

Operation Scheduling	
 Input: Sequencing graph G(V, E), with <i>n</i> vertices Cycle time τ. Operation delays D = {d_i: i=0n}. Output: Schedule ødetermines start time t_i of operation v_i. Latency λ = t_n - t₀. Goal: determine area / latency tradeoff Classes: Non-hierarchical and unconstrained Latency constrained Besource constrained 	
 Hierarchical 	
© R. Gupta	6

ILP Example: Unique Start Times Constraint		
 Without using ASAP and ALAP values: 	• Using ASAP and ALAP: $x_{1,1} = 1$	
$x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} = 1$ $x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1$	$x_{2,1} = 1$ $x_{3,2} = 1$	
	$x_{4,3} = 1$ $x_{5,4} = 1$	
	$x_{6,1} + x_{6,2} = 1$ $x_{7,2} + x_{7,3} = 1$ $x_{7,2} + x_{7,3} = 1$	
	$x_{8,1} + x_{8,2} + x_{8,3} = 1$ $x_{9,2} + x_{9,3} + x_{9,4} = 1$	
© K. Bazargan		38

•Using ASAP and ALAP, the non-trivial inequalities are: (assuming unit delay for + and *) $2.x_{7,2} + 3.x_{7,3} - x_{6,1} - 2.x_{6,2} - 1 \ge 0$ $2.x_{9,2} + 3.x_{9,3} + 4.x_{9,4} - x_{8,1} - 2.x_{8,2} - 3.x_{8,3} - 1 \ge 0$ $2.x_{11,2} + 3.x_{11,3} + 4.x_{11,4} - x_{10,1} - 2.x_{10,2} - 3.x_{10,3} - 1 \ge 0$ $4.x_{5,4} - 2.x_{7,2} - 3.x_{7,3} - 1 \ge 0$ $5.x_{n,5} - 2.x_{9,2} - 3.x_{9,3} - 4.x_{9,4} - 1 \ge 0$

ILP Example: Resource Constraints Resource constraints (assuming 2 adders and 2) $x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$ multipliers) $x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \le 2$ $x_{7,3} + x_{8,3} \le 2$ $x_{10,1} \leq 2$ $x_{9,2} + x_{10,2} + x_{11,2} \le 2$ $x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \le 2$ $x_{54} + x_{94} + x_{114} \le 2$ ♦ Objective: Since λ=4 and sink has no mobility, any feasible solution is optimum, but we can use the following anyway: Min $x_{n,1} + 2 \cdot x_{n,2} + 3 \cdot x_{n,3} + 4 \cdot x_{n,4}$ 40 © K. Bazargan

