
1

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
1

Verification of SoC Designs

• Simulation-based techniques

• Formal analysis

• Dealing with state explosion

• Verification of embedded software

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
2

Verification versus Test

Specification

Hardware

Design

Manufacture

Implementation

Hardware/Software

Verification

Test

2

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
3

Verification Effort
• Verification portion of design increases to

anywhere from 50 to 80% of total
development effort for the design.

Code Verify (30 ~ 40%) Synthesis P&R

Code Verify (50 ~ 80%) Synthesis P&R

1996
300K gates

2000
1M SoC

Verification methodology manual, 2000-
TransEDA

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
4

Percentage of Total Flaws

• About 50% of flaws are functional flaws.
– Need verification method to fix logical &

functional flaws

From Mentor presentation material, 2003

Clocking
5%

Race
5%

Power
4%

Other
9%

Yield
7%

Noise
12% Slow Path

13%

Logical/
Functional

45%

3

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
5

Verification Approaches

Simulation

Hardware
Accelerated
Simulation

Emulation

Formal
Verification

Semi-formal
Verification

Prototyping

Faster speed, closer to final product

Bigger coverage

Basic
verification
tool

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
6

HW/SW Co-Design
• Concurrent design of HW/SW components

• Evaluate the effect of a design decision at
early stage by “virtual prototyping”

• Co-verification

HW
SW

Integration
HW

SW

time time
HW

SW
Integration

iteration

4

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
7

Verification Options

• Simulation Technologies

• Equivalence Checking

• Formal Analysis (Model Checking)

• Physical Verification and Analysis

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
8

Simulation Technologies
• Event-based Simulators
• Cycle-based Simulators
• Transaction-based Simulators
• Code Coverage
• HW/SW Co-verification
• Emulation Systems
• Rapid Prototyping Systems
• Hardware Accelerators
• AMS Simulation
• Numerical Simulation (MATLAB)

5

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
9

Static Technologies

• “Lint” Checking

– Syntactic correctness

– Identifies simple errors

• Static Timing Verification

– Setup, hold, delay timing requirements

– Challenging: multiple sources

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
10

Formal Techniques
• Theorem Proving Techniques

– Proof-based
– Not fully automatic

• Formal Model Checking
– Model-based
– Automatic

• Formal Equivalence Checking
– Reference design modified design
– RTL-RTL, RTL-Gate, Gate-Gate

implementations
– No timing verification

6

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
11

Physical Verification & Analysis

Issues for physical verification:
• Timing
• Signal Integrity
• Crosstalk
• IR drop
• Electro-migration
• Power analysis
• Process antenna effects
• Phase shift mask
• Optical proximity correction

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
12

Top-Down SoC Verification

verification

7

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
13

Bottom-Up SoC Verification

verification

Components,
blocks, units

Memory map,
internal interconnect

Basic functionality,
external interconnect

System level

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
14

Platform Based SoC Verification

Derivative
Design

Interconnect
Verification
between:

 SoC Platform

 Newly added
IPs

8

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
15

System Interface-driven
SoC Verification

Besides Design-Under-Test,
all others are interface models

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
16

Traditional Testbench

• Problems of Traditional Testbench
– Real-World Stimuli

– System-Level Modeling

– High-Level Algorithmic Modeling

– Test Automation

– Source Coverage

Stimulus
Generator

Design
Under
Test

Response
Checking

9

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
17

“Bug” Introduction and Detection

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
18

Executable Specification

• Procedural Language for Behavioral Modeling
– Design Productivity

• Easy to model complex algorithm

• Fast execution

• Simple Testbench

– Tools
• Native C/C++ through PLI/FLI

• Extended C/C++ : SpecC, SystemC

• Verify it on the fly!
– Test vector generation

– Compare RTL Code with Behavioral Model

– Coverage Test

10

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
19

Property detection: to decide whether a
simulation run (trace) of a design satisfies a
given property

Property Detection

property
detection

moduleproperty
(specification)

trace
(simulation run) yes /

witness
no /
counterexample

e.g., violation of mutual exclusion, critical1 Æ critical2

Example: Properties written in PSL/Sugar

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
20

Specifying Properties (Assertions)
in Industry Tools

• Open Vera Assertions Language (Synopsys)
• Property Specification Language (PSL) (IBM,

based on Sugar)
• Accelera driving consortium
• IEEE Std. 1850-2005

• Accelera Open Verification Library (OVL)
provides ready to use assertion functions in
the form of VHDL and Verilog HDL libraries

• SystemVerilog is a next generation language,
added to the core Verilog HDL
– IEEE Std. 1800-2005

11

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
21

Formal Verification of SoCs

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
22

State Explosion!

