown
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Relative scheduling under timing constraints

Problem definition:

 Detailed timing constraints

 Unbounded delay operations

Solution:

 May or may not exist

 Problem may be ill-specified
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Relative scheduling under timing constraints

Feasible problem:

 A solution exists when unknown delays are zero

Well-posed problem:

 A solution exists for any value of the unknown delays

Theorem:

 A constraint graph can be well-posed if there are no cycles with 
unbounded weights
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Example
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Relative scheduling approach

Analyze graph:
 Detect anchors

 Well-posedness test

 Determine dependencies from anchors

Schedule ops with respect to relevant anchors:
 Bellman-Ford, Liao-Wong, Ku algorithms

Combine schedules to determine start times:
ti = max { ta + da + ti }

a є R(vi)
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Example
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Example of control-unit
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Module 2

Objectives:

 Scheduling with resource constraints

 Exact formulation:
 ILP

 Hu’s algorithm

 Heuristic methods

 List scheduling

 Force-directed scheduling
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Scheduling under resource constraints

Classical scheduling problem:
 Fix area bound – minimize latency (ML-RCS)

The amount of available resources affects the achievable 
latency

Dual problem:
 Fix latency bound – minimize resources (MR-LCS)

Assumption:
 All delays bounded and known
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Given a set of ops V with integer delays D, a partial order on 
the operations E,
and upper bounds { ak; k = 1, 2,…, nres } on resource usage:

Find an integer labeling of the operation      φ : V → z+  

such that :
ti = φ( vi ),

ti ≥ tj + dj for all i,j s.t. (vj, vi) є E,

| {vi |T(vi) = k and ti ≤ l < tj + dj } | ≤ ak for all types k = 1,2,…,nres

and  steps l

and tn is minimum

Minimum latency resource-constrained scheduling (ML-RCS)
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Scheduling under resource constraints

Intractable problem

Algorithms:

 Exact:
 Integer linear program

 Hu (restrictive assumptions)

 Approximate :
 List scheduling

 Force-directed scheduling
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Binary decision variables:

X = { xil,   i = 1,2,…. n;  l = 1,2,…, λ + 1}

xil is TRUE only when operation vi starts in step l of the schedule      
( i.e. l = ti )

λ is an upper bound on latency

Start time of operation vi :    Σl  l . xil

ILP formulation
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Operations start only once
Σ xil = 1 i = 1, 2,…, n

Sequencing relations must be satisfied
ti ≥ tj + dj  ti - tj - dj ≥ 0 for all (vj, vi) є E

Σ l • xil – Σ l • xjl – dj ≥ 0 for all (vj, vi) є E

Resource bounds must be satisfied
Simple case (unit delay)
Σ l xil ≤ ak k = 1,2,…nres ;   for all l

ILP formulation constraints

i:T(vi)=k
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Start Time vs. Execution Time

For each operation vi , only one start time

If di=1, then the following questions are the same:
 Does operation vi start at step l?

 Is operation vi running at step l?

But if di>1, then the two questions should be formulated 
as:
 Does operation vi start at step l?

 Does xil = 1 hold?

 Is operation vi running at step l?
 Does the following hold? 1

1




l

dlm
im

i

x ?
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Operation vi Still Running at Step l ?

 Is v9 running at step 6?

 Is     x9,6 + x9,5 + x9,4 = 1 ?

Note:

 Only one (if any) of the above three cases can happen

 To meet resource constraints, we have to ask the same question for ALL 
steps, and ALL operations of that type

v9

4
5
6

x9,4=1

v9

4
5
6

x9,5=1

v9

4
5
6

x9,6=1

© K. Bazargan

(c)  Giovanni De Micheli 34

Operation vi Still Running at Step l ?

Is vi running at step l ?

 Is     xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi

l

l-1

l-di+1

...

xi,l-di+1=1

vil

l-1

l-di+1

...

xi,l-1=1

vil

l-1

l-di+1

...

xi,l=1

. . .

