Catapult C® Synthesis

High Level Synthesis Webinar

Stuart . Clubb

Technical-Marketing Engineer

April 2009

Agenda

How can we improve productivity?

m C++ Bit-accurate datatypes and modeling
Using C++ for hardware design

— A reusable, programmable, variable decimator
Synthesizing, optimizing and verifying our C++
— Live demo

B e ——

_Catapuh Webinar - April 2009

How can we improve productivity

m Designs bring ever increasing complexity
m More complex designs require more
— Time
— People
— Resources
= Increase of “Gates Per Day” for RTL has stalled
— Time to validate algorithm
— Time to code RTL
— Time to Verify RTL

T

atapult Webinar - April 2009

Productivity Bottlenecks

m Finding an algorithm’s optimal
hardware architecture and
implementing it in a timely manner

m Reducing the number of bugs
introduced by the RTL design process

m Verification of the RTL implementation
to show that it matches the original
algorithm

Menbor,

’Graphlsw Catapthehinar—Apri‘l'ZO(F —

The RTL Flow: Past History
Typical RTL Design Flow
aicemn = Manual Steps
§ clcHr | Fioaing Faint] 1. Define micro-architecture
E T | Fixed Point . 2 erte RTL
& ; _ 3. Optimize area/speed through
RTL synthesis
- = Drawbacks
g meods 4 1. Disconnect causes design errors
H RTL hard-codes technology
£ making re-use impractical
N optimization” 3. Manual RTL coding too time-
\ consuming leading to fewer
— iterations and sub-optimal
s |° - designs
8| asicorrron 4. Designs typically overbuilt
Vendor ardware
AHSICd/FPGA

-

Catapun Webinar - Ar

Traditional Flow vs. Catapult Flow

Typical RTL Design Flow Catapult Design Flow

;
g Descri Description
s T —
7 Fixed Point
I | Model 1
Constraints S(illawﬁ:)eilwls
', ——RT
5] | 1 Synthesis I-t—
E| e 4 a ExE
§ ; Hardware
° ASIC/IFPGA
£
RTL Area/Timing)
g > m Fewer bugs - Safer design flow
- m Shorter time to RTL
R Synthesis o
g m More efficient methodology
= e . = Design optimized through
“S'°’”’GA incremental refinement

Menlor

GmphIG Catapult Webinar - Apnl 2009

C++ Bit Accurate Data Types

SystemC data types or Mentor Graphics
Algorithmic C data types

Hardware Designers need exact bit widths

— Extra bits costs gates (3) and performance ($$)
Rounding and Saturation are important
Simulating what you will synthesize is key

— Simulation speed affects validation efforts

fombems ey

Catapult Webinar - April 2009

SystemC DataTypes

s Limited Length Integer and Fixed-point
— sc_int/sc_uint — maximum 64-bit integer result

— sc_fixed_fast/sc_ufixed_fast actually based on a double with
maximum 53-bit fixed-point result

— Problems mixing signed and unsigned
m (sc_int<2>) -1 > (sc_uint<2>) 1 returns true!
= Arbitrary Length Integer and Fixed Point
— Resolves most, but not all, issues of ambiguity/compatibility
— Slow simulation with fixed-point
— Fixed point conditionally compiled due to speed
= SC_INCLUDE_FX

Menor, .
"G 8 - —

raphlG\ Cat;pultWehinar—Apri‘l‘zo(?'_ .

Mentor Graphics “Algorithmic C” types

m Fixed-point and Integer types
m Faster execution on same platform

— >200x faster than SystemC types
m Easy to use, consistent, with no ambiguity
s Parameterized

— Facilitate reusable algorithmic development
» Built in Rounding and Saturation modes
m Freely available for anyone to download

http://www.mentor.com/esl

fombems ey

atapult Webinar - April 2009

Templatized AC Fixed Data Types
ac_fTixed<w,1,S,Q,0> my variable

W = Overall Width

I = Number of integer bits

S =signed or unsigned (boolean)
Q = Quantization mode

O = Overflow mode

ac_fixed<8,1,true,AC_RND,AC_SAT> my_variable ;
“0.0000000” 8-bit signed, round & saturate

ac_fixed<8,8,true,AC_TRN,AC_WRAP> my variable ;
““00000000” 8-bit signed, no fractional bits.

