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Module 1

Objectives:

 The scheduling problem

 Case analysis

 Scheduling without constraints

 Scheduling with timing constraints
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Scheduling

Circuit model:
 Sequencing graph

 Cycle-time is given

 Operation delays expressed in cycles

Scheduling:
 Determine the start times for the operations

 Satisfying all the sequencing (timing and resource) constraint

Goal:
 Determine area/latency trade-off
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Example
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Taxonomy

Unconstrained scheduling

Scheduling with timing constraints:
 Latency

 Detailed timing constraints

Scheduling with resource constraints

Related problems:
 Chaining

 Synchronization

 Pipeline scheduling
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Operation Scheduling

 Input:
 Sequencing graph G(V, E), with n vertices

 Cycle time .
 Operation delays D = {di: i=0..n}.

Output:
 Schedule  determines start time ti of operation vi.

 Latency  = tn – t0.

Goal: determine area / latency tradeoff

Classes:
 Non-hierarchical and unconstrained

 Latency constrained

 Resource constrained

 Hierarchical

© R. Gupta
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Simplest method

All operations have bounded delays

All delays are in cycles:

 Cycle-time is given

No constraints – no bounds on area

Goal:

 Minimize latency
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Min Latency Unconstrained Scheduling

Simplest case: no constraints, find min latency

Given set of vertices V, delays D and a partial order > on operations 

E, find an integer labeling of operations   : V  Z+ Such that:

 ti = (vi).

 ti  tj + dj  (vj, vi)  E.

  = tn – t0 is minimum.

Solvable in polynomial time

Bounds on latency for resource constrained problems

ASAP algorithm used: topological order

© R. Gupta
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ASAP Schedules

 Schedule v0 at t0=0.

 While (vn not scheduled)
 Select vi with all scheduled predecessors

 Schedule vi at ti = max {tj+dj}, vj being a predecessor of vi.

 Return tn.
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ALAP Schedules

 Schedule vn at tn=.

 While (v0 not scheduled)
 Select vi with all scheduled successors

 Schedule vi at ti = min {tj-dj}, vj being a succecessor of vi.
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Remarks

ALAP solves a latency-constrained problem

Latency bound can be set to latency computed by ASAP 

algorithm

Mobility:

 Defined for each operation

 Difference  between ALAP and ASAP schedule

Slack on the start time
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Example

 Operations with zero mobility:

 { v1, v2, v3, v4, v5 }

 Critical path

 Operations with mobility one:
 { v6, v7 }

 Operations with mobility two:
 { v8, v9, v10, v11 }
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Scheduling under detailed timing constraints

Motivation:

 Interface design

 Control over operation start time

Constraints:

 Upper/lower bounds on start-time difference of any operation pair

Feasibility of a solution
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Constraint graph model

Start from sequencing graph
 Model delays as weights on edges

Add forward edges for minimum constraints:
 Edge ( vi , vj ) with weight lij → tj ≥ ti + lij

Add backward edges for maximum constraints:
 That is, for constraint from vi to vj

add backward edge ( vj , vi ) with weight: -uij
 because tj ≤ ti + uij→ ti ≥ tj - uij
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Example
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Methods for scheduling under detailed timing constraints

Assumption:

 All delays are fixed and known

Set of linear inequalities

Longest path problem

Algorithms:

 Bellman-Ford, Liao-Wong

Extensions:

 Unbounded delays, relative scheduling
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Method for scheduling with unbounded-delay operations

Unbounded delays:
 Synchronization

 Unbounded-delay operations (e.g. loops)

Anchors:
 Unbounded-delay operations

Relative scheduling:
 Schedule ops w.r. to the anchors

 Combine schedules
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Example

 t3 = max { t1 + d1; ta + da }
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Relative scheduling method

For each vertex:

 Determine relevant anchor set R (vi )

 Anchors affecting start time

 Determine time offsets from anchors

Start-time:

 Expressed by : ti = max { ta + da + ti }

 Computed only at run-time because delays of anchors are 
unknown
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Relative scheduling under timing constraints

Problem definition:

 Detailed timing constraints

 Unbounded delay operations

Solution:

 May or may not exist

 Problem may be ill-specified
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Relative scheduling under timing constraints

Feasible problem:

 A solution exists when unknown delays are zero

Well-posed problem:

 A solution exists for any value of the unknown delays

Theorem:

 A constraint graph can be well-posed if there are no cycles with 
unbounded weights
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Example

vi

vj

a

da

-uij

vjvi

a2a1

da1 da2

-uij

vjvi

a2a1

da1 da2

-uij

da2

(a) (b) (c)



