Scheduling

Giovanni De Micheli

Integrated Systems Centre, EPF Lausanne

ETNTRIE IR

(Gl

Additional sources:
* Lecture notes by Kia Bazargan, U of M
* Source: http://www.ece.umn.edu/users/kia/Courses/EE5301

* Notes by Rajesh Gupta, UC San Diego

« Original source: http://www.cecs.uci.edu/~rqupta/ics280.html

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

Objectives:
+ The scheduling problem

¢ Case analysis
+ Scheduling without constraints

+ Scheduling with timing constraints

(c) Giovanni De Micheli

Scheduling

4 Circuit model:

+ Sequencing graph

+ Cycle-time is given

+ Operation delays expressed in cycles
4 Scheduling:

+ Determine the start times for the operations

+ Satisfying all the sequencing (timing and resource) constraint
& Goal:

+ Determine area/latency trade-off

(c) Giovanni De Micheli

Example

,,4 NOPP
Tl ,

/ / //
/ //
/
5 / -
/ ///
~ /
~o ad
Sl s
TS
(NOP N
\‘// /j

(c) Giovanni De Micheli (e " 4

Taxonomy

4 Unconstrained scheduling

4 Scheduling with timing constraints:

+ Latency

+ Detailed timing constraints
@ Scheduling with resource constraints
Related problems:

+ Chaining

+ Synchronization

+ Pipeline scheduling

(c) Giovanni De Micheli

Operation Scheduling

¢ Input:
+ Sequencing graph G(V, E), with n vertices
+ Cycle time <.
+ Operation delays D = {d;: i=0..n}.

¢ Output:

+ Schedule ¢ determines start time t; of operation v;.
¢ Latency A =t, - tg.
& Goal: determine area / latency tradeoff

& Classes:
+ Non-hierarchical and unconstrained
+ Latency constrained
+ Resource constrained
+ Hierarchical

©R. Gupta

Simplest method

All operations have bounded delays

®All delays are in cycles:

+ Cycle-time is given
& No constraints — no bounds on area

& Goal:

+ Minimize latency

(c) Giovanni De Micheli 7

Min Latency Unconstrained Scheduling

Simplest case: no constraints, find min latency

@ Given set of vertices V, delays D and a partial order > on operations
E, find an integer labeling of operations ¢: V -2 Z* Such that:
. ti = ¢(Vi).
¢ 4 ZIJ' + dj V(Vj, vj) € E.
¢+ A=ty —1tpis minimum.
Solvable in polynomial time
4 Bounds on latency for resource constrained problems

@ ASAP algorithm used: topological order

©R. Gupta 8

ASAP Schedules

+ Schedule v at t,=0.

+ While (v,, not scheduled)
¢ Select v; with all scheduled predecessors

¢ Schedule v;at t; = max {t+dl} i being a predecessor of v;.

+ Return tn.

—

@
@
@
\J

°
™\
R
"\

©R. Gupta

ALAP Schedules

+ Schedule v, at t,=4.

+ While (v, not scheduled)
¢ Select v; with all scheduled successors
¢ Schedule v;at t;= min {tj—dj}, Vi being a succecessor of v;.

1 .ﬁ\

o
4‘(9
RS

©R. Gupta

10

Remarks

¢ Mobility:

(c) Giovanni De Micheli

@ ALAP solves a latency-constrained problem

+ Defined for each operation

+ Difference between ALAP and ASAP schedule
& Slack on the start time

Latency bound can be set to latency computed by ASAP
algorithm

1

& Operations with zero mobility:

Example

o {vi, v, Ve, vy, V5 }
+ Critical path
& Operations with mobility one:

¢ {ve v}

& Operations with mobility two:
+ { v, Vo Vio, Vi1 }

(c) Giovanni De Micheli

12

Scheduling under detailed timing constraints

4 Motivation:
+ Interface design

+ Control over operation start time

& Constraints:

+ Upper/lower bounds on start-time difference of any operation pair

¢ Feasibility of a solution

(c) Giovanni De Micheli

13

Constraint graph model

Start from sequencing graph
+ Model delays as weights on edges

& Add forward edges for minimum constraints:
+ Edge (v;, v)) with weight [; — £ 2t + 1,

¢ Add backward edges for maximum constraints:

+ That s, for constraint from v; to v;
add backward edge (v;, v;) with weight: -u;
¢ because St +u;— t 2t - u

(c) Giovanni De Micheli

14

Vertex

Start time

Vo

1

v,

V2

V3

Va

1
3
1
5
6

(c) Giovanni De Micheli

15

Methods for scheduling under detailed timing constraints

& Assumption:

+ All delays are fixed and known
Set of linear inequalities
4 Longest path problem
@ Algorithms:

+ Bellman-Ford, Liao-Wong

& Extensions:

+ Unbounded delays, relative scheduling

(c) Giovanni De Micheli

16

Method for scheduling with unbounded-delay operations

4 Unbounded delays:

+ Synchronization

+ Unbounded-delay operations (e.g. loops)
Anchors:

+ Unbounded-delay operations
Relative scheduling:

+ Schedule ops w.r. to the anchors

+ Combine schedules

(c) Giovanni De Micheli

17

Example

et;=max{t;+dyta+d;}

(c) Giovanni De Micheli

18

Relative scheduling method

For each vertex:
+ Determine relevant anchor set R (v,)
+ Anchors affecting start time
+ Determine time offsets from anchors

& Start-time:
+ Expressed by :t;=max {t,+d,+t }

+ Computed only at run-time because delays of anchors are
unknown

(c) Giovanni De Micheli 19

Relative scheduling under timing constraints

@ Problem definition:
+ Detailed timing constraints

+ Unbounded delay operations

Solution:
+ May or may not exist
+ Problem may be ill-specified

(c) Giovanni De Micheli 20

10

Relative scheduling under timing constraints

Feasible problem:

+ A solution exists when unknown delays are zero

¢ Well-posed problem:

+ A solution exists for any value of the unknown delays

& Theorem:

+ A constraint graph can be well-posed if there are no cycles with
unbounded weights

(c) Giovanni De Micheli 21

Example

(c) Giovanni De Micheli 22

11

Relative scheduling approach

¢ Analyze graph:
+ Detect anchors
+ Well-posedness test
+ Determine dependencies from anchors

Schedule ops with respect to relevant anchors:

+ Bellman-Ford, Liao-Wong, Ku algorithms

& Combine schedules to determine start times:

aeR(v)

(c) Giovanni De Micheli

23

Example

ST~ 0

7 NoP
! /

\
7 X
/ AN
/

7

e

-3
2
2
<
<

N

~ -
SN~
NN

7 Nop \ N
! /
\ N 7
Vertex Relevant Anchor Set Offsets
Vi R(v) f t
a vt 0
Vi {vo} 0
vy {vo} 2
Vy {v, a} 3 0

(c) Giovanni De Micheli

24

12

Example of control-unit

start Completion of (a)

l

T
|

counter

1100
0000
0010
0001

T T T
[
[

il ——

(c) Giovanni De Micheli 25

Module 2

Objectives:
+ Scheduling with resource constraints

+ Exact formulation:
¢ ILP
¢ Hu’s algorithm

+ Heuristic methods
¢ List scheduling
¢ Force-directed scheduling

(c) Giovanni De Micheli 26

13

Scheduling under resource constraints

Classical scheduling problem:
+ Fix area bound — minimize latency (ML-RCS)

& The amount of available resources affects the achievable
latency

4 Dual problem:

+ Fix latency bound — minimize resources (MR-LCS)
@ Assumption:

+ All delays bounded and known

(c) Giovanni De Micheli 27

Minimum latency resource-constrained scheduling (ML-RCS)

