
1

SchedulingScheduling

Giovanni De Micheli
Integrated Systems Centre, EPF Lausanne

Additional sources:
• Lecture notes by Kia Bazargan, U of M

• Source: http://www.ece.umn.edu/users/kia/Courses/EE5301

• Notes by Rajesh Gupta, UC San Diego
• Original source: http://www.cecs.uci.edu/~rgupta/ics280.html

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

Objectives:

 The scheduling problem

 Case analysis

 Scheduling without constraints

 Scheduling with timing constraints

2

(c) Giovanni De Micheli 3

Scheduling

Circuit model:
 Sequencing graph

 Cycle-time is given

 Operation delays expressed in cycles

Scheduling:
 Determine the start times for the operations

 Satisfying all the sequencing (timing and resource) constraint

Goal:
 Determine area/latency trade-off

(c) Giovanni De Micheli 4

Example

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

3

(c) Giovanni De Micheli 5

Taxonomy

Unconstrained scheduling

Scheduling with timing constraints:
 Latency

 Detailed timing constraints

Scheduling with resource constraints

Related problems:
 Chaining

 Synchronization

 Pipeline scheduling

(c) Giovanni De Micheli 6

Operation Scheduling

 Input:
 Sequencing graph G(V, E), with n vertices

 Cycle time .
 Operation delays D = {di: i=0..n}.

Output:
 Schedule  determines start time ti of operation vi.

 Latency  = tn – t0.

Goal: determine area / latency tradeoff

Classes:
 Non-hierarchical and unconstrained

 Latency constrained

 Resource constrained

 Hierarchical

© R. Gupta

4

(c) Giovanni De Micheli 7

Simplest method

All operations have bounded delays

All delays are in cycles:

 Cycle-time is given

No constraints – no bounds on area

Goal:

 Minimize latency

(c) Giovanni De Micheli 8

Min Latency Unconstrained Scheduling

Simplest case: no constraints, find min latency

Given set of vertices V, delays D and a partial order > on operations

E, find an integer labeling of operations : V  Z+ Such that:

 ti = (vi).

 ti  tj + dj  (vj, vi)  E.

  = tn – t0 is minimum.

Solvable in polynomial time

Bounds on latency for resource constrained problems

ASAP algorithm used: topological order

© R. Gupta

5

(c) Giovanni De Micheli 9

ASAP Schedules

 Schedule v0 at t0=0.

 While (vn not scheduled)
 Select vi with all scheduled predecessors

 Schedule vi at ti = max {tj+dj}, vj being a predecessor of vi.

 Return tn.

+

NOP



  + <
-

-
NOP

1

2
3

4

© R. Gupta

(c) Giovanni De Micheli 10

ALAP Schedules

 Schedule vn at tn=.

 While (v0 not scheduled)
 Select vi with all scheduled successors

 Schedule vi at ti = min {tj-dj}, vj being a succecessor of vi.

+

NOP










+ <
-

-
NOP

1

2
3

4

© R. Gupta

6

(c) Giovanni De Micheli 11

Remarks

ALAP solves a latency-constrained problem

Latency bound can be set to latency computed by ASAP

algorithm

Mobility:

 Defined for each operation

 Difference between ALAP and ASAP schedule

Slack on the start time

(c) Giovanni De Micheli 12

Example

 Operations with zero mobility:

 { v1, v2, v3, v4, v5 }

 Critical path

 Operations with mobility one:
 { v6, v7 }

 Operations with mobility two:
 { v8, v9, v10, v11 }

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

TIME
1

TIME
2

TIME
3

TIME
4

*

*

+ <

-

-

* *

*

* +

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

7

(c) Giovanni De Micheli 13

Scheduling under detailed timing constraints

Motivation:

 Interface design

 Control over operation start time

Constraints:

 Upper/lower bounds on start-time difference of any operation pair

Feasibility of a solution

(c) Giovanni De Micheli 14

Constraint graph model

Start from sequencing graph
 Model delays as weights on edges

Add forward edges for minimum constraints:
 Edge (vi , vj) with weight lij → tj ≥ ti + lij

Add backward edges for maximum constraints:
 That is, for constraint from vi to vj

add backward edge (vj , vi) with weight: -uij
 because tj ≤ ti + uij→ ti ≥ tj - uij

8

(c) Giovanni De Micheli 15

Example

NOP

NOP

* *

+ +

0

1 3

2 4

n

NOP

NOP

* *

+ +

0

1 3

2 4

n

MAX
TIME

3

MIN
TIME

4

-3

4

0 0

2
2

2

1
1

6vn

5v4

1v3

3v2

1v1

1v0

Start timeVertex

(c) Giovanni De Micheli 16

Methods for scheduling under detailed timing constraints

Assumption:

 All delays are fixed and known

Set of linear inequalities

Longest path problem

Algorithms:

 Bellman-Ford, Liao-Wong

Extensions:

 Unbounded delays, relative scheduling

9

(c) Giovanni De Micheli 17

Method for scheduling with unbounded-delay operations

Unbounded delays:
 Synchronization

 Unbounded-delay operations (e.g. loops)

Anchors:
 Unbounded-delay operations

Relative scheduling:
 Schedule ops w.r. to the anchors

 Combine schedules

(c) Giovanni De Micheli 18

Example

 t3 = max { t1 + d1; ta + da }

NOP

NOP

* SYN

+ +

0

1 a

2 3

n

10

(c) Giovanni De Micheli 19

Relative scheduling method

For each vertex:

 Determine relevant anchor set R (vi)

 Anchors affecting start time

 Determine time offsets from anchors

Start-time:

 Expressed by : ti = max { ta + da + ti }

 Computed only at run-time because delays of anchors are
unknown

(c) Giovanni De Micheli 20

Relative scheduling under timing constraints

Problem definition:

 Detailed timing constraints

 Unbounded delay operations

Solution:

 May or may not exist

 Problem may be ill-specified

11

(c) Giovanni De Micheli 21

Relative scheduling under timing constraints

Feasible problem:

 A solution exists when unknown delays are zero

Well-posed problem:

 A solution exists for any value of the unknown delays

Theorem:

 A constraint graph can be well-posed if there are no cycles with
unbounded weights

(c) Giovanni De Micheli 22

Example

vi

vj

a

da

-uij

vjvi

a2a1

da1 da2

-uij

vjvi

a2a1

da1 da2

-uij

da2

(a) (b) (c)

12

(c) Giovanni De Micheli 23

Relative scheduling approach

Analyze graph:
 Detect anchors

 Well-posedness test

 Determine dependencies from anchors

Schedule ops with respect to relevant anchors:
 Bellman-Ford, Liao-Wong, Ku algorithms

Combine schedules to determine start times:
ti = max { ta + da + ti }

a є R(vi)

(c) Giovanni De Micheli 24

Example

NOP

NOP

* SYN

+ +

0

1 a

2 3

N

2

2
-3

1 1

3

da

3 0{v0 , a}v3

2 -{v0}v2

0 -{v0}v1

0 -{v0}a

Offsets

t0 ta

Relevant Anchor Set

R(vi)

Vertex

vi

13

(c) Giovanni De Micheli 25

Example of control-unit

1100

0000

0010

0001

counter

synch
a 1 2

3

start Completion of (a)

(c) Giovanni De Micheli 26

Module 2

Objectives:

 Scheduling with resource constraints

 Exact formulation:
 ILP

 Hu’s algorithm

 Heuristic methods

 List scheduling

 Force-directed scheduling

14

(c) Giovanni De Micheli 27

Scheduling under resource constraints

Classical scheduling problem:
 Fix area bound – minimize latency (ML-RCS)

