
Catapult C® Synthesis
High Level Synthesis Webinar

Stuart Clubb
Technical Marketing Engineer
April 2009

Catapult Webinar - April 2009
2

Agenda

 How can we improve productivity?

 C++ Bit-accurate datatypes and modeling

 Using C++ for hardware design
— A reusable, programmable, variable decimator

 Synthesizing, optimizing and verifying our C++
— Live demo

Catapult Webinar - April 2009
3

How can we improve productivity

 Designs bring ever increasing complexity

 More complex designs require more
— Time

— People

— Resources

 Increase of “Gates Per Day” for RTL has stalled
— Time to validate algorithm

— Time to code RTL

— Time to Verify RTL

Catapult Webinar - April 2009
4

Productivity Bottlenecks

 Finding an algorithm’s optimal
hardware architecture and
implementing it in a timely manner

 Reducing the number of bugs
introduced by the RTL design process

 Verification of the RTL implementation
to show that it matches the original
algorithm

Catapult Webinar - April 2009
5

 Manual Steps
1. Define micro-architecture
2. Write RTL
3. Optimize area/speed through

RTL synthesis

 Drawbacks
1. Disconnect causes design errors
2. RTL hard-codes technology

making re-use impractical
3. Manual RTL coding too time-

consuming leading to fewer
iterations and sub-optimal
designs

4. Designs typically overbuilt

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

C/C++

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r
Typical RTL Design Flow

The RTL Flow: Past History

Catapult Webinar - April 2009
6

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

C/C++

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r

Typical RTL Design Flow

Traditional Flow vs. Catapult Flow

Hardware
ASIC/FPGA

Place & Route

RTL
Synthesis

Catapult
Synthesis

Constraints

Logic
Analyzer

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r

Typical RTL Design Flow Catapult Design Flow

Floating Point
Model

Fixed Point
Model

Algorithm
Description

+

 Fewer bugs - Safer design flow

 Shorter time to RTL

 More efficient methodology

 Design optimized through
incremental refinement

Catapult Webinar - April 2009
7

C++ Bit Accurate Data Types

 SystemC data types or Mentor Graphics
Algorithmic C data types

 Hardware Designers need exact bit widths
— Extra bits costs gates ($$) and performance ($$)

 Rounding and Saturation are important

 Simulating what you will synthesize is key
— Simulation speed affects validation efforts

Catapult Webinar - April 2009
8

SystemC DataTypes

 Limited Length Integer and Fixed-point
— sc_int/sc_uint – maximum 64-bit integer result

— sc_fixed_fast/sc_ufixed_fast actually based on a double with
maximum 53-bit fixed-point result

— Problems mixing signed and unsigned
 (sc_int<2>) -1 > (sc_uint<2>) 1 returns true!

 Arbitrary Length Integer and Fixed Point
— Resolves most, but not all, issues of ambiguity/compatibility

— Slow simulation with fixed-point

— Fixed point conditionally compiled due to speed
 SC_INCLUDE_FX

Catapult Webinar - April 2009
9

Mentor Graphics “Algorithmic C” types

 Fixed-point and Integer types

 Faster execution on same platform
— >200x faster than SystemC types

 Easy to use, consistent, with no ambiguity

 Parameterized
— Facilitate reusable algorithmic development

 Built in Rounding and Saturation modes

 Freely available for anyone to download

http://www.mentor.com/esl

Catapult Webinar - April 2009
10

Templatized AC Fixed Data Types

 W = Overall Width
 I = Number of integer bits
 S = signed or unsigned (boolean)
 Q = Quantization mode
 O = Overflow mode

ac_fixed<W,I,S,Q,O> my_variable

ac_fixed<8,1,true,AC_RND,AC_SAT> my_variable ;

“0.0000000” 8-bit signed, round & saturate

ac_fixed<8,8,true,AC_TRN,AC_WRAP> my_variable ;

“00000000” 8-bit signed, no fractional bits.

Catapult Webinar - April 2009
11

Using C++ for hardware design

 Function call with all I/O on the interface
— Represents the I/O of the algorithm

 C++ object-oriented reusable hardware
— Technology, implementation, and Fmax independent

— Multiple instantiations of functions (objects) with state
 RTL component instantiation

— Instantiations with differing implementations
 RTL VHDL architectures

Catapult Webinar - April 2009
12

A programmable variable decimator

 Programmable ratio (phases)

 Tap Length based on decimation factor and ‘N’
— x1 decimation = 1 * N taps;

— x4 decimation = 4 * N taps

— x8 decimation = 8 * N taps

 Seamless transitions between output rates
— Two sets of externally programmable coefficients

— Centered delay line access

Catapult Webinar - April 2009
13

Top Level Filter function

 Simple instantiation of templatized class

 Call member function “decimator_shift”

 Write the member function once
— Implement a filter with any tap length, and any data types

void my_filter (
ac_channel<d_type> &data_in,
ratio_type ratio,
bool sel_a,
c_type coeffs_a[N_TAPS_1*N_PHASES_1],
c_type coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<d_type> &data_out

) {

static decimator<ratio_type,d_type,c_type,a_type,N_TAPS_1,N_PHASES_1> filter_1 ;

filter_1.decimator_shift(data_in,ratio,sel_a,coeffs_a,coeffs_b,data_out) ;

}

typedef’s for data types
passed to class object

Catapult Webinar - April 2009
14

Data types used in this example

 Use of AC data types for bit-accurate modeling and
Synthesis ensures 100% match between RTL and C++