¢ Given a set of ops V with integer delays D, a partial order on
the operations E,
and upper bounds { ai; k=1, 2,..., ns } ON resource usage:

Find an integer labeling of the operation ¢ :V — z*
such that :
ti=@(v;),
t2t+d forallijs.t (v, v)€eE,
[{v;IT(v) =kand ;s /<t +d;}|=a, foralltypesk=12,...,Mes
and steps /
and t, is minimum

(c) Giovanni De Micheli 28

14

Scheduling under resource constraints

#Intractable problem

Algorithms:

+ Exact:

¢ Integer linear program

¢ Hu (restrictive assumptions)
+ Approximate :

¢ List scheduling
¢ Force-directed scheduling

(c) Giovanni De Micheli 29

ILP formulation

#Binary decision variables:
X={x, i=1,2,..n; 1=1,2,..., A+ 1}

x; is TRUE only when operation v; starts in step / of the schedule
(ie.l=t)
Ais an upper bound on latency

o Start time of operationv;: Z, I x;

(c) Giovanni De Micheli 30

15

ILP formulation constraints

4 Operations start only once
Ix;=1 i=1,2,.,n
Sequencing relations must be satisfied
t2t+d 2> ti-t-d, 20 forall(v,v)eE
Llexy—Zlex;—d; 20 forall (v, v) € E
Resource bounds must be satisfied
Simple case (unit delay)

2, xysa, k=12...n
iT(v)=k

forall |

res’

(c) Giovanni De Micheli

31

Start Time vs. Execution Time

< For each operation v;, only one start time

<If d;=1, then the following questions are the same:

+ Does operation v; start at step |?
+ Is operation v; running at step 1?

#But if d;>1, then the two questions should be formulated

as.

+ Does operation v; start at step |?
¢ Does x;| = 1 hold?

+ Is operation v; running at step 1?

|
+ Does the following hold? Z Xirn 21

© K. Bazargan

32

16

Operation v; Still Running at Step [?

4 IS vg running at step 6?

S X96+X95+X94:1 ?

4—
5 5 5

GI

X961 X95=1 X94=1

& Note:
+ Only one (if any) of the above three cases can happen
+ To meet resource constraints, we have to ask the same question for ALL

steps, and ALL operations of that type
33

© K. Bazargan

Operation v; Still Running at Step [?

®Is v, running at step | ?

v IS Xi,| + Xi,|-1 + ...+ Xi,l-di+1 =1 ?

I-d;+1 I-d;+1 I-d;+1
-1 -1 I |
I ‘ I I
X; =1 Xj1=1 Xi 1-di+1=1
©K. Bazargan 34

17

ILP Formulation of ML-RCS

& Constraints:
+ Unique start times: ZX =1 i=01 n
il — ™ - | IR |
|

+ Sequencing (dependency) relations must be satisfied

t >t +d; V(v;,v,)eE= D L. ZIZI'XN +d,

+ Resource constraints I

Z IZ Xim = Ay, k=1...,n |=1,...,I+1

**1 llres?
iT(v;)=k m=l-d;+1

& Objective: min c't.
+ t=start times vector, ¢ =cost weight (e.g., [00 ... 1])
« Whenc=[00..1],c"t= Z| Xy
|
© K. Bazargan 35

7P 99

& Resource constraints:
+ 2 ALUs; 2 Multipliers
v y=2;2,=2

& Single-cycle operation
« di=1 foralli

(c) Giovanni De Micheli 36

18

ILP Example

L 4 Assumei =4

@ First, perform ASAP and ALAP

+ (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will
simplify the inequalities)