The amount of available resources affects the achievable
latency

Dual problem:
 Fix latency bound – minimize resources (MR-LCS)

Assumption:
 All delays bounded and known

(c) Giovanni De Micheli 28

Given a set of ops V with integer delays D, a partial order on
the operations E,
and upper bounds { ak; k = 1, 2,…, nres } on resource usage:

Find an integer labeling of the operation φ : V → z+

such that :
ti = φ(vi),

ti ≥ tj + dj for all i,j s.t. (vj, vi) є E,

| {vi |T(vi) = k and ti ≤ l < tj + dj } | ≤ ak for all types k = 1,2,…,nres

and steps l

and tn is minimum

Minimum latency resource-constrained scheduling (ML-RCS)

15

(c) Giovanni De Micheli 29

Scheduling under resource constraints

Intractable problem

Algorithms:

 Exact:
 Integer linear program

 Hu (restrictive assumptions)

 Approximate :
 List scheduling

 Force-directed scheduling

(c) Giovanni De Micheli 30

Binary decision variables:

X = { xil, i = 1,2,…. n; l = 1,2,…, λ + 1}

xil is TRUE only when operation vi starts in step l of the schedule
(i.e. l = ti)

λ is an upper bound on latency

Start time of operation vi : Σl l . xil

ILP formulation

16

(c) Giovanni De Micheli 31

Operations start only once
Σ xil = 1 i = 1, 2,…, n

Sequencing relations must be satisfied
ti ≥ tj + dj  ti - tj - dj ≥ 0 for all (vj, vi) є E

Σ l • xil – Σ l • xjl – dj ≥ 0 for all (vj, vi) є E

Resource bounds must be satisfied
Simple case (unit delay)
Σ l xil ≤ ak k = 1,2,…nres ; for all l

ILP formulation constraints

i:T(vi)=k

(c) Giovanni De Micheli 32

Start Time vs. Execution Time

For each operation vi , only one start time

If di=1, then the following questions are the same:
 Does operation vi start at step l?

 Is operation vi running at step l?

But if di>1, then the two questions should be formulated
as:
 Does operation vi start at step l?

 Does xil = 1 hold?

 Is operation vi running at step l?
 Does the following hold? 1

1




l

dlm
im

i

x ?

© K. Bazargan

17

(c) Giovanni De Micheli 33

Operation vi Still Running at Step l ?

 Is v9 running at step 6?

 Is x9,6 + x9,5 + x9,4 = 1 ?

Note:

 Only one (if any) of the above three cases can happen

 To meet resource constraints, we have to ask the same question for ALL
steps, and ALL operations of that type

v9

4
5
6

x9,4=1

v9

4
5
6

x9,5=1

v9

4
5
6

x9,6=1

© K. Bazargan

(c) Giovanni De Micheli 34

Operation vi Still Running at Step l ?

Is vi running at step l ?

 Is xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi

l

l-1

l-di+1

...

xi,l-di+1=1

vil

l-1

l-di+1

...

xi,l-1=1

vil

l-1

l-di+1

...

xi,l=1

. . .

© K. Bazargan

18

(c) Giovanni De Micheli 35

Constraints:
 Unique start times:

 Sequencing (dependency) relations must be satisfied

 Resource constraints

Objective: min cTt.
 t =start times vector, c =cost weight (e.g., [0 0 ... 1])

 When c =[0 0 ... 1], cTt =

ILP Formulation of ML-RCS

 
l

il nix ,,1,0,1 

j
l

jl
l

ilijjji dxlxlEvvdtt   ..),(

1,,1,,,1,
)(: 1

 
 

 lnkax resk
kvTi

l

dlm
im

i i

nl
l

xl .