12

(c)  Giovanni De Micheli 23

Relative scheduling approach

Analyze graph:
 Detect anchors

 Well-posedness test

 Determine dependencies from anchors

Schedule ops with respect to relevant anchors:
 Bellman-Ford, Liao-Wong, Ku algorithms

Combine schedules to determine start times:
ti = max { ta + da + ti }

a є R(vi)
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Example
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Example of control-unit
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Module 2

Objectives:

 Scheduling with resource constraints

 Exact formulation:
 ILP

 Hu’s algorithm

 Heuristic methods

 List scheduling

 Force-directed scheduling
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Scheduling under resource constraints

Classical scheduling problem:
 Fix area bound – minimize latency (ML-RCS)

The amount of available resources affects the achievable 
latency

Dual problem:
 Fix latency bound – minimize resources (MR-LCS)

Assumption:
 All delays bounded and known
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Given a set of ops V with integer delays D, a partial order on 
the operations E,
and upper bounds { ak; k = 1, 2,…, nres } on resource usage:

Find an integer labeling of the operation      φ : V → z+  

such that :
ti = φ( vi ),

ti ≥ tj + dj for all i,j s.t. (vj, vi) є E,

| {vi |T(vi) = k and ti ≤ l < tj + dj } | ≤ ak for all types k = 1,2,…,nres

and  steps l

and tn is minimum

Minimum latency resource-constrained scheduling (ML-RCS)
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Scheduling under resource constraints

Intractable problem

Algorithms:

 Exact:
 Integer linear program

 Hu (restrictive assumptions)

 Approximate :
 List scheduling

 Force-directed scheduling
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Binary decision variables:

X = { xil,   i = 1,2,…. n;  l = 1,2,…, λ + 1}

xil is TRUE only when operation vi starts in step l of the schedule      
( i.e. l = ti )

λ is an upper bound on latency

Start time of operation vi :    Σl  l . xil

ILP formulation



16

(c)  Giovanni De Micheli 31

Operations start only once
Σ xil = 1 i = 1, 2,…, n

Sequencing relations must be satisfied
ti ≥ tj + dj  ti - tj - dj ≥ 0 for all (vj, vi) є E

Σ l • xil – Σ l • xjl – dj ≥ 0 for all (vj, vi) є E

Resource bounds must be satisfied
Simple case (unit delay)
Σ l xil ≤ ak k = 1,2,…nres ;   for all l

ILP formulation constraints

i:T(vi)=k
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Start Time vs. Execution Time

For each operation vi , only one start time

If di=1, then the following questions are the same:
 Does operation vi start at step l?

 Is operation vi running at step l?

But if di>1, then the two questions should be formulated 
as:
 Does operation vi start at step l?

 Does xil = 1 hold?

 Is operation vi running at step l?
 Does the following hold? 1

1
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Operation vi Still Running at Step l ?

 Is v9 running at step 6?

 Is     x9,6 + x9,5 + x9,4 = 1 ?

Note:

 Only one (if any) of the above three cases can happen

 To meet resource constraints, we have to ask the same question for ALL 
steps, and ALL operations of that type
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Operation vi Still Running at Step l ?

Is vi running at step l ?

 Is     xi,l + xi,l-1 + ... + xi,l-di+1 = 1 ?

vi
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Constraints:
 Unique start times:

 Sequencing (dependency) relations must be satisfied

 Resource constraints

Objective: min cTt.
 t =start times vector, c =cost weight (e.g., [0 0 ... 1])

 When c =[0 0 ... 1], cTt =

ILP Formulation of ML-RCS
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Example

 Resource constraints:
 2 ALUs; 2 Multipliers

 a1 = 2; a2 = 2

 Single-cycle operation
 di = 1 for all i
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ILP Example

Assume  = 4

First, perform ASAP and ALAP

 (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will 
simplify the inequalities)
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ILP Example: Unique Start Times Constraint

Without using ASAP and ALAP

values:

 Using ASAP and ALAP:
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ILP Example: Dependency Constraints

Using ASAP and ALAP, the non-trivial inequalities are: 

(assuming unit delay for + and *)
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ILP Example: Resource Constraints

Resource constraints (assuming 2 adders and 2 

multipliers)

Objective:

 Since =4 and sink has no mobility, any feasible solution is 
optimum, but we can use the following anyway:
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Example
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Minimize resource usage under latency constraint

Additional constraint:

 Latency bound must be satisfied

 Σl l xnl ≤ λ + 1

Resource usage is unknown in the constraints

Resource usage is the objective to minimize

MR-LCS dual ILP formulation
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Example

 Multiplier area = 5 
 ALU area = 1.
 Objective function: 5a1 + a2
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ILP Solution