© K. Bazargan



18

(c)  Giovanni De Micheli 35

Constraints:
 Unique start times:

 Sequencing (dependency) relations must be satisfied

 Resource constraints

Objective: min cTt.
 t =start times vector, c =cost weight (e.g., [0 0 ... 1])

 When c =[0 0 ... 1], cTt =

ILP Formulation of ML-RCS
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Example

 Resource constraints:
 2 ALUs; 2 Multipliers

 a1 = 2; a2 = 2

 Single-cycle operation
 di = 1 for all i
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ILP Example

Assume  = 4

First, perform ASAP and ALAP

 (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will 
simplify the inequalities)
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ILP Example: Unique Start Times Constraint

Without using ASAP and ALAP

values:

 Using ASAP and ALAP:

1

...

...

...

1

1

4,113,112,111,11

4,23,22,21,2

4,13,12,11,1







xxxx

xxxx

xxxx

....

1

1

1

1

1

1

1

1

1

4,93,92,9

3,82,81,8

3,72,7

2,61,6

4,5

3,4

2,3

1,2

1,1



















xxx

xxx

xx

xx

x

x

x

x

x

© K. Bazargan



20

(c)  Giovanni De Micheli 39

ILP Example: Dependency Constraints

Using ASAP and ALAP, the non-trivial inequalities are: 

(assuming unit delay for + and *)

01.4.3.2.5

01.4.3.2.5

01.3.2.4

01.3.2.4.3.2

01.3.2.4.3.2

01.2.3.2

4,113,112,115,

4,93,92,95,

3,72,74,5

3,102,101,104,113,112,11

3,82,81,84,93,92,9

2,61,63,72,7













xxxx

xxxx

xxx

xxxxxx

xxxxxx

xxxx

n

n

© K. Bazargan

(c)  Giovanni De Micheli 40

ILP Example: Resource Constraints

Resource constraints (assuming 2 adders and 2 

multipliers)

Objective:

 Since =4 and sink has no mobility, any feasible solution is 
optimum, but we can use the following anyway:
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Example
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Minimize resource usage under latency constraint

Additional constraint:

 Latency bound must be satisfied

 Σl l xnl ≤ λ + 1

Resource usage is unknown in the constraints

Resource usage is the objective to minimize

MR-LCS dual ILP formulation



22

(c)  Giovanni De Micheli 43

Example

 Multiplier area = 5 
 ALU area = 1.
 Objective function: 5a1 + a2
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ILP Solution

Use standard ILP packages

Transform into LP problem 

Advantages:

 Exact method

 Others constraints can be incorporated

Disadvantages:

 Works well up to few thousand variables
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Hu’s Algorithm

Simple case of the scheduling problem
 Operations of unit delay

 Operations (and resources) of the same type

Hu’s algorithm
 Greedy, polynomial AND optimal (exact)

 Computes lower bound on number of resources for given latency
OR
Computes lower bound on latency subject to resource constraints

Basic idea:
 Label operations based on their distances from the sink

 Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

© R. Gupta
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Hu’s algorithm with ā resources

Label operations with distance to sink

Set step l = 1

Repeat until all ops are scheduled:
 U = unscheduled vertices in V

 predecessors have been scheduled (or no predecessors)

 Select S  U resources with
 |S|  ā
 Maximal labels

 Schedule the S operations at step l

 Increment step l = l + 1
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Example

 Assumptions:
 One resource type only
 All operations have unit delay

 Labels:
 Distance to sink
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3 11

Example

Step 1: Op 1,2,6

Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11
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List scheduling algorithms

 Heuristic method for:
 Min latency subject to resource bound (ML-RCS)

 Min resource subject to latency bound (MR-LCS)

 Greedy strategy (like Hu’s)

 Does not guarantee optimality (unlike Hu’s)

 General graphs (unlike Hu’s)

 Resource constraints on different resource types

 Operations of arbitrary delay

 Priority list heuristics
 Priority decided by criticality (similar to Hu’s)

 Longest path to sink, longest path to timing constraint

 O(n) time complexity

© K. Bazargan
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List scheduling algorithm for minimum latency

LIST_L( G(V, E), a) {

l = 1;

repeat {

for each resource type k = 1, 2, …, nres {

Determine ready operations Ul,k;