[

N

w
w

wﬁ\
§ ® O
e / //

@

© K. Bazargan 37

oy
- G4 4‘(9
g

ILP Example: Unique Start Times Constraint

& Without using ASAP and ALAP & Using ASAP and ALAP:

values: X, =1
Xpg + X, + X g+ X, =1 X, =1
Xpr+ Xy o+ Xy g+ Xy, =1 X3, =1
Xs3=1

Xg 4 =1

Xg1+ Xg, =1
Xp1t Xy o+ Xppg+ Xy g = 1 X7+t X3 = 1
Xg1+ Xg, + Xg3 =1

Xgo T X931 Xg 4 = 1

© K. Bazargan 38

19

ILP Example: Dependency Constraints

@ Using ASAP and ALAP, the non-trivial inequalities are:
(assuming unit delay for + and *)

2.X;,+3.X;53=Xg,—2.X5,-120

2. Xg, +3Xg3+4.Xg, —Xg;—2.X3, -3 X3-120

2. Xy 3 Xy 3+ 4. Xy 4 = Xy = 2. Xy, =3 X55,-120
4.Xg,—2.%X,,-3%X;,5,-120

S X5 =2 X9, =3 Xg3-4%X,,-120

5.xn’5 — 2.x11’2 — 3.x1113 — 4.x11’4 -1>0

© K. Bazargan 39

ILP Example: Resource Constraints

#Resource constraints (assuming 2 adders and 2
multipliers) Xpp+ Xgp + Xg o+ Xg 4

IA

IA

X3,2 + X6,2 + X7,2 + X8,2

IA

X7,3 + X8,3

XlO,l
X9,2 + X10,2 + Xll,2

IN

IA

X4,3 + X9,3 + X10,3 + X11,3

IA
N N N N N NN

IA

@ Objective: Xsa T Xou T Xyg 4

+ Since A=4 and sink has no mobility, any feasible solution is
optimum, but we can use the following anyway:

Min X ,+2.X ,+3.X,5+4.X,,

© K. Bazargan 40

20

Example

/

/ \

TIME 1 Q

@e

TIME 3

{///‘Q/z/
NG

TIME 2 Q
o]

\
\
\
\
\
\
\
\
\
\
{ 8

@7
5 9

TIME 4

/
>~ 7z
/

(c) Giovanni De Micheli

MR-LCS dual ILP formulation

4 Minimize resource usage under latency constraint
4 Additional constraint:

+ Latency bound must be satisfied
o ZIx, SA+1

#Resource usage is unknown in the constraints

#Resource usage is the objective to minimize

(c) Giovanni De Micheli

42

&

f{\IOP} n
& Multiplier area=5 o
& ALUarea=1.

@ Objective function; 5a; + a,

(c) Giovanni De Micheli

43

ILP Solution

4 Use standard ILP packages

& Transform into LP problem
4 Advantages:

+ Exact method

+ Others constraints can be incorporated
#Disadvantages:

+ Works well up to few thousand variables

(c) Giovanni De Micheli

44

22

Hu’s Algorithm

@ Simple case of the scheduling problem

+ Operations of unit delay

+ Operations (and resources) of the same type
& Hu’s algorithm

+ Greedy, polynomial AND optimal (exact)

+ Computes lower bound on number of resources for given latency
OR

Computes lower bound on latency subject to resource constraints

#Basic idea:
+ Label operations based on their distances from the sink

+ Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

OR. Gupta 45

Hu’s algorithm with a resources

Label operations with distance to sink
& Setstep/=1

Repeat until all ops are scheduled:

+ U=unscheduled vertices in V
¢ predecessors have been scheduled (or no predecessors)

+ Select S < U resources with

¢|S|<a
+ Maximal labels

+ Schedule the S operations at step /
+ Incrementstep/=1/+1

(c) Giovanni De Micheli 46

23

Example

3 7 9 11
;
// //
/ 7
/ .