© K. Bazargan

(c) Giovanni De Micheli 36

Example

 Resource constraints:
 2 ALUs; 2 Multipliers

 a1 = 2; a2 = 2

 Single-cycle operation
 di = 1 for all i

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

19

(c) Giovanni De Micheli 37

ILP Example

Assume  = 4

First, perform ASAP and ALAP

 (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will
simplify the inequalities)

+

NOP



  + <
-

-
NOP

1

2
3

4

+

NOP










+ <
-

-
NOP

1

2
3

4

v2v1

v3

v4

v5

vn

v6

v7

v8

v9

v10

v11

v2v1

v3

v4

v5

vn

v6

v7 v8

v9

v10

v11

© K. Bazargan

(c) Giovanni De Micheli 38

ILP Example: Unique Start Times Constraint

Without using ASAP and ALAP

values:

 Using ASAP and ALAP:

1

...

...

...

1

1

4,113,112,111,11

4,23,22,21,2

4,13,12,11,1







xxxx

xxxx

xxxx

....

1

1

1

1

1

1

1

1

1

4,93,92,9

3,82,81,8

3,72,7

2,61,6

4,5

3,4

2,3

1,2

1,1



















xxx

xxx

xx

xx

x

x

x

x

x

© K. Bazargan

20

(c) Giovanni De Micheli 39

ILP Example: Dependency Constraints

Using ASAP and ALAP, the non-trivial inequalities are:

(assuming unit delay for + and *)

01.4.3.2.5

01.4.3.2.5

01.3.2.4

01.3.2.4.3.2

01.3.2.4.3.2

01.2.3.2

4,113,112,115,

4,93,92,95,

3,72,74,5

3,102,101,104,113,112,11

3,82,81,84,93,92,9

2,61,63,72,7













xxxx

xxxx

xxx

xxxxxx

xxxxxx

xxxx

n

n

© K. Bazargan

(c) Giovanni De Micheli 40

ILP Example: Resource Constraints

Resource constraints (assuming 2 adders and 2

multipliers)

Objective:

 Since =4 and sink has no mobility, any feasible solution is
optimum, but we can use the following anyway:

2

2

2

2

2

2

2

4,114,94,5

3,113,103,93,4

2,112,102,9

1,10

3,83,7

2,82,72,62,3

1,81,61,21,1















xxx

xxxx

xxx

x

xx

xxxx

xxxx

4,3,2,1, .4.3.2 nnnn xxxxMin 
© K. Bazargan

21

(c) Giovanni De Micheli 41

Example

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7
8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(c) Giovanni De Micheli 42

Minimize resource usage under latency constraint

Additional constraint:

 Latency bound must be satisfied

 Σl l xnl ≤ λ + 1

Resource usage is unknown in the constraints

Resource usage is the objective to minimize

MR-LCS dual ILP formulation

22

(c) Giovanni De Micheli 43

Example

 Multiplier area = 5
 ALU area = 1.
 Objective function: 5a1 + a2

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7
8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(c) Giovanni De Micheli 44

ILP Solution

Use standard ILP packages

Transform into LP problem

Advantages:

 Exact method

 Others constraints can be incorporated

Disadvantages:

 Works well up to few thousand variables

23

(c) Giovanni De Micheli 45

Hu’s Algorithm

Simple case of the scheduling problem
 Operations of unit delay

 Operations (and resources) of the same type

Hu’s algorithm
 Greedy, polynomial AND optimal (exact)

 Computes lower bound on number of resources for given latency
OR
Computes lower bound on latency subject to resource constraints

Basic idea:
 Label operations based on their distances from the sink

 Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

© R. Gupta

(c) Giovanni De Micheli 46

Hu’s algorithm with ā resources

Label operations with distance to sink

Set step l = 1

Repeat until all ops are scheduled:
 U = unscheduled vertices in V

 predecessors have been scheduled (or no predecessors)