10
3

1 10 100 1000 10000
1

10
3000

10
300

10
30

100000 1000000

Number of Storage Elements

N
u

m
b

e
r

o
f

S
ta

te
s

World population

Stars in the Universe

Protons in the Universe

Number of latches
in Itanium processor

12

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
23

Abstractions to Deal with Large
State Spaces

• Model checking models need to be made
smaller

• Problem: State-Space Explosion

• Smaller or “reduced” models must retain
information
– Property being checked should yield same

result

• Balancing solution: Abstractions

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
24

Program Transformation Based
Abstractions

• Abstractions on Kripke structures
– Cone of Influence (COI), Symmetry, Partial Order, etc.

– State transition graphs for even small programs can be
very large to build

• Abstractions on Program Text
– Scale well with program size

– High economic interest

Static Program Transformations

13

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
25

Types of Abstractions

• Sound
– Property holds in abstraction implies property

holds in the original program

• Complete
– Algorithm always finds an abstract program if it

exists

• Exact
– Property holds in the abstraction iff property

holds in the main program

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
26

Abstraction Landscape

Low
Automation

Medium
Automation

Data Abstractions
Abstract Interpretation

Low
Property Dependence

Medium
Property Dependence

Counterexample
Guided
Refinement techniques

SlicingSlicing

High
Property Dependence

High
Automation

14

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
27

Verification of challenging problems
with high level static analysis

Property checking

– High level symbolic simulation
• Symbolic simulation of antecedent

• Symbolic simulation of all CFG
nodes

– Domain aware analysis
• Function-wise case splitting

– Decision procedure
• Model checker

• RTL abstraction technique

• Applied to LTL formulas

•G(a =>c)

• Theoretically complex, practically
effective

• USB 2.0 protocol verification

Antecedent
Conditioned Slicing

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
28

Program Slicing

• Program transformation involving statement
deletion

• “Relevant statements” determined
according to slicing criterion

• Slice construction is completely automatic

• Correctness is property specific
– Loss of generality

• Abstractions are sound and complete

15

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
29

Specialized Slicing Techniques

• Static slicing produces large slices
– Has been used for verification

– Semantically equivalent to COI reductions

• Slicing criterion can be enhanced to
produce other types of slices
– Amorphous Slicing

– Conditioned Slicing

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
30

Conditioned Slicing

• Slices constructed with respect to set of
possible input states

• Characterized by first order, predicate logic
formula

• Augments static slicing by introducing
condition
– <C, I, V>

– Constrains the program according to condition
C

• Canfora et al

16

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
31

Example Program
begin

1: read(N);
2: A = 1;
3: if (N < 0) {
4: B = f(A);
5: C = g(A);
6: } else if (N > 0) {
7: B = f’(A);
8: C = g’(A);

} else {
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
32

Example Program: Static Slicing
wrt <11, B>

begin

1: read(N);
2: A = 1;
3: if (N < 0) {
4: B = f(A);
5: C = g(A);
6: } else if (N > 0) {
7: B = f’(A);
8: C = g’(A);

} else {
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

17

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
33

Example Program:
Conditioned Slicing wrt

<(N<0),11, B>
begin

1: read(N);
2: A = 1;
3: if (N < 0) {
4: B = f(A);
5: C = g(A);
6: } else if (N > 0) {
7: B = f’(A);
8: C = g’(A);

} else {
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
34

Verification Using Conditioned Slicing

• Slicing part of design irrelevant to property being
verified

• Safety Properties of the form
– G (antecedent => consequent)