5 / /
/// ///
& Assumptions: o /7
+ One resource type only Co)n
+ All operations have unit delay -
& Labels:
+ Distance to sink
(c) Giovanni De Micheli 47
Example

Q1 ,2 ‘6/ 8
< 7, 7

Step 1: 0Op 1,2,6
Step 2: Op 3,7,8
Step 3: Op 4,9,10
Step 4: Op 5,11

(c) Giovanni De Micheli 48

24

List scheduling algorithms

& Heuristic method for:
+ Min latency subject to resource bound (ML-RCS)
+ Min resource subject to latency bound (MR-LCS)
& Greedy strategy (like Hu’s)
+ Does not guarantee optimality (unlike Hu's)
& General graphs (unlike Hu’s)
+ Resource constraints on different resource types
+ Operations of arbitrary delay
Priority list heuristics
+ Priority decided by criticality (similar to Hu's)

+ Longest path to sink, longest path to timing constraint
+ O(n) time complexity

© K. Bazargan 49

List scheduling algorithm for minimum latency

LIST_L(G(V, E), a){
1=1;
repeat {
for each resource type k=1, 2, ..., Npeg {
Determine ready operations Uy,
Determine unfinished operations Tj,;
Select S, c Uy vertices, s.t. S| + [T, | S
Schedule the S, operations at step /;
}
I=1+1;
}
until (v, is scheduled) ;

return (t);

(c) Giovanni De Micheli 50

25

P N
Il AN “doR.
T 4 - P S NN
2 0 T T T
T / \ \\\\\
1 6 \ 10
7 1 TIME 1 \
// // \
R \ 11
S TIME 2 \

5 //, /// \\\ !
L : Y 8 i
Morin \ TIME 3 !
1
|
TIME 4 :
1
4 |
. TIME 5 |
Resource bounds: 1
|
|
3 multipliers with delay 2 TIVE 6 ?‘5 |
|
. |
1 ALU with delay 1 D !
TIME 7 E
|

(c) Giovanni De Micheli

iNop) ™~ 51

List scheduling algorithm for minimum resource usage

LIST R(G(V, E),) {
a=1,

Compute the latest possible start times t- by ALAP (G(V, E), A);

if (ty < 0)
return (b);

1=1;

repeat {

for each resource type k=1, 2, ..., 0 {

Determine ready operations Uy,
Compute the slacks {s;=t;,—1

forall v; € Uy};

Schedule the candidate operations with zero slack and update a;
Schedule the candidate operations not needing additional resources;

}
I=1+1;
}
until (v, is scheduled) ;
return (t, a);

(c) Giovanni De Micheli

52

26

Example

4N0P@

Step 1

Step 3

Schedule Mult 7,8

Schedule Mult 3, 6
Schedule ALU 11

Two multiplications on CP
Seta; =2
Schedule Mult 1,2
Schedule ALU 10
Step 2

4 = 1 multiplier

Schedule ALU 4’
Step 4
Set a,=2
Schedule ALU 5, 9 4‘10;"0
TN
Z T // LN
Ly T Jan -
'NOPI n 2 / \ 10
TIME 1 Q Q / \ Q
! \
Assumptions P @e y é
Unit-delay resources TE? Q
Maximum latency = 4
Start with :

TIME 3 b" @‘7
a,=1ALUs

TIME 4 bs
(c) Giovanni De Micheli

\\\
\ ::
©

Force-Directed Scheduling

#Heuristic, similar to list scheduling
+ Can handle ML-RCS and MR-LCS
+ For ML-RCS, schedules step-by-step

+ BUT, selection of the operations tries to find the globally best
set of operations

#|dea [Paulin]

+ Find the mobility z; = tiL - tiS of operations (ALAP-ASAP)
+ Look at the operation type probability distributions

+ Try to flatten the operation type distributions

Definition: operation probability density

+ pj (1) =Pr{v;executesinstep | }

+ Assume uniform distribution: p; (1) = ——
©R. Gupta

forl e[t®,t"]

54

27

Force-Directed Scheduling: Definitions

4 Operation-type distribution (sum of operation probabilities for each type)

O ()= Z P; (N
iT (v;)=k
& Operation probabilities over control steps:

+ P ={p;(0), p;@),..., p;(n)}
Distribution graph of type k over all steps:

- 16.(0),9,(@),....q (n)}

+ Qi (1) can be thought of as expected operator cost
for implementing operations of type k at step I.