Determine unfinished operations Tl,k;

Select Sk  Ul,k vertices, s.t. |Sk| + |Tl,k| ≤ ak;

Schedule the Sk operations at step l;

}

l = l + 1;

}

until (vn is scheduled) ;

return (t);

}
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Example
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LIST_R( G(V, E), λ) {
a = 1;
Compute the latest possible start times tL by ALAP ( G(V, E), λ);
if (t0 < 0)

return (Ø);
l = 1;
repeat {

for each resource type k = 1, 2, …, nres {
Determine ready operations Ul,k;
Compute the slacks { si = ti – l for all vi є Ulk};
Schedule the candidate operations with zero slack and update a;
Schedule the candidate operations not needing additional resources;
}

l = l + 1;
}
until (vn is scheduled) ;
return (t, a);

}

List scheduling algorithm for minimum resource usage

L

L
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Example
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Assumptions
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Maximum latency = 4
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a1 = 1 multiplier
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Force-Directed Scheduling

Heuristic, similar to list scheduling
 Can handle ML-RCS and MR-LCS
 For ML-RCS, schedules step-by-step
 BUT, selection of the operations tries to find the globally best 

set of operations

Idea [Paulin]
 Find the mobility i = ti

L – ti
S of operations (ALAP-ASAP)

 Look at the operation type probability distributions
 Try to flatten the operation type distributions

Definition: operation probability density
 pi ( l ) = Pr { vi executes in step l }

 Assume uniform distribution: ],[
1

1
)( L

i
S
i

i
i ttlforlp 




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Force-Directed Scheduling: Definitions

 Operation-type distribution (sum of operation probabilities for each type)



 Operation probabilities over control steps:



 Distribution graph of type k over all steps:



 qk ( l ) can be thought of as expected operator cost
for implementing operations of type k at step l.





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Example

+

NOP



  + <
-

-
NOP

1

2
3

4

0)4(

83.0
3

1

2

1
)3(

33.2
3

1

2

1

2

1
1)2(

83.2
3

1

2

1
11)1(









mult

mult

mult

mult

q

q

q

q

2.83

2.33

.83

66.1
3

1

3

1
1)4(

2
3

1

3

1

3

1
1)3(

1
3

1

3

1

3

1
)2(

33.0
3

1
)1(









add

add

add

add

q

q

q

q

0

1

2

1.66

0.33

© K. Bazargan



29

(c)  Giovanni De Micheli 57

Force-Directed Scheduling Algorithm

Very similar to LIST_L(G(V,E), a)

 Compute mobility of operations using  ASAP and ALAP

 Computer operation probabilities and type distributions

 Select and schedule operations

 Update operation probabilities and type distributions

 Go to next control step

Difference with list scheduling in selecting operations

 Select operations with least force

 O(n2) time complexity due to pair-wise force computations

© R. Gupta
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Force

Used as priority function

Force is related to concurrency:

 Sort operations for least force

Mechanical analogy:

 Force = constant x displacement
 Constant = operation-type distribution

 Displacement = change in probability
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Self-force:
 Sum of forces to feasible schedule steps
 Self-force for operation vi in step l

 Sum over type distribution x delta probability

Σ m in interval qk(m) (δlm – pi(m))

 Higher self-force indicates higher mobility

Predecessor/successor-force:
 Related to the predecessors/successors

 Fixing an operation timeframe restricts timeframe of 
predecessors/successors

 Ex: Delaying an operation implies delaying its successors

 Computed by changes in self-forces of neighbors

Two Types of Forces

(c)  Giovanni De Micheli 60

Example: Schedule operation v6

Operation v6 can be scheduled in step 1 or step 2
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Example: operation v6

Op v6 can be scheduled in the first two steps
p ( 1 ) = 0.5; p (2) = 0.5; p ( 3 ) = 0; p ( 4 ) = 0

Distribution: q ( 1 ) = 2.8; q ( 2 ) = 2.3

Assign v6 to step 1:
 variation in probability 1 – 0.5 = 0.5 for step 1

 variation in probability 0 – 0.5 = -0.5 for step 2

Self-force: 2.8 * 0.5 – 2.3 * 0.5 = + 0.25

No successor force
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Example: operation v6