• Use antecedent to specify states we are
interested in

We do not need to preserve program
executions where the antecedent is false

18

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
35

Property checking:
antecedent conditioned slicing

h: G (A => C)

Antecedent Consequent
Xn C

if (A)
C = 1;

else
C = 0;

Static
slicing on
A, C

if (A)
C = 1;

else
C = 0;

if (A)
C = 1;

else
C = 0;

Antecedent
conditioned
slicing on

<A= true>, A, C

if (A)
C = 1;

else
C = 0;

Semantic analysis

Variable
dependency
analysis

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
36

Example of antecedent conditioned slicing

always @ (clk) begin
case(insn)

f_add: dec = d_add;
f_sub: dec = d_sub;
f_and: dec = d_and;
f_or: dec = d_or;

endcase
end

always @ (clk) begin
case(ex)

e_add: res = a+b;
e_sub: res = a-b;
e_and: res = a&b;
e_or: res = a|b;

endcase
end

always @ (clk) begin
case(dec)

d_add: ex = e_add;
d_sub: ex = e_sub;
d_and: ex = e_and;
d_or: ex = e_or;

endcase
end

h = [G((insn == f_add) XX(res == a+b))]

19

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
37

dec = d_add dec = d_and dec = d_ordec = d_sub

insn?

f_add
f_sub f_and

f_or

ex = e_add ex = e_and ex = e_orex = e_sub

dec?

d_add
d_sub d_and

d_or

res = a + b res = a & b res = a | bres = a - b

ex?

e_add
e_sub e_and

e_or

TRUE

FALSE

Example contd.

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
38

Checking the truth of the antecedent

(insn == f_add)

Antecedent
symbolic expression

Symbolic simulation
of a node in CFG

dec(t+1) = ITE((insn==f_add)(t)^
~(insn == f_sub)(t)^
~(insn == f_and)(t)^
~(insn == f_or),
d_add(t), dec(t))

(dec = d_add)

T

Node retained

T: Retained
X: Retained
F: Not retained

RewriterRewriter

20

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
39

Complexity of Antecedent Conditioned Slicing

• Symbolic simulation of all nodes in each process
• Expression computation over all processes in the

program
– Handles global predicates

• Symbolic simulation of the antecedent
• Looking forward in time

– Depends on n in (A => XnC)

• Decision procedure for checking truth of antecedent
– Could be arbitrarily hard

• Path traversal of all processes
– Pruning non-retained nodes

• Worst case: retain all nodes

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
40

Correctness of Antecedent
Conditioned Slicing

Theorem: An LTL formula h of the type, where h is
G(a => c)
G (a => X=n c)
G (a => F<= k c)

holds on the original program iff it holds on the antecedent conditioned slice.

Proof intuition:
For a Kripke structure of the slice, all states satisfy a=>c.

These include states of the original Kripke structure that satisfy a.
Thus all states of the original that satisfy a must satisfy h.

All states of the original that satisy ¬a, satisfy a=>c vacuously.

21

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
41

Example of Antecedent Conditioned Slicing

always @ (clk) begin
case(insn)

f_add: dec = d_add;

endcase
end

always @ (clk) begin
case(ex)

e_add: res = a+b;

endcase
end

always @ (clk) begin
case(dec)

d_add: ex = e_add;

endcase
end

h = [G((insn == f_add) XX(res == a+b))]

Single instruction behavior for f_add instruction

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
42

Experimental Results

• Verilog RTL implementation of USB 2.0
function core

• Properties taken from specification
document
– Safety properties expressed in LTL
– Mostly control based, state machine related

• Used Cadence SMV-BMC
– Circuit too big for SMV
– Used a bound of 24

• 450 MHz, Ultra Sparc dual processor with 1
GB RAM

22

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Results on USB G(a=>c)Properties
CPU Seconds, 450 MHz dual UltraSPARC-II with 1 GB RAM

P1 P2 P3 P4 P5 P6 P7 P8 P9
0

20

40

60

80

100

120

140

160

180

200

Original

Static Slicing

Conditioned Slicing

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Results of Antecedent
Conditioned Slicing