Use standard ILP packages

Transform into LP problem 

Advantages:

 Exact method

 Others constraints can be incorporated

Disadvantages:

 Works well up to few thousand variables
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Hu’s Algorithm

Simple case of the scheduling problem
 Operations of unit delay

 Operations (and resources) of the same type

Hu’s algorithm
 Greedy, polynomial AND optimal (exact)

 Computes lower bound on number of resources for given latency
OR
Computes lower bound on latency subject to resource constraints

Basic idea:
 Label operations based on their distances from the sink

 Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

© R. Gupta
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Hu’s algorithm with ā resources

Label operations with distance to sink

Set step l = 1

Repeat until all ops are scheduled:
 U = unscheduled vertices in V

 predecessors have been scheduled (or no predecessors)

 Select S  U resources with
 |S|  ā
 Maximal labels

 Schedule the S operations at step l

 Increment step l = l + 1
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Example

 Assumptions:
 One resource type only
 All operations have unit delay

 Labels:
 Distance to sink
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3 11

Example
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List scheduling algorithms

 Heuristic method for:
 Min latency subject to resource bound (ML-RCS)

 Min resource subject to latency bound (MR-LCS)

 Greedy strategy (like Hu’s)

 Does not guarantee optimality (unlike Hu’s)

 General graphs (unlike Hu’s)

 Resource constraints on different resource types

 Operations of arbitrary delay

 Priority list heuristics
 Priority decided by criticality (similar to Hu’s)

 Longest path to sink, longest path to timing constraint

 O(n) time complexity

© K. Bazargan
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List scheduling algorithm for minimum latency

LIST_L( G(V, E), a) {

l = 1;

repeat {

for each resource type k = 1, 2, …, nres {

Determine ready operations Ul,k;

Determine unfinished operations Tl,k;

Select Sk  Ul,k vertices, s.t. |Sk| + |Tl,k| ≤ ak;

Schedule the Sk operations at step l;

}

l = l + 1;

}

until (vn is scheduled) ;

return (t);

}
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Example
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LIST_R( G(V, E), λ) {
a = 1;
Compute the latest possible start times tL by ALAP ( G(V, E), λ);
if (t0 < 0)

return (Ø);
l = 1;
repeat {

for each resource type k = 1, 2, …, nres {
Determine ready operations Ul,k;
Compute the slacks { si = ti – l for all vi є Ulk};
Schedule the candidate operations with zero slack and update a;
Schedule the candidate operations not needing additional resources;
}

l = l + 1;
}
until (vn is scheduled) ;
return (t, a);

}

List scheduling algorithm for minimum resource usage

L

L
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Example
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Force-Directed Scheduling

Heuristic, similar to list scheduling
 Can handle ML-RCS and MR-LCS
 For ML-RCS, schedules step-by-step
 BUT, selection of the operations tries to find the globally best 

set of operations

Idea [Paulin]
 Find the mobility i = ti

L – ti
S of operations (ALAP-ASAP)

 Look at the operation type probability distributions
 Try to flatten the operation type distributions

Definition: operation probability density
 pi ( l ) = Pr { vi executes in step l }

 Assume uniform distribution: ],[
1

1
)( L

i
S
i

i
i ttlforlp 
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Force-Directed Scheduling: Definitions

 Operation-type distribution (sum of operation probabilities for each type)



 Operation probabilities over control steps:



 Distribution graph of type k over all steps:



 qk ( l ) can be thought of as expected operator cost
for implementing operations of type k at step l.
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Example
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Force-Directed Scheduling Algorithm

Very similar to LIST_L(G(V,E), a)

 Compute mobility of operations using  ASAP and ALAP

 Computer operation probabilities and type distributions

 Select and schedule operations

 Update operation probabilities and type distributions

 Go to next control step

Difference with list scheduling in selecting operations

 Select operations with least force

 O(n2) time complexity due to pair-wise force computations

© R. Gupta
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Force

Used as priority function

Force is related to concurrency:

 Sort operations for least force

Mechanical analogy:

 Force = constant x displacement
 Constant = operation-type distribution

 Displacement = change in probability
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Self-force:
 Sum of forces to feasible schedule steps
 Self-force for operation vi in step l

 Sum over type distribution x delta probability

Σ m in interval qk(m) (δlm – pi(m))

 Higher self-force indicates higher mobility

Predecessor/successor-force:
 Related to the predecessors/successors

 Fixing an operation timeframe restricts timeframe of 
predecessors/successors

 Ex: Delaying an operation implies delaying its successors

 Computed by changes in self-forces of neighbors

Two Types of Forces
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Example: Schedule operation v6

Operation v6 can be scheduled in step 1 or step 2
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Example: operation v6

