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Verification of SoC Designs

• Simulation-based techniques

• Formal analysis

• Dealing with state explosion

• Verification of embedded software
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Verification versus Test

Specification

Hardware

Design

Manufacture

Implementation

Hardware/Software

Verification

Test
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Verification Effort
• Verification portion of design increases to 

anywhere from 50 to 80% of total 
development effort for the design.

Code Verify (30 ~ 40%) Synthesis P&R

Code Verify (50 ~ 80%) Synthesis P&R

1996
300K gates

2000
1M SoC

Verification methodology manual, 2000-
TransEDA
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Percentage of Total Flaws

• About 50% of flaws are functional flaws.
– Need verification method to fix logical & 

functional flaws

From Mentor presentation material, 2003

Clocking
5%

Race
5%

Power
4%

Other
9%

Yield
7%

Noise
12% Slow Path

13%

Logical/ 
Functional

45%
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Verification Approaches

Simulation

Hardware
Accelerated
Simulation

Emulation

Formal
Verification

Semi-formal
Verification

Prototyping

Faster speed, closer to final product

Bigger coverage

Basic
verification
tool
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HW/SW Co-Design
• Concurrent design of HW/SW components

• Evaluate the effect of a design decision at 
early stage by “virtual prototyping”

• Co-verification

HW
SW

Integration
HW

SW

time time
HW

SW
Integration

iteration
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Verification Options

• Simulation Technologies

• Equivalence Checking

• Formal Analysis (Model Checking) 

• Physical Verification and Analysis
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Simulation Technologies
• Event-based Simulators
• Cycle-based Simulators
• Transaction-based Simulators
• Code Coverage
• HW/SW Co-verification
• Emulation Systems
• Rapid Prototyping Systems
• Hardware Accelerators
• AMS Simulation
• Numerical Simulation (MATLAB) 



5

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
9

Static Technologies

• “Lint” Checking

– Syntactic correctness

– Identifies simple errors

• Static Timing Verification

– Setup, hold, delay timing requirements

– Challenging: multiple sources
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Formal Techniques
• Theorem Proving Techniques

– Proof-based
– Not fully automatic

• Formal Model Checking
– Model-based
– Automatic

• Formal Equivalence Checking
– Reference design  modified design
– RTL-RTL, RTL-Gate, Gate-Gate 

implementations
– No timing verification
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Physical Verification & Analysis

Issues for physical verification:
• Timing
• Signal Integrity
• Crosstalk
• IR drop
• Electro-migration
• Power analysis
• Process antenna effects
• Phase shift mask
• Optical proximity correction
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Top-Down SoC Verification

verification
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Bottom-Up SoC Verification

verification

Components, 
blocks, units

Memory map, 
internal interconnect

Basic functionality, 
external interconnect

System level
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Platform Based SoC Verification

Derivative 
Design

Interconnect 
Verification 
between: 

 SoC Platform

 Newly added 
IPs
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System Interface-driven 
SoC Verification

Besides Design-Under-Test, 
all others are interface models
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Traditional Testbench

• Problems of Traditional Testbench
– Real-World Stimuli

– System-Level Modeling

– High-Level Algorithmic Modeling

– Test Automation

– Source Coverage

Stimulus
Generator

Design
Under
Test

Response
Checking
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“Bug” Introduction and Detection
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Executable Specification

• Procedural Language for Behavioral Modeling
– Design Productivity

• Easy to model complex algorithm

• Fast execution

• Simple Testbench

– Tools
• Native C/C++ through PLI/FLI

• Extended C/C++ : SpecC, SystemC

• Verify it on the fly!
– Test vector generation

– Compare RTL Code with Behavioral Model

– Coverage Test
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Property detection: to decide whether a 
simulation run (trace) of a design satisfies a 
given property

Property Detection

property 
detection

moduleproperty
(specification) 

trace
(simulation run) yes / 

witness
no /
counterexample

e.g., violation of mutual exclusion, critical1 Æ critical2

Example: Properties written in PSL/Sugar
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Specifying Properties (Assertions)
in Industry Tools

• Open Vera Assertions Language (Synopsys) 
• Property Specification Language (PSL) (IBM, 

based on Sugar) 
• Accelera driving consortium
• IEEE Std. 1850-2005

• Accelera Open Verification Library (OVL) 
provides ready to use assertion functions in 
the form of VHDL and Verilog HDL libraries

• SystemVerilog is a next generation language, 
added to the core Verilog HDL
– IEEE Std. 1800-2005
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Formal Verification of SoCs
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State Explosion!
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Abstractions to Deal with Large
State Spaces

• Model checking models need to be made 
smaller

• Problem: State-Space Explosion

• Smaller or “reduced” models must retain 
information
– Property being checked should yield same 

result

• Balancing solution: Abstractions 
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Program Transformation Based 
Abstractions

• Abstractions on Kripke structures
– Cone of Influence (COI), Symmetry, Partial Order, etc.