©K. Bazargan 55
Example
Qg (1) =%= 0.33 Gy (1) =1+1+§+§= 2.83
O (2)=% %+%=1 qmu.t(2)=1+%+%+%=2.33
qadd(3)=1+%+%+%=2 qmu,l(3)=%+%=0.83
Uugs (4) =1+%+%=1.66 O (4) =0

—|o.33 1

1

> ¥ 9 9 ©
] s a7 77
R c 4
X

© K. Bazargan 56

28

Force-Directed Scheduling Algorithm

& Very similar to LIST_L(G(V,E), a)
+ Compute mobility of operations using ASAP and ALAP
+ Computer operation probabilities and type distributions
+ Select and schedule operations
+ Update operation probabilities and type distributions
+ Go to next control step

& Difference with list scheduling in selecting operations

+ Select operations with least force
+ O(n?) time complexity due to pair-wise force computations

©R. Gupta

57

Force

Used as priority function

®Force is related to concurrency:

+ Sort operations for least force

#Mechanical analogy:

+ Force = constant x displacement
+ Constant = operation-type distribution
+ Displacement = change in probability

(c) Giovanni De Micheli

58

29

Two Types of Forces

& Self-force:
+ Sum of forces to feasible schedule steps
+ Self-force for operation v; in step /
+ Sum over type distribution x delta probability

Z min interval qk(m) (Glm - P:(m))
+ Higher self-force indicates higher mobility

& Predecessor/successor-force:

+ Related to the predecessors/successors

¢ Fixing an operation timeframe restricts timeframe of
predecessors/successors

¢ Ex: Delaying an operation implies delaying its successors
¢ Computed by changes in self-forces of neighbors

(c) Giovanni De Micheli

59

/,,4 NOFP

Example: Schedule operation v,

/ / //
/ //
5 S
/ 7
- .
-~ s

~< ’ s

o 1 2 3 o 1 2 3
[TTTTTT [T TTET
1 1
2 2 -
3 . 3 I
4 4+

Operation v, can be scheduled in step 1 or step 2

(c) Giovanni De Micheli

60

30

Example: operation vg

4 Op v, can be scheduled in the first two steps
p(1)=05p(2)=05p(3)=0;p(4)=0
@ Distribution: q(1)=28;q(2)=2.3

Assign v, to step 1:
+ variation in probability 1 — 0.5 = 0.5 for step 1
+ variation in probability 0 — 0.5 = -0.5 for step 2

& Self-force: 2.8+05-2.3:05=+0.25
& No successor force

(c) Giovanni De Micheli

61

Example: operation vg

® Assign v to step 2:

+ variation in probability 0 — 0.5 = -0.5 for step 1

+ variation in probability 1 — 0.5 = 0.5 for step 2
& Self-force: -2.8+:05+23+0.5=-0.25
Successor-force:

+ Operation v; assigned to step 3

+ Succ. forceis2.3(0-05)+08(1-05)=-.75

& Total force =-1

(c) Giovanni De Micheli

62

31

Example: operation v

& Total force instep 1 =+0.25
¢ Total force instep2=-1

4 Conclusion:
+ Least force is for step 2

+ Assigning vg to step 2 reduces concurrency

(c) Giovanni De Micheli 63

Force-directed scheduling algorithm for minimum resources

FDS (G (V,E), A){
repeat {
Compute/update the time-frames;
Compute the operation and type probabilities;
Compute the self-forces, p/s-forces and total forces;
Schedule the op. with least force;

} until (all operations are scheduled)
return (t);