• Temporal property verification for USB 2.0

• Safety properties of the form
– G(a => Xc)
– G(a => a Us c)

• Liveness Properties
– G(a => Fc)

• USB has many interacting state machines
– Approximately 1033 states

• Bound of 50

23

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Example Properties of the USB
• G((crc5err) V match) => send_token))

– If a packet with a bad CRC5 is received, or there is an
endpoint field mismatch, the token is ignored

• G((state == SPEED_NEG_FS) => X((mode_hs) ^
(T1_gt_3_0ms) => (next_state == RES_SUSPEND))

– If the machine is in the speed negotiation state, then in
the next clock cycle, if it is in high speed mode for
more than 3 ms, it will go to the suspend state

• G((state == RESUME_WAIT) ^ (idle_cnt_clr) =>F(state ==
NORMAL))

– If the machine is waiting to resume operation and a
counter is set, eventually (after 100 mS) it will return to
normal operation

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Results on Temporal USB Properties

0

100

200

300

400

500

600

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Original

Static Slicing

Conditioned Slicing

CPU Seconds, 450 MHz dual UltraSPARC-II with 1 GB RAM

24

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
47

Verification of challenging problems
with high level static analysis

– Antecedent conditioned slicing

– Domain aware analysis
• Instruction wise case splitting

– Decision procedure
• Model checker

• Reason with the entire state of the
machine (Burch and Dill)

• Enhancements use theorem
proving techniques
–Significant manual component

–Construct complicated invariants

–High-level model based

Automatic techniques do not
scale to instruction level
verification

Pipelined
Processor

Verification

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
48

Single instruction verification

• Obtain single instruction machine by
antecedent conditioned slicing
– Antecedent is instruction word

• Property is G (I => R) where

– I = i1 ^ Xi2 ^ XXi3…Xnin
• it represents the antecedent in pipeline stage t

– R is the result of I in terms of its target register
values

fetch decode exec

Model checking of instruction I

25

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
49

i1

i1

i1

i1

i1

i2

i2i3i4i5i6

i3 i2

i3

i2

i2

i3i4

i4

i5

F D E M W Register
File

write to register file

Non-target
Register

Target
Register

Interaction between instructions

Lemma: Instructions should write back only
to target register only on writeback stage

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
50

Notion of processor correctness

fetch decode exec

Model checking of l.sll

fetch decode exec

Model checking of l.xor

fetch decode exec

Model checking of l.sub

fetch decode exec

Model checking of l.mulu

fetch decode exec

Model checking of l.addc

Memory
and

Register
file

Conflict
free

writeback
lemma

Single
Instruction

Slices

Control logic
lemmas

model checked

Theorem: The instruction slices, when executed in
the same sequence as the corresponding instructions
in the original pipelined machine, will produce the
same result as the original pipeline

26

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
51

Results of OR1200 verification

DNF30094159.64l.cmovBRANCH
DNF3107354.09l.jalrBRANCH
DNF3196957.36l.jBRANCH
DNF46350139.47l.bnfBRANCH
DNF44281132.63l.bfBRANCH
DNF2280126.63l.muluMAC
DNF4983125.28l.mulMAC
DNF2276124.01l.orALU
DNF2172723.28l.andALU
DNF2483124.84l.xorALU
DNF1965821.6l.addiALU
DNF2401824.7l.subALU
DNF2379625.65l.addALU

SMV
Time(s)

UNSLICED

Memory
usage
(KB)

SMV
Time(s)
SLICEDInsnClass

• OpenRISC 1200

• 32-bit scalar RISC
processor

• 5 stage integer
pipeline

• Publicly available

• Intended for
portable/embedded
applications

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
52

Results of OR1200 verification

DNF48627212.27l.mtsprSPRS
DNF50696226.97l.mfsprSPRS
DNF2691927.93l.rorSHF/ROT
DNF2486527.83l.srlSHF/ROT
DNF2377126.81l.sllSHF/ROT
DNF3094138.32l.sdLSU
DNF2910433.91l.lwsLSU
DNF6311235.85l.ldLSU
DNF53801194.43l.sfgtCOMPARE
DNF51731183.01l.sfneCOMPARE
DNF30004157.29l.sfeqCOMPARE