’GMenbr 20— o :

raphlG\ Cat;pultWehinar—Apri‘l‘zo(?'_ .

Using C++ for hardware design

= Function call with all 1/0 on the interface
— Represents the 1/0O of the algorithm
m C++ object-oriented reusable hardware
— Technology, implementation, and Fmax independent
— Multiple instantiations of functions (objects) with state
= RTL component instantiation
— Instantiations with differing implementations
= RTL VHDL architectures

/GMSRIQI‘ Lo pon e

I Catapult Webinar - April 2009

A programmable variable decimator

m Programmable ratio (phases)

m Tap Length based on decimation factor and ‘N’
— x1 decimation =1 * N taps;
— x4 decimation = 4 * N taps
— X8 decimation = 8 * N taps

m Seamless transitions between output rates
— Two sets of externally programmable coefficients
— Centered delay line access

Mentor , .
"G 1 - s

raphlG\ Cat;pultWehinar—Apri‘l‘zo(?'_ .

Top Level Filter function

void my_filter (typedef’s for data types
ac_channel<d_type> &data_in, passed to class object
ratio_type ratio,
bool sel_a,
c_type coeffs_a[N_TAPS_1*N_PHASES_1],
c_type coeffs_b[N_TAPS_1*N_PHASES_1],
ac_channel<d_type> &data_out

) {

static decimator<ratio_type,d_type,c_type,a_type,N_TAPS_1,N_PHASES 1> filter_1 ;

filter_1l.decimator_shift(data_in,ratio,sel_a,coeffs_a,coeffs_b,data out) ;

= Simple instantiation of templatized class
= Call member function “decimator_shift”

= Write the member function once
— Implement a filter with any tap length, and any data types

‘,tzilaé!‘!"I=>':'13_,-" fombems s

phlG Catapult Webinar - April 2009

Data types used in this example

Data type will round and
saturate when written

#define N_TAPS_1 8
#define N_PHASES_1 8 Full Precision Accumulator
#define LOG_PHASES_1 3 - Saturation is order dependent

#define DATA_WIDTH 8
#define COEFF_WIDTH 10

typedef ac_fixed<DATA_WIDTH,DATA_WIDTH, true,AC_RND,AC_SAT> d_type ;
typedef ac_fixed<COEFF_WIDTH,1,true,AC_RND,AC_SAT> c_type ;
typedef ac_fixed<DATA_WIDTH+COEFF_WIDTH+7 ,DATA_WIDTH+7+1,true> a_type ;

// 0 to 7 rate
typedef ac_int<LOG_PHASES_1,false> ratio_type ;

'\| 3-bit unsigned for decimation ratio |

m Use of AC data types for bit-accurate modeling and
Synthesis ensures 100% match between RTL and C++

~Menor , —
’Graphlsw éitaptl!tWehilwar—Apr;"-ZO(F e

template <class rType, class dType, class cType,
class decimator {

// data members

dType taps[N_TAPS*N_PHASES];

Class Object for FIR filter

class aType, int N_TAPS, int N_PHASES>

taps and accumulator

aType acc;
// member functions
public:
decimator() { // default constructor
for (int i=0;i<N_TAPS*N_PHASES;i++) {

are private objects

Default constructor
Initializes tap registers

taps[i] = 0 ;

NPHASES i) £

to zero (reset)

3

}:
void decimator_shift(
ac_channel<dType>

&data_input, -
‘M-l Member function prototype

rType

bool sel_a,

cType coeffs_a[N_TAPS_1*N_PHASES_1],
cType coeffs_b[N_TAPS_1*N_PHASES_1],

ac_channel<dType> &data_out

15— . o i—
Catapult Webinar - April 2009

scPAShIY:

Decimator code

if(data_input.available(ratio+l)) {
acc = 0 ;
PHASE: for(int phase=0; phase<N_PHASES; phase++) {
SHIFT: for(int z=(N_TAPS*N_PHASES-1);z>=0;z--) {
taps[z] = (z==0) ? data_input.read() : taps[z-1] ; ~—

Phase for decimation
reads

Implied shift register
architecture captures
data streaming in

MAC:for(int i=0;i<N_TAPS;i++) {
int tap_offset = (N_PHASES * N_TAPS)/2 - ((ratio.to_int()+1)*N_TAPS/2) ;
int tap_index (i*(ratio.to_int()+1)) ;
int coeff_index tap_index + (ratio-phase) ;
tap_index = tap_index + tap_offset ;
cType coeff_read = (sel_a) ? coeffs_a[coeff_index]
acc += coeff_read * taps[tap_index] ;

: coeffs_b[coeff_index] ;
3
if (phase==ratio) {

data_out.write(acc) ;
break ;

~

Seamless, variable
iterations using “break”

= Simple, bit-accurate, C++

= Technology independent

= Yes, that’s it — design done
— We need a testbench main()

}
¥

3

1 g

Catapult Webinar - April 2009

’GM%RF&!'