Op v6 can be scheduled in the first two steps
p ( 1 ) = 0.5; p (2) = 0.5; p ( 3 ) = 0; p ( 4 ) = 0

Distribution: q ( 1 ) = 2.8; q ( 2 ) = 2.3

Assign v6 to step 1:
 variation in probability 1 – 0.5 = 0.5 for step 1

 variation in probability 0 – 0.5 = -0.5 for step 2

Self-force: 2.8 * 0.5 – 2.3 * 0.5 = + 0.25

No successor force
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Example: operation v6

Assign v6 to step 2:
 variation in probability 0 – 0.5 = -0.5 for step 1

 variation in probability 1 – 0.5 = 0.5 for step 2

Self-force: - 2.8 * 0.5 + 2.3 * 0.5 = - 0.25

Successor-force:
 Operation v7 assigned to step 3

 Succ. force is 2.3 ( 0- 0.5 ) + 0.8 ( 1 – 0.5 ) = - .75

Total force = -1
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Example: operation v6

Total force in step 1 = + 0.25

Total force in step 2 = -1

Conclusion:

 Least force is for step 2

 Assigning v6 to step 2 reduces concurrency
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Force-directed scheduling algorithm for minimum resources

FDS ( G ( V, E ),  λ ) {
repeat {

Compute/update the time-frames;

Compute the operation and type probabilities;

Compute the self-forces, p/s-forces and total forces;

Schedule the op. with least force;

} until (all operations are scheduled)

return (t);

}
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Scheduling Generalizations

Conditional operations

Hierarchy

Resource generalizations

 Multi-cycling and chaining

 Pipelined resources

Model generalizations

 Pipelining

 Loops

© R. Gupta
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Multi-Cycling and Chaining

Consider propagation delays of resources not in terms of 
cycles

Use scheduling to chain multiple operations in the same 
control step

Useful technique to explore effect of cycle-time on 
area/latency trade-off

Algorithms:
 ILP, ALAP/ASAP, list scheduling
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Example

Cycle-time: 60
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Pipelining

Two levels of pipelining:

 Structural pipelining
 Pipelined resources

 Non-pipelined model

 Functional pipelining
 Non-pipelined resources

 Pipelined model

© R. Gupta
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Structural Pipelining

Non-pipelined model using pipelined resources

Resources characterized by

 Execution delay

 Data introduction interval: DII

Implications

 Operations sharing a pipelined resource are serialized (always)

 Operations do not have data dependency

Solution using list scheduling

 Relax criteria for selection of vertices

© R. Gupta
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Structural Pipelining Example

3 multipliers w/ 2 cycle delay and DII = 1
© R. Gupta

+ +

++

**** * * *
*+ + <<

< <**
+

+

* * * * * *

-
-

-
-

-
- -

-

** **

** **



36

(c)  Giovanni De Micheli 71

Functional Pipelining

Pipelined model, non-pipelined resources

Assume non-hierarchical graphs

Model characterized by

 Latency

 Initiation interval, II

Restart source before completing sink

 Implicit loop

Solutions using ILP or heuristics

 ILP resource constraints modified to include increased concurrency

 List or force-directed methods

© R. Gupta

(c)  Giovanni De Micheli 72

Pipelining and concurrency

II determines resource usage

 Smaller II leads to larger overlaps, higher resource requirements
min{ak} = nk, for II=1 (all nk operations are concurrent)

 In general, 

Concurrent operations

 Operations vi and vj are executing concurrently at control step l, if
rem{ ti ⁄ II } = rem{ tj ⁄ II } = l

 Affects the design of the controller circuitry

© R. Gupta
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Loop Scheduling

Potential parallelism across loop invocations

Single loop executions

 Sequential execution

 Loop unrolling (known iteration count)
 Merge multiple iterations into one to provide scheduling opportunities

 Loop pipelining (iteration count might be unknown)
 Start next iteration while current one is still running

 Depends on dependencies across iterations 

Merging of multiple loops

 Run different loops in parallel (no dependencies)

© R. Gupta
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Loop Scheduling Example

Sequential

Unrolled

Pipelined

© R. Gupta
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Loop Pipelining

Iteration count = N

Loop latency = N · λ

Pipeline loop iterations with II < λ

Latency of the pipelined loop = N · II + overhead

Overhead = 

© R. Gupta
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Summary

Scheduling determines area/latency trade-off

 Intractable problem in general:

 Heuristic algorithms

 ILP formulation (small-case problems)

Several heuristic formulations

 List scheduling is the fastest and most used

 Force-directed scheduling tends to yield good results

Several extensions

 Chaining and multi-cycling

 Pipelining