SMV
Time(s)

UNSLICED
Memory

(KB)

SMV
Time(s)
SLICEDInsnClass • 3GHz Pentium4

• 1GB RAM

• Bolstered use of
several Boolean
level engines

– Model checkers,
SAT, BDD
based engines

All instructions of a pipelined processor were verified

27

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
53

Verification of challenging problems
with high level static analysis

Sequential equivalence
checking
– High level symbolic simulation

of RTL implementation

– High level symbolic simulation
of System level spec

– Domain aware analysis
• Sequential compare points

obtained using heuristics

– Decision procedure
• SAT solver

SoC Verification

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Term Rewriting for Arithmetic Circuit
Checking

• Significant success with RTL Term level
reductions

• Verification of arithmetic circuits at the RTL
level using term rewriting

• RTL to RTL equivalence checking

• Verified large multiplier designs like Booth,
Wallace Tree and many optimized multipliers
using this rewriting technique

28

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Rewrite rules:
– GCD(x,y)) GCD(y,x) if x > y, y 0

– GCD(x,y)) GCD(x,y-x) if x · y, y 0

• Initial term: GCD(initX, initY)

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

VERIFIRE
• Dedicated Arithmetic Circuit Checker
• Vtrans: Translates Verilog designs to Term

Rewriting Systems
• Vprover: Proves equivalence of Term

Rewriting Systems
– Iterative engine
– Returns error trace if proof not found
– Maintains an expanding rule base for expression

minimization
– Incomplete, but efficient engine

29

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham

Results on Multipliers

UnfinishedUnfinished60s64 X 64

UnfinishedUnfinished40s32 X 32

Unfinished Unfinished25s16 X 16

16s18s18s8 X 8

9s10s14s4 X 4

Commercial Tool
2

Commercial

Tool 1

VERIFIREWallace Tree

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
58

System Level Equivalence Checking

• Sequential equivalence checking
– Verifying two models with different state encodings

• System specifications as system level model (SLM)
– Higher level of abstraction

– Timing aware models

• Design concept in RTL needs checking
– Retiming, power, area modifications

– Every change requires verification against SLM

• Simulation of SLM
– Tedious to develop

– Inordinately long running times

30

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
59

Equivalence Checking Using
Sequential Compare Points

• Variables of interest (observables) obtained from
user/block diagram
– Primary outputs / Relevant intermediate variables

• Symbolic expressions obtained for observables
assigned in a given cycle (high level symbolic
simulation)

• Introduce notion of sequential compare points
– Identification with respect to relative position in time
– Identification with respect to space (data or variables)

• Symbolic expressions compared at sequential compare
points

• Comparison using a SAT solver in this work
– Other Boolean level engines can also be used

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
60

Algorithm
M: System level model

V: RTL model
O: list of observables

Construct the control flow
graph for both M and V

For all sequential compare points C

Obtain Proof

If satisfiable

Error Trace

If not satisfiable

Compute symbolic expression at
sequential compare point C using

high level symbolic simulation
for both M and V

Check equivalence of
symbolic expressions

at sequential compare point C
using a SAT solver

31

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
61

Correctness theorem

Theorem:
Let two systems M and V such that, PI(M) = PI(V) and PO(M) = PO(V) = PO.
Let n be the longest cycle length taken to obtain all primary outputs in both systems.
Let M and V be compared at every point C = (t,d) such that t <= n.
Let ~c be the simulation relation that denotes the symbolic expression equality at C.
Then, for all C, V ~c M => V ~POM.

Proof intuition:
The base case is at time t=0, at initial state.
The induction hypothesis is relieved using a lemma that proves that

at any cycle t, if the two systems have
the same value for the symbolic expression of all variables d,
~c holds at that cycle.

If all primary outputs are generated by cycle n, the relation holds.