 Select S  U resources with
 |S|  ā
 Maximal labels

 Schedule the S operations at step l

 Increment step l = l + 1

24

(c) Giovanni De Micheli 47

Example

 Assumptions:
 One resource type only
 All operations have unit delay

 Labels:
 Distance to sink

3 2 1 1

2

1

4 4 3 2 2

0

1 2

3

4

5

6

7

8

9

10

11

n

(c) Giovanni De Micheli 48

3 11

Example

Step 1: Op 1,2,6

Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11

2 1

2

4 4 3 2 2

0

1 2

3

4

5

6

7

8

9

10

11

n

_

a = 3

4 4 3 2

23

2

1

2

11

1

25

(c) Giovanni De Micheli 49

List scheduling algorithms

 Heuristic method for:
 Min latency subject to resource bound (ML-RCS)

 Min resource subject to latency bound (MR-LCS)

 Greedy strategy (like Hu’s)

 Does not guarantee optimality (unlike Hu’s)

 General graphs (unlike Hu’s)

 Resource constraints on different resource types

 Operations of arbitrary delay

 Priority list heuristics
 Priority decided by criticality (similar to Hu’s)

 Longest path to sink, longest path to timing constraint

 O(n) time complexity

© K. Bazargan

(c) Giovanni De Micheli 50

List scheduling algorithm for minimum latency

LIST_L(G(V, E), a) {

l = 1;

repeat {

for each resource type k = 1, 2, …, nres {

Determine ready operations Ul,k;

Determine unfinished operations Tl,k;

Select Sk  Ul,k vertices, s.t. |Sk| + |Tl,k| ≤ ak;

Schedule the Sk operations at step l;

}

l = l + 1;

}

until (vn is scheduled) ;

return (t);

}

26

(c) Giovanni De Micheli 51

Example

* *

+

<

-

-

* * *

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

TIME 6

TIME 7

Resource bounds:

3 multipliers with delay 2

1 ALU with delay 1

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

(c) Giovanni De Micheli 52

LIST_R(G(V, E), λ) {
a = 1;
Compute the latest possible start times tL by ALAP (G(V, E), λ);
if (t0 < 0)

return (Ø);
l = 1;
repeat {

for each resource type k = 1, 2, …, nres {
Determine ready operations Ul,k;
Compute the slacks { si = ti – l for all vi є Ulk};
Schedule the candidate operations with zero slack and update a;
Schedule the candidate operations not needing additional resources;
}

l = l + 1;
}
until (vn is scheduled) ;
return (t, a);

}

List scheduling algorithm for minimum resource usage

L

L

27

(c) Giovanni De Micheli 53

Example

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

Assumptions
Unit-delay resources
Maximum latency = 4

Start with :
a1 = 1 multiplier
a2 = 1 ALUs

Step 1
Two multiplications on CP
Set a1 = 2
Schedule Mult 1,2
Schedule ALU 10

Step 2
Schedule Mult 3, 6
Schedule ALU 11

Step 3
Schedule Mult 7,8
Schedule ALU 4

Step 4
Set a2=2
Schedule ALU 5, 9

(c) Giovanni De Micheli 54

Force-Directed Scheduling

Heuristic, similar to list scheduling
 Can handle ML-RCS and MR-LCS
 For ML-RCS, schedules step-by-step
 BUT, selection of the operations tries to find the globally best

set of operations

Idea [Paulin]
 Find the mobility i = ti

L – ti
S of operations (ALAP-ASAP)

 Look at the operation type probability distributions
 Try to flatten the operation type distributions

Definition: operation probability density
 pi (l) = Pr { vi executes in step l }

 Assume uniform distribution:],[
1

1
)(L

i
S
i

i
i ttlforlp 





© R. Gupta

28

(c) Giovanni De Micheli 55

Force-Directed Scheduling: Definitions

 Operation-type distribution (sum of operation probabilities for each type)



 Operation probabilities over control steps:



 Distribution graph of type k over all steps:



 qk (l) can be thought of as expected operator cost
for implementing operations of type k at step l.





kvTi

ik

i

lplq
)(:

)()(

)}(,),1(),0({ npppp iiii 

)}(,),1(),0({ nqqq kkk 

© K. Bazargan

(c) Giovanni De Micheli 56

Example

+

NOP



  + <
-

-
NOP

1

2
3

4

0)4(

83.0
3

1

2

1
)3(

33.2
3

1

2

1

2

1
1)2(

83.2
3

1

2

1
11)1(









mult

mult

mult

mult

q

q

q

q

2.83

2.33

.83

66.1
3

1

3

1
1)4(

2
3

1

3

1

3

1
1)3(

1
3

1

3

1

3

1
)2(

33.0
3

1
)1(









add

add

add

add

q

q

q

q

0

1

2

1.66

0.33

© K. Bazargan

29

(c) Giovanni De Micheli 57

Force-Directed Scheduling Algorithm

Very similar to LIST_L(G(V,E), a)

 Compute mobility of operations using ASAP and ALAP

 Computer operation probabilities and type distributions

 Select and schedule operations

 Update operation probabilities and type distributions

 Go to next control step

Difference with list scheduling in selecting operations

 Select operations with least force

 O(n2) time complexity due to pair-wise force computations

© R. Gupta

(c) Giovanni De Micheli 58

Force

Used as priority function

Force is related to concurrency:

 Sort operations for least force

Mechanical analogy:

 Force = constant x displacement
 Constant = operation-type distribution

 Displacement = change in probability

30

(c) Giovanni De Micheli 59

Self-force:
 Sum of forces to feasible schedule steps
 Self-force for operation vi in step l

 Sum over type distribution x delta probability

Σ m in interval qk(m) (δlm – pi(m))

 Higher self-force indicates higher mobility

Predecessor/successor-force:
 Related to the predecessors/successors

 Fixing an operation timeframe restricts timeframe of
predecessors/successors

 Ex: Delaying an operation implies delaying its successors

 Computed by changes in self-forces of neighbors

Two Types of Forces

(c) Giovanni De Micheli 60

Example: Schedule operation v6

Operation v6 can be scheduled in step 1 or step 2

* * + <

-

-

* * * * +

NOP

NOP

0

1 2

3

4

5

6

7

8

9

10

11

n

0 1 32

1

2

3

4

0 1 32

1

2

3

4

31

(c) Giovanni De Micheli 61

Example: operation v6

Op v6 can be scheduled in the first two steps
p (1) = 0.5; p (2) = 0.5; p (3) = 0; p (4) = 0

Distribution: q (1) = 2.8; q (2) = 2.3

Assign v6 to step 1:
 variation in probability 1 – 0.5 = 0.5 for step 1

 variation in probability 0 – 0.5 = -0.5 for step 2

Self-force: 2.8 * 0.5 – 2.3 * 0.5 = + 0.25

No successor force

(c) Giovanni De Micheli 62

Example: operation v6

Assign v6 to step 2:
 variation in probability 0 – 0.5 = -0.5 for step 1

 variation in probability 1 – 0.5 = 0.5 for step 2

Self-force: - 2.8 * 0.5 + 2.3 * 0.5 = - 0.25

Successor-force:
 Operation v7 assigned to step 3

 Succ. force is 2.3 (0- 0.5) + 0.8 (1 – 0.5) = - .75

Total force = -1

32

(c) Giovanni De Micheli 63

Example: operation v6

Total force in step 1 = + 0.25

Total force in step 2 = -1

Conclusion:

 Least force is for step 2

 Assigning v6 to step 2 reduces concurrency

(c) Giovanni De Micheli 64

Force-directed scheduling algorithm for minimum resources

FDS (G (V, E), λ) {
repeat {

Compute/update the time-frames;

Compute the operation and type probabilities;

Compute the self-forces, p/s-forces and total forces;

Schedule the op. with least force;

} until (all operations are scheduled)

return (t);

