
Catapult C® Synthesis
High Level Synthesis Webinar

Stuart Clubb
Technical Marketing Engineer
April 2009

Catapult Webinar - April 2009
2

Agenda

 How can we improve productivity?

 C++ Bit-accurate datatypes and modeling

 Using C++ for hardware design
— A reusable, programmable, variable decimator

 Synthesizing, optimizing and verifying our C++
— Live demo

Catapult Webinar - April 2009
3

How can we improve productivity

 Designs bring ever increasing complexity

 More complex designs require more
— Time

— People

— Resources

 Increase of “Gates Per Day” for RTL has stalled
— Time to validate algorithm

— Time to code RTL

— Time to Verify RTL

Catapult Webinar - April 2009
4

Productivity Bottlenecks

 Finding an algorithm’s optimal
hardware architecture and
implementing it in a timely manner

 Reducing the number of bugs
introduced by the RTL design process

 Verification of the RTL implementation
to show that it matches the original
algorithm

Catapult Webinar - April 2009
5

 Manual Steps
1. Define micro-architecture
2. Write RTL
3. Optimize area/speed through

RTL synthesis

 Drawbacks
1. Disconnect causes design errors
2. RTL hard-codes technology

making re-use impractical
3. Manual RTL coding too time-

consuming leading to fewer
iterations and sub-optimal
designs

4. Designs typically overbuilt

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

C/C++

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r
Typical RTL Design Flow

The RTL Flow: Past History

Catapult Webinar - April 2009
6

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

C/C++

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r

Typical RTL Design Flow

Traditional Flow vs. Catapult Flow

Hardware
ASIC/FPGA

Place & Route

RTL
Synthesis

Catapult
Synthesis

Constraints

Logic
Analyzer

Floating Point
Model

Fixed Point
Model

Micro-architecture
Definition

RTL
Design

RTL Area/Timing
Optimization

RTL
Synthesis

Place & Route

Hardware
ASIC/FPGA

Manual
Methods

Logic
Analyzer

+

Precision RTL
or DC

ASIC or FPGA
Vendor

Algorithm
Description

S
ys

te
m

 D
es

ig
n

er
H

ar
d

w
ar

e
D

es
ig

n
er

V
en

d
o

r

Typical RTL Design Flow Catapult Design Flow

Floating Point
Model

Fixed Point
Model

Algorithm
Description

+

 Fewer bugs - Safer design flow

 Shorter time to RTL

 More efficient methodology

 Design optimized through
incremental refinement

Catapult Webinar - April 2009
7

C++ Bit Accurate Data Types

 SystemC data types or Mentor Graphics
Algorithmic C data types

 Hardware Designers need exact bit widths
— Extra bits costs gates ($$) and performance ($$)

 Rounding and Saturation are important

 Simulating what you will synthesize is key
— Simulation speed affects validation efforts

Catapult Webinar - April 2009
8

SystemC DataTypes

 Limited Length Integer and Fixed-point
— sc_int/sc_uint – maximum 64-bit integer result

— sc_fixed_fast/sc_ufixed_fast actually based on a double with
maximum 53-bit fixed-point result

— Problems mixing signed and unsigned
 (sc_int<2>) -1 > (sc_uint<2>) 1 returns true!

 Arbitrary Length Integer and Fixed Point
— Resolves most, but not all, issues of ambiguity/compatibility

— Slow simulation with fixed-point

— Fixed point conditionally compiled due to speed
 SC_INCLUDE_FX

Catapult Webinar - April 2009
9

Mentor Graphics “Algorithmic C” types

 Fixed-point and Integer types

 Faster execution on same platform
— >200x faster than SystemC types

 Easy to use, consistent, with no ambiguity

 Parameterized
— Facilitate reusable algorithmic development

 Built in Rounding and Saturation modes

 Freely available for anyone to download

http://www.mentor.com/esl

Catapult Webinar - April 2009
10

Templatized AC Fixed Data Types

 W = Overall Width
 I = Number of integer bits
 S = signed or unsigned (boolean)
 Q = Quantization mode
 O = Overflow mode

ac_fixed<W,I,S,Q,O> my_variable

ac_fixed<8,1,true,AC_RND,AC_SAT> my_variable ;

“0.0000000” 8-bit signed, round & saturate

ac_fixed<8,8,true,AC_TRN,AC_WRAP> my_variable ;

“00000000” 8-bit signed, no fractional bits.

Catapult Webinar - April 2009
11

Using C++ for hardware design

 Function call with all I/O on the interface
— Represents the I/O of the algorithm

 C++ object-oriented reusable hardware
— Technology, implementation, and Fmax independent

— Multiple instantiations of functions (objects) with state
 RTL component instantiation

— Instantiations with differing implementations
 RTL VHDL architectures

Catapult Webinar - April 2009
12

A programmable variable decimator

 Programmable ratio (phases)

 Tap Length based on decimation factor and ‘N’
— x1 decimation = 1 * N taps;

— x4 decimation = 4 * N taps

— x8 decimation = 8 * N taps

 Seamless transitions between output rates
— Two sets of externally programmable coefficients

— Centered delay line access

Catapult Webinar - April 2009
13

Top Level Filter function

 Simple instantiation of templatized class

 Call member function “decimator_shift”

 Write the member function once
— Implement a filter with any tap length, and any data types

void my_filter (
ac_channel<d_type> &data_in,
ratio_type ratio,
bool sel_a,
c_type coeffs_a[N_TAPS_1*N_PHASES_1],
c_type coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<d_type> &data_out

) {

static decimator<ratio_type,d_type,c_type,a_type,N_TAPS_1,N_PHASES_1> filter_1 ;

filter_1.decimator_shift(data_in,ratio,sel_a,coeffs_a,coeffs_b,data_out) ;