Assign v6 to step 2:
 variation in probability 0 – 0.5 = -0.5 for step 1

 variation in probability 1 – 0.5 = 0.5 for step 2

Self-force: - 2.8 * 0.5 + 2.3 * 0.5 = - 0.25

Successor-force:
 Operation v7 assigned to step 3

 Succ. force is 2.3 ( 0- 0.5 ) + 0.8 ( 1 – 0.5 ) = - .75

Total force = -1
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Example: operation v6

Total force in step 1 = + 0.25

Total force in step 2 = -1

Conclusion:

 Least force is for step 2

 Assigning v6 to step 2 reduces concurrency
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Force-directed scheduling algorithm for minimum resources

FDS ( G ( V, E ),  λ ) {
repeat {

Compute/update the time-frames;

Compute the operation and type probabilities;

Compute the self-forces, p/s-forces and total forces;

Schedule the op. with least force;

} until (all operations are scheduled)

return (t);

}
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Scheduling Generalizations

Conditional operations

Hierarchy

Resource generalizations

 Multi-cycling and chaining

 Pipelined resources

Model generalizations

 Pipelining

 Loops

© R. Gupta
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Multi-Cycling and Chaining

Consider propagation delays of resources not in terms of 
cycles

Use scheduling to chain multiple operations in the same 
control step

Useful technique to explore effect of cycle-time on 
area/latency trade-off

Algorithms:
 ILP, ALAP/ASAP, list scheduling
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Example

Cycle-time: 60
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Pipelining

Two levels of pipelining:

 Structural pipelining
 Pipelined resources

 Non-pipelined model

 Functional pipelining
 Non-pipelined resources

 Pipelined model

© R. Gupta
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Structural Pipelining

Non-pipelined model using pipelined resources

Resources characterized by

 Execution delay

 Data introduction interval: DII

Implications

 Operations sharing a pipelined resource are serialized (always)

 Operations do not have data dependency

Solution using list scheduling

 Relax criteria for selection of vertices

© R. Gupta

(c)  Giovanni De Micheli 70

Structural Pipelining Example

3 multipliers w/ 2 cycle delay and DII = 1
© R. Gupta
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Functional Pipelining

Pipelined model, non-pipelined resources

Assume non-hierarchical graphs

Model characterized by

 Latency

 Initiation interval, II

Restart source before completing sink

 Implicit loop

Solutions using ILP or heuristics

 ILP resource constraints modified to include increased concurrency

 List or force-directed methods

© R. Gupta
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Pipelining and concurrency

II determines resource usage

 Smaller II leads to larger overlaps, higher resource requirements
min{ak} = nk, for II=1 (all nk operations are concurrent)

 In general, 

Concurrent operations

 Operations vi and vj are executing concurrently at control step l, if
rem{ ti ⁄ II } = rem{ tj ⁄ II } = l

 Affects the design of the controller circuitry

© R. Gupta







II

n
a k

k



37

(c)  Giovanni De Micheli 73

Loop Scheduling

Potential parallelism across loop invocations

Single loop executions

 Sequential execution

 Loop unrolling (known iteration count)
 Merge multiple iterations into one to provide scheduling opportunities

 Loop pipelining (iteration count might be unknown)
 Start next iteration while current one is still running

 Depends on dependencies across iterations 

Merging of multiple loops

 Run different loops in parallel (no dependencies)

© R. Gupta
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Loop Scheduling Example

Sequential

Unrolled

Pipelined

© R. Gupta
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Loop Pipelining

Iteration count = N

Loop latency = N · λ

Pipeline loop iterations with II < λ

Latency of the pipelined loop = N · II + overhead

Overhead = 

© R. Gupta
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Summary

Scheduling determines area/latency trade-off

 Intractable problem in general:

 Heuristic algorithms

 ILP formulation (small-case problems)

Several heuristic formulations

 List scheduling is the fastest and most used

 Force-directed scheduling tends to yield good results

Several extensions

 Chaining and multi-cycling

 Pipelining