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
62

Viterbi Decoder: SystemC Specification

1

2

3

4

5

6

7

8

Input
Stream

Metrics
Update

Punct
Table

T
rellis States

F
F

 B
uffer

Butterfly32

Butterfly31

Butterfly2

Butterfly1

Traceback
Mem

Which Data are Valid

Control when to Update

Clock

F
F

 B
uffer

FF[7:0] .. FF[31:0]

T
rellis States

TM[63:0] .. TM[31:0]

Out[31:0]

32

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
63

Viterbi Decoder Implementation 1

1

2

3

4

5

6

7

8

Input
Stream

Metrics
Update

Punct
Table

T
rellis States

F
F

 B
uffer

Butterfly32

Butterfly31

Butterfly2

Butterfly1

Traceback
Mem

Which Data are Valid

Control when to Update

Clock

Stage1 Stage 2

FF[7:0] .. FF[31:0]

TM[63:0] .. TM[31:0]

Out[31:0]

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
64

≡

Cycle t

MDs[1:0][31:0]

MDv[1:0][31:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

bmds[63:0]

bmdv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-3

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-4

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-5

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-6

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-7

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-8

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:0]

TMv[63:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

btms[63:0]

btmv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

Decomposition of Equivalence Checking
between SystemC and Implementation - 1

Proof of FF Buffer (8 cycles)

Proof of Trellis Computation (2 cycles) Proof of Matdec DecisionTable (2 cycles)

33

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
65

1

2

3

4

5

6

7

8

Input
Stream Metrics

Update

Update
Every 8
cycles

T
rellis States

F
F

 B
uffer

Butterfly8

Butterfly7

Butterfly2

Butterfly1

Traceback
Mem

Viterbi Decoder Implementation 2

Clock

Stage1 Stage 2

Wait
another
8 cyles

to update

Relocate
& Mux

FF[7:0] .. FF[31:0]

TM[63:0] .. TM[31:0]

Out[31:0]

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
66

Decomposition of Equivalence Checking
between SystemC and Implementation - 2

≡

Cycle t-8

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-10

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-11

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-12

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-13

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-14

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-15

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:48]

TMv[63:48]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

btms[63:48]

btmv[63:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

TMs[47:32]

TMv[47:32]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

btms[47:32]

btmv[47:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

TMs[31:16]

TMv[31:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

btms[31:16]

btmv[31:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

TMs[15:0]

TMv[15:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

btms[15:0]

btmv[15:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

≡

Cycle t

MDs[31:24]

MDv[31:24]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

bmds[55:48]

bmdv[55:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

MDs[23:16]

MDv[23:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

bmds[39:32]

bmsv[39:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

MDs[15:8]

MDv[15:8]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

bmds[23:16]

bmdv[23:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

MDs[7:0]

MDv[7:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

bmds[7:0]

bmdv[7:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

Proof of FF Buffer (8 cycles)
Proof of Trellis Computation (2 cycles) Proof of Matdec DecisionTable (2 cycles)

34

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
67

Results of using a SAT solver

1792MatDec per
butterfly

896MatDec each stage
of butterfly

57344Trellis per
butterfly

28672Trellis computation
in each stage of

butterfly

14336Trellis Condition in
the butterfly

32LESSTHAN

448PLUS

Number of clauses
in the CNF formula

Block/Function

1892352Monolithic Trellis

Number of
clauses in the
CNF formula

Design

RTL
decomposition
(Design 1)

59136

RTL
decomposition
(Design 2)

59136

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
68

Results

66128Trellis
(decomposed)

21122304Trellis (monolithic)

66128Butterfly

264PLUS

Number of
symbolic variables

generated

Number of
variables

Block/Function

35

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
69

Verifying Embedded Software

• Software Testing
– Execute software for test cases

– Analogous to simulation in hardware

• Testing Criteria
– Coverage measures

• Formal analysis of software
– Model Checking

– Theorem Proving

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
70

Path Testing

• Assumption: bugs affect the control flow

• Execute all possible control flow paths
through the program
– Attempt 100% path coverage

• Execute all statements in program at least
once
– 100% statement coverage

• Exercise every branch alternative during test
– Attempt 100% branch coverage

36

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
71

Software Verification

• Formal analysis of code

• Result, if obtained, is guaranteed for all
possible inputs and all possible states