}

typedef’s for data types
passed to class object

Catapult Webinar - April 2009
14

Data types used in this example

 Use of AC data types for bit-accurate modeling and
Synthesis ensures 100% match between RTL and C++

#define N_TAPS_1 8
#define N_PHASES_1 8
#define LOG_PHASES_1 3

#define DATA_WIDTH 8
#define COEFF_WIDTH 10

typedef ac_fixed<DATA_WIDTH,DATA_WIDTH,true,AC_RND,AC_SAT> d_type ;
typedef ac_fixed<COEFF_WIDTH,1,true,AC_RND,AC_SAT> c_type ;
typedef ac_fixed<DATA_WIDTH+COEFF_WIDTH+7,DATA_WIDTH+7+1,true> a_type ;

// 0 to 7 rate
typedef ac_int<LOG_PHASES_1,false> ratio_type ;

Data type will round and
saturate when written

Full Precision Accumulator
- Saturation is order dependent

3-bit unsigned for decimation ratio

Catapult Webinar - April 2009
15

template <class rType, class dType, class cType, class aType, int N_TAPS, int N_PHASES>
class decimator {

// data members
dType taps[N_TAPS*N_PHASES];
aType acc;
// member functions

public:
decimator() { // default constructor

for (int i=0;i<N_TAPS*N_PHASES;i++) {
taps[i] = 0 ;

}
};
void decimator_shift(

ac_channel<dType> &data_input,
rType ratio,
bool sel_a,
cType coeffs_a[N_TAPS_1*N_PHASES_1],
cType coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<dType> &data_out

) ;
} ;

Class Object for FIR filter

taps and accumulator
are private objects

Default constructor
Initializes tap registers
to zero (reset)

Member function prototype

Catapult Webinar - April 2009
16

if(data_input.available(ratio+1)) {
acc = 0 ;
PHASE:for(int phase=0; phase<N_PHASES; phase++) {

SHIFT:for(int z=(N_TAPS*N_PHASES-1);z>=0;z--) {
taps[z] = (z==0) ? data_input.read() : taps[z-1] ;

}

MAC:for(int i=0;i<N_TAPS;i++) {
int tap_offset = (N_PHASES * N_TAPS)/2 - ((ratio.to_int()+1)*N_TAPS/2) ;
int tap_index = (i*(ratio.to_int()+1)) ;
int coeff_index = tap_index + (ratio-phase) ;
tap_index = tap_index + tap_offset ;
cType coeff_read = (sel_a) ? coeffs_a[coeff_index] : coeffs_b[coeff_index] ;
acc += coeff_read * taps[tap_index] ;

}

if (phase==ratio) {
data_out.write(acc) ;
break ;

}
}

}

Decimator code

 Simple, bit-accurate, C++
 Technology independent
 Yes, that’s it – design done

— We need a testbench main()

Phase for decimation
reads

Implied shift register
architecture captures
data streaming in

Seamless, variable
iterations using “break”

Catapult Webinar - April 2009
17

 How does this help?
— ANY interface is possible

— Design is built to the interface

— C++ source remains independent of
the interface

Defining The Hardware Interface
Patented Interface synthesis makes it possible

C/C++

Algorithm
Data Pure C++ has no concept of interfaces

Hardware

IO
(RTL)

IO
Lib

C/C++
Implemented

in
Hardware

IO
Lib

IO
(RTL)

Design

Patent Pending

Catapult Webinar - April 2009
18

Optimizing C++ Algorithms

 Catapult maps physical resources for each variable
in the C++ code

— Wires, handshakes, registers, RAM’s, custom
interfaces, custom components

 Catapult builds efficient hardware optimized to the
constraints of resource bandwidth

 Catapult enables you to quickly find architectural
bottlenecks in an algorithm

 Datapath pipelines are created to meet desired
frequency target

Catapult Webinar - April 2009
19

Verification of Catapult RTL using C++

 Catpult automates
verification of the
synthesized design

 The original C++
testbench can be reused
to verify the design

— RTL or Cycle Accurate
— VHDL or Verilog

 RTL can be replaced with
gate netlist for VCD
driven power analysis of
solutions

Simulator

Golden results DUT results

Original C++
Testbench

Original C++
Design

RTL

Transactor

Transactor

Comparator

Catapult Webinar - April 2009
20

More productive than RTL

 Higher level of abstraction with considerably faster verification

 High Level Synthesis drives implementation details
— Interfaces

— Frequency, latency, throughput

— All based on target technology

 Design reuse and configurability is enhanced

 Hand coded RTL designed for one technology is not always
optimal for another

— Excessive pipelining increases power and area

— Faster technologies allow for more resource sharing at same Fmax

Catapult Webinar - April 2009
21

Synthesizing the Decimator

 90nm example library

 N=8 (filter is effectively 8 taps to 64 taps)

 100M Samples maximum data rate in

 4 micro-architectures to solve the design
— 1, 2, 4, 8 multipliers

— 800MHz down to 100 MHz

 Which is “right” solution?

Catapult Webinar - April 2009
22

Which is the right solution?

 Area => 800MHz

 Power => 100Mhz

— Interesting “saddle” at 400MHz

Catapult Webinar - April 2009
23

Catapult C Synthesis
The Five Key Technologies which Make Catapult C Different

 Key: Synthesize standard ANSI C++
— Not a ‘hardware C’ but pure ANSI C++
— No proprietary extensions, universal standard,

easiest to write & debug

 Optimization for ASIC or FPGA
— Generation of technology optimized RTL

 Incremental design methodology
— Maximum visibility, maximum control

 Interface synthesis
— Interface exploration and optimization

 Integrated SystemC verification
— Provides automatic verification environment
— Pure ANSI C++ in, Verified RTL out

Catapult Webinar - April 2009
24