(c) Giovanni De Micheli 64

32

Scheduling Generalizations

4 Conditional operations
#Hierarchy

#Resource generalizations
+ Multi-cycling and chaining
+ Pipelined resources

Model generalizations
+ Pipelining
+ Loops

OR. Gupta 65

Multi-Cycling and Chaining

& Consider propagation delays of resources not in terms of
cycles

@ Use scheduling to chain multiple operations in the same
control step

& Useful technique to explore effect of cycle-time on
area/latency trade-off

Algorithms:
+ ILP, ALAP/ASAP, list scheduling

(c) Giovanni De Micheli 66

33

Example

4 Cycle-time: 60

(c) Giovanni De Micheli 67

Pipelining

@ Two levels of pipelining:

+ Structural pipelining
+ Pipelined resources
¢ Non-pipelined model

+ Functional pipelining
¢ Non-pipelined resources
¢ Pipelined model

©R. Gupta 68

34

Structural Pipelining

@ Non-pipelined model using pipelined resources

#Resources characterized by
+ Execution delay
+ Data introduction interval: DIl

4 Implications

+ Operations sharing a pipelined resource are serialized (always)

+ Operations do not have data dependency

4 Solution using list scheduling

+ Relax criteria for selection of vertices

OR. Gupta 69
Structural Pipelining Example
R @ @ P
(’Q 9) GP {'B' G‘) .7 \kJ CLllf.r @ t)
B »® @ © N
] / () O B ON Q)
Oy o/
\I)'
® ® W @ ®» ® ® @
\\ (%) ./r'\ \ .|‘ |*\ Ifrﬁ
-—?_\ i t’ L = "~ L
\~}T</' \k) |-|_-) %7 LX)
r'v_xl ‘ ,*" (J'
LN ¥ | ’,f
© O |/
e
WS

43 multipliers w/ 2 cycle delay and DIl = 1

©R. Gupta

70

Functional Pipelining

& Pipelined model, non-pipelined resources
& Assume non-hierarchical graphs

& Model characterized by
+ Latency
+ Initiation interval, Il

& Restart source before completing sink
+ Implicit loop

Solutions using ILP or heuristics

+ ILP resource constraints modified to include increased concurrency
+ List or force-directed methods

©R. Gupta

71

Pipelining and concurrency

&/l determines resource usage

+ Smaller Il leads to larger overlaps, higher resource requirements
min{a,} = n,, for lI=1 (all n, operations are concurrent)

+ Ingeneral, ak = W
& Concurrent operations

+ Operations v, and v; are executing concurrently at control step /, if
rem{ &/ I} =rem{ ¢/} =1
+ Affects the design of the controller circuitry

©R. Gupta

72

36

Loop Scheduling

#Potential parallelism across loop invocations

4 Single loop executions
+ Sequential execution

+ Loop unrolling (known iteration count)
¢ Merge multiple iterations into one to provide scheduling opportunities

+ Loop pipelining (iteration count might be unknown)
¢ Start next iteration while current one is still running
+ Depends on dependencies across iterations

4 Merging of multiple loops

+ Run different loops in parallel (no dependencies)

OR. Gupta 73

Loop Scheduling Example

¢ Sequential

1 2 3 4 5 6 7 8

¢ Unrolled

1,23 45,6 7,8,9
¢ Pipelined

1|3]|5 |7

©R. Gupta 74

37

Loop Pipelining

#lteration count=N

#Loop latency =N - A

#Pipeline loop iterations with /I < A

#Latency of the pipelined loop = N - Il + overhead
-4/ =

#Overhead = | %I | 1

OR. Gupta 75

Summary

Scheduling determines area/latency trade-off

4 Intractable problem in general:

+ Heuristic algorithms

+ ILP formulation (small-case problems)
Several heuristic formulations

+ List scheduling is the fastest and most used

+ Force-directed scheduling tends to yield good results
Several extensions

+ Chaining and multi-cycling

+ Pipelining

(c) Giovanni De Micheli 76

38