}

33

(c) Giovanni De Micheli 65

Scheduling Generalizations

Conditional operations

Hierarchy

Resource generalizations

 Multi-cycling and chaining

 Pipelined resources

Model generalizations

 Pipelining

 Loops

© R. Gupta

(c) Giovanni De Micheli 66

Multi-Cycling and Chaining

Consider propagation delays of resources not in terms of
cycles

Use scheduling to chain multiple operations in the same
control step

Useful technique to explore effect of cycle-time on
area/latency trade-off

Algorithms:
 ILP, ALAP/ASAP, list scheduling

34

(c) Giovanni De Micheli 67

Example

Cycle-time: 60

NOP

10

10 50

30 20

NOP

20 40

0

1 2

3 4

5

6
7

N

NOP

10

10 50

30 20

NOP

20 40

0

1 2

3 4

5

6
7

N

(a) (b)

(c) Giovanni De Micheli 68

Pipelining

Two levels of pipelining:

 Structural pipelining
 Pipelined resources

 Non-pipelined model

 Functional pipelining
 Non-pipelined resources

 Pipelined model

© R. Gupta

35

(c) Giovanni De Micheli 69

Structural Pipelining

Non-pipelined model using pipelined resources

Resources characterized by

 Execution delay

 Data introduction interval: DII

Implications

 Operations sharing a pipelined resource are serialized (always)

 Operations do not have data dependency

Solution using list scheduling

 Relax criteria for selection of vertices

© R. Gupta

(c) Giovanni De Micheli 70

Structural Pipelining Example

3 multipliers w/ 2 cycle delay and DII = 1
© R. Gupta

+ +

++

**** * * *
*+ + <<

< <**
+

+

* * * * * *

-
-

-
-

-
- -

-

** **

** **

36

(c) Giovanni De Micheli 71

Functional Pipelining

Pipelined model, non-pipelined resources

Assume non-hierarchical graphs

Model characterized by

 Latency

 Initiation interval, II

Restart source before completing sink

 Implicit loop

Solutions using ILP or heuristics

 ILP resource constraints modified to include increased concurrency

 List or force-directed methods

© R. Gupta

(c) Giovanni De Micheli 72

Pipelining and concurrency

II determines resource usage

 Smaller II leads to larger overlaps, higher resource requirements
min{ak} = nk, for II=1 (all nk operations are concurrent)

 In general,

Concurrent operations

 Operations vi and vj are executing concurrently at control step l, if
rem{ ti ⁄ II } = rem{ tj ⁄ II } = l

 Affects the design of the controller circuitry

© R. Gupta







II

n
a k

k

37

(c) Giovanni De Micheli 73

Loop Scheduling

Potential parallelism across loop invocations

Single loop executions

 Sequential execution

 Loop unrolling (known iteration count)
 Merge multiple iterations into one to provide scheduling opportunities

 Loop pipelining (iteration count might be unknown)
 Start next iteration while current one is still running

 Depends on dependencies across iterations

Merging of multiple loops

 Run different loops in parallel (no dependencies)

© R. Gupta

(c) Giovanni De Micheli 74

Loop Scheduling Example

Sequential

Unrolled

Pipelined

© R. Gupta

1 2 3 4 5 6 7 8

1,2,3 4,5,6 7,8,9

1

2

3

4

5

6

7

8

8

38

(c) Giovanni De Micheli 75

Loop Pipelining

Iteration count = N

Loop latency = N · λ

Pipeline loop iterations with II < λ

Latency of the pipelined loop = N · II + overhead

Overhead =

© R. Gupta

  1II


(c) Giovanni De Micheli 76

Summary

Scheduling determines area/latency trade-off

 Intractable problem in general:

 Heuristic algorithms

 ILP formulation (small-case problems)

Several heuristic formulations

 List scheduling is the fastest and most used

 Force-directed scheduling tends to yield good results

Several extensions

 Chaining and multi-cycling

 Pipelining