#define N_TAPS_1 8
#define N_PHASES_1 8
#define LOG_PHASES_1 3

#define DATA_WIDTH 8
#define COEFF_WIDTH 10

typedef ac_fixed<DATA_WIDTH,DATA_WIDTH,true,AC_RND,AC_SAT> d_type ;
typedef ac_fixed<COEFF_WIDTH,1,true,AC_RND,AC_SAT> c_type ;
typedef ac_fixed<DATA_WIDTH+COEFF_WIDTH+7,DATA_WIDTH+7+1,true> a_type ;

// 0 to 7 rate
typedef ac_int<LOG_PHASES_1,false> ratio_type ;

Data type will round and
saturate when written

Full Precision Accumulator
- Saturation is order dependent

3-bit unsigned for decimation ratio

Catapult Webinar - April 2009
15

template <class rType, class dType, class cType, class aType, int N_TAPS, int N_PHASES>
class decimator {

// data members
dType taps[N_TAPS*N_PHASES];
aType acc;
// member functions

public:
decimator() { // default constructor

for (int i=0;i<N_TAPS*N_PHASES;i++) {
taps[i] = 0 ;

}
};
void decimator_shift(

ac_channel<dType> &data_input,
rType ratio,
bool sel_a,
cType coeffs_a[N_TAPS_1*N_PHASES_1],
cType coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<dType> &data_out

) ;
} ;

Class Object for FIR filter

taps and accumulator
are private objects

Default constructor
Initializes tap registers
to zero (reset)

Member function prototype

Catapult Webinar - April 2009
16

if(data_input.available(ratio+1)) {
acc = 0 ;
PHASE:for(int phase=0; phase<N_PHASES; phase++) {

SHIFT:for(int z=(N_TAPS*N_PHASES-1);z>=0;z--) {
taps[z] = (z==0) ? data_input.read() : taps[z-1] ;

}

MAC:for(int i=0;i<N_TAPS;i++) {
int tap_offset = (N_PHASES * N_TAPS)/2 - ((ratio.to_int()+1)*N_TAPS/2) ;
int tap_index = (i*(ratio.to_int()+1)) ;
int coeff_index = tap_index + (ratio-phase) ;
tap_index = tap_index + tap_offset ;
cType coeff_read = (sel_a) ? coeffs_a[coeff_index] : coeffs_b[coeff_index] ;
acc += coeff_read * taps[tap_index] ;

}

if (phase==ratio) {
data_out.write(acc) ;
break ;

}
}

}

Decimator code

 Simple, bit-accurate, C++
 Technology independent
 Yes, that’s it – design done

— We need a testbench main()

Phase for decimation
reads

Implied shift register
architecture captures
data streaming in

Seamless, variable
iterations using “break”

Catapult Webinar - April 2009
17

 How does this help?
— ANY interface is possible

— Design is built to the interface

— C++ source remains independent of
the interface

Defining The Hardware Interface
Patented Interface synthesis makes it possible

C/C++

Algorithm
Data  Pure C++ has no concept of interfaces

Hardware

IO
(RTL)

IO
Lib

C/C++
Implemented

in
Hardware

IO
Lib

IO
(RTL)

Design

Patent Pending

Catapult Webinar - April 2009
18

Optimizing C++ Algorithms

 Catapult maps physical resources for each variable
in the C++ code

— Wires, handshakes, registers, RAM’s, custom
interfaces, custom components

 Catapult builds efficient hardware optimized to the
constraints of resource bandwidth

 Catapult enables you to quickly find architectural
bottlenecks in an algorithm

 Datapath pipelines are created to meet desired
frequency target

Catapult Webinar - April 2009
19

Verification of Catapult RTL using C++

 Catpult automates
verification of the
synthesized design

 The original C++
testbench can be reused
to verify the design

— RTL or Cycle Accurate
— VHDL or Verilog

 RTL can be replaced with
gate netlist for VCD
driven power analysis of
solutions

Simulator

Golden results DUT results

Original C++
Testbench

Original C++
Design

RTL

Transactor

Transactor

Comparator

Catapult Webinar - April 2009
20

More productive than RTL

 Higher level of abstraction with considerably faster verification

 High Level Synthesis drives implementation details
— Interfaces

— Frequency, latency, throughput

— All based on target technology

 Design reuse and configurability is enhanced

 Hand coded RTL designed for one technology is not always
optimal for another

— Excessive pipelining increases power and area

— Faster technologies allow for more resource sharing at same Fmax

Catapult Webinar - April 2009
21

Synthesizing the Decimator

 90nm example library

 N=8 (filter is effectively 8 taps to 64 taps)

 100M Samples maximum data rate in

 4 micro-architectures to solve the design
— 1, 2, 4, 8 multipliers

— 800MHz down to 100 MHz

 Which is “right” solution?

Catapult Webinar - April 2009
22

Which is the right solution?

 Area => 800MHz

 Power => 100Mhz

— Interesting “saddle” at 400MHz

Catapult Webinar - April 2009
23

Catapult C Synthesis
The Five Key Technologies which Make Catapult C Different

 Key: Synthesize standard ANSI C++
— Not a ‘hardware C’ but pure ANSI C++
— No proprietary extensions, universal standard,

easiest to write & debug

 Optimization for ASIC or FPGA
— Generation of technology optimized RTL

 Incremental design methodology
— Maximum visibility, maximum control

 Interface synthesis
— Interface exploration and optimization

 Integrated SystemC verification
— Provides automatic verification environment
— Pure ANSI C++ in, Verified RTL out

Catapult Webinar - April 2009
24