Defining The Hardware Interface

Patented Interface synthesis makes it possible

C/C++ .
Data /_\ > m Pure C++ has no concept of interfaces
2 bt ot e %
Design
Hardware
Patent Pending / Tt [EAx11]

C/C++
Implemented
in

o Cancel Help

. +— = How does this help?
R — ANY interface is possible
— Design is built to the interface

the interface

o d— . 3

Catapult Webinar - April 2009

Optimizing C++ Algorithms

m Catapult maps physical resources for each variable
in the C++ code

— Wires, handshakes, registers, RAM’s, custom
interfaces, custom components

m Catapult builds efficient hardware optimized to the
constraints of resource bandwidth

m Catapult enables you to quickly find architectural
bottlenecks in an algorithm

m Datapath pipelines are created to meet desired
frequency target

Menbor.,, -

— C++ source remains independent of

’Grqphls Catapult Webinar - April 2009

Verification of Catapult RTL using C++

Simulator

synthesized design
» The original C++
testbench can be reused
to verify the design
— RTL or Cycle Accurate
— VHDL or Verilog
i ; = RTL can be replaced with
””””””””””” ' gate netlist for VCD

driven power analysis of
R Compaar

solutions
Golden results DUT results

= Catpult automates
jicsthench _]l verification of the

Origin
Design

Menlar

o

/G ph S’ Catapu!t Webinar - April 2009

More productive than RTL

= Higher level of abstraction with considerably faster verification
= High Level Synthesis drives implementation details
— Interfaces
— Frequency, latency, throughput
— All based on target technology
= Design reuse and configurability is enhanced
» Hand coded RTL designed for one technology is not always
optimal for another
— Excessive pipelining increases power and area
— Faster technologies allow for more resource sharing at same F,,,

gMenlor ., .~

ph G Catapuh Webinar - April 2009

Synthesizing the Decimator

= 90nm example library
m N=8 (filter is effectively 8 taps to 64 taps)
= 100M Samples maximum data rate in

4 micro-architectures to solve the design
—1, 2, 4, 8 multipliers

— 800MHz down to 100 MHz

Which is “right” solution?

,GMQHIBI: = e
ruphl Catapult Webinar - April 2009

Which is the right solution?

e e | e 3 s] 5 ot |

JESEW

m Area =>800MHz

= Power => 100Mhz

Bl Flow Manaaer I [Table I 1= xy Plctw (H Bar Chart 1 % Constraint Ed\torl

Report: ‘ Atrenta SpuGlassPower jl % X

Solution / Leakage Power | Internal Power | Switching P... | Total Est

I 2 800MHz (extract) 8l.5uwW 11.6mwW 39.1mwW 50.8mW
3 A 400MHz (extract) 99.9uW 7.67mwW 36.3mwW 44.1mW
b 27 200MHz (extract) 143uW 6.49mwW 45.8mwW 52.4mwW
I Z 100MHz (extract) 208uwW 4.23mW 24.7mW 29.1mwW

— Interesting “saddle” at 400MHz

Menlo

/G o Q2L P —
raphlG Catapult Webinar - April 2009

Catapult C Synthesis
The Five Key Technologies which Make Catapult C Different

Key: Synthesize standard ANSI C++
— Not a ‘hardware C’ but pure ANSI C++

— No proprietary extensions, universal standard,
easiest to write & debug

Optimization for ASIC or FPGA
— Generation of technology optimized RTL

Incremental design methodology
— Maximum visibility, maximum control

Interface synthesis
— Interface exploration and optimization

Integrated SystemC verification
— Provides automatic verification environment
— Pure ANSI C++ in, Verified RTL out

Menbor.
-G “ phICS'“

www.menfor.com