• Example of software model checker:

SPIN

• Problem: applicable only to small modules

) State Explosion

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
72

Data Abstractions

• Abstract data information
– Typically manual abstractions

• Infinite behavior of system abstracted
– Each variable replaced by abstract domain

variable

– Each operation replaced by abstract domain
operation

• Data independent Systems
– Data values do not affect computation

– Datapath entirely abstracted

37

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
73

Data Abstractions: Examples
• Arithmetic operations

– Congruence modulo an integer
• k replaced by k mod m

• High orders of magnitude
– Logarithmic values instead of actual data value

• Bitwise logical operations
– Large bit vector to single bit value

• Parity generator

• Cumbersome enumeration of data values
– Symbolic values of data

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
74

Abstract Interpretation

• Abstraction function mapping concrete
domain values to abstract domain values

• Over-approximation of program behavior
– Every execution corresponds to abstract

execution

• Abstract semantics constructed once,
manually

38

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
75

Abstract Interpretation: Examples

• Sign abstraction
– Replace integers by their sign

• Each integer K replaced by one of {> 0, < 0, =0}

• Interval Abstraction
– Approximates integers by maximal and minimal

values
• Counter variable i replaced by lower and upper limits

of loop

• Relational Abstraction
– Retain relationship between sets of data values

• Set of integers replaced by their convex hull

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
76

Counterexample Guided Refinement
• Approximation on set of states

– Initial state to bad path

• Successive refinement of approximation
– Forward or backward passes

• Process repeated until fixpoint is reached
– Empty resulting set of states implies property proved
– Otherwise, counterexample is found

• Counterexample can be spurious because of
over-approximations

• Heuristics used to determine spuriousness of
counterexamples

39

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
77

Counterexample Guided Refinement

• Predicate Abstraction
– Predicates related to property being verified

(User defined)

– Theorem provers compute the abstract
program

– Spurious counterexamples determined by
symbolic algorithms

– Some techniques use error traces to identify
relevant predicates

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
78

Counterexample Guided Refinement

• Lazy Abstraction
– More efficient algorithm

– Abstraction is done on-the-fly

– Minimal information necessary to validate a
property is maintained

• Abstract state where counterexample fails is “pivot
state”

• Refinement is done only “from the pivot state on”

40

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
79

Specialized Slicing for Verification

• Amorphous Slicing
– Static slicing preserves syntax of program

– Amorphous Slicing does not follow syntax
preservation

– Semantic property of the slice is retained

– Uses rewriting rules for program transformation

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
80

Example of Amorphous Slicing

begin
i = start;
while (i <= (start + num))

{
result = K + f(i);
sum = sum + result;
i = i + 1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})

41

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
81

Example of Amorphous Slicing
Amorphous Slice:
begin

sum = sum + K + f(start);
sum = sum + K + f(start + num);

end

Program Transformation rules applied
• Induction variable elimination
• Dependent assignment removal

• Amorphous Slice takes a fraction of the time as the real
slice on SPIN

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
82

Amorphous Slicing for Verification

• Similar to term rewriting
– Used by theorem provers for deductive

verification

• What is different?
– Theorem provers try to prove entirely by

rewriting

– Hybrid approach
• Rewriting only part of the program, based on slicing

criterion

• Model checking the sliced program

42

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
83

Conditioned Slicing

• Theoretical bridge between static and
dynamic slicing

• Conditioned Slices specify initial state in
criterion
– Constructed with respect to set of possible

inputs

– Characterized by first order predicate formula

• Yields much smaller slices than static slices

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
84

Example Results – Conditioned Slicing

• Group Address Registration Protocol
(GARP) and X.509 authentication protocol

• SPIN model checker
– Memory limit of 512 MB given

– Max search depth of 220 steps

• All properties were in the form
Antecedent => Consequent

43

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
85

Experimental Results

Property
Proved

Conditioned

Sliced

Unsliced*Property

Yes10.23117.81P5

Yes1.95154.96P4

Yes8.41145.36P3

Yes8.44145.78P2

Yes1.7291.65P1

*Static slicing in SPIN was enabled