– State transition graphs for even small programs can be 
very large to build

• Abstractions on Program Text
– Scale well with program size

– High economic interest

Static Program Transformations
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Types of Abstractions

• Sound
– Property holds in abstraction implies property 

holds in the original program

• Complete
– Algorithm always finds an abstract program if it 

exists

• Exact
– Property holds in the abstraction iff property 

holds in the main program
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Abstraction Landscape

Low 
Automation 

Medium
Automation

Data Abstractions
Abstract Interpretation

Low 
Property Dependence

Medium
Property Dependence

Counterexample 
Guided
Refinement techniques

SlicingSlicing

High
Property Dependence

High
Automation
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Verification of challenging problems 
with high level static analysis

Property checking 

– High level symbolic simulation 
• Symbolic simulation of antecedent

• Symbolic simulation of all CFG 
nodes

– Domain aware analysis
• Function-wise case splitting

– Decision procedure
• Model checker

• RTL abstraction technique

• Applied to LTL formulas 

•G(a =>c) 

• Theoretically complex, practically 
effective

• USB 2.0 protocol verification

Antecedent
Conditioned Slicing
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Program Slicing

• Program transformation involving statement 
deletion

• “Relevant statements” determined 
according to slicing criterion

• Slice construction is completely automatic

• Correctness is property specific 
– Loss of generality

• Abstractions are sound and complete
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Specialized Slicing Techniques

• Static slicing produces large slices
– Has been used for verification

– Semantically equivalent to COI reductions

• Slicing criterion can be enhanced to 
produce other types of slices
– Amorphous Slicing

– Conditioned Slicing
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Conditioned Slicing

• Slices constructed with respect to set of 
possible input states

• Characterized by first order, predicate logic 
formula

• Augments static slicing by introducing 
condition
– <C, I, V>

– Constrains the program according to condition 
C

• Canfora et al
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Example Program
begin

1:  read(N);
2: A = 1;
3: if (N < 0) {
4: B = f(A);
5: C = g(A);
6: } else if (N > 0) {
7: B = f’(A);
8: C = g’(A);

} else {
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end
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Example Program: Static Slicing
wrt <11, B>

begin

1:  read(N);
2: A = 1;
3: if (N < 0) {
4: B = f(A);
5: C = g(A);
6: } else if (N > 0) {
7: B = f’(A);
8: C = g’(A);

} else {
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end
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Example Program: 
Conditioned Slicing wrt 

<(N<0),11, B>
begin

1:  read(N);
2: A = 1;
3: if (N < 0) {
4: B = f(A);
5: C = g(A);
6: } else if (N > 0) {
7: B = f’(A);
8: C = g’(A);

} else {
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end
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Verification Using Conditioned Slicing

• Slicing part of design irrelevant to property being 
verified

• Safety Properties of the form
– G (antecedent => consequent) 

• Use antecedent to specify states we are 
interested in 

We do not need to preserve program
executions where the antecedent is false
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Property checking: 
antecedent conditioned slicing

h: G (A => C) 

Antecedent Consequent
Xn C

if (A) 
C = 1;

else
C = 0;

Static 
slicing on 
A, C

if (A) 
C = 1;

else
C = 0; 

if (A) 
C = 1;

else
C = 0;

Antecedent 
conditioned 
slicing  on 

<A= true>, A, C

if (A) 
C = 1;

else
C = 0;

Semantic analysis

Variable
dependency
analysis
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Example of antecedent conditioned slicing

always @ (clk) begin
case(insn) 

f_add:    dec = d_add;
f_sub:    dec = d_sub;
f_and:    dec = d_and;
f_or:       dec = d_or;

endcase
end

always @ (clk) begin
case(ex) 

e_add:    res = a+b;
e_sub:    res = a-b;
e_and:    res = a&b;
e_or:       res = a|b;

endcase
end

always @ (clk) begin
case(dec) 

d_add:    ex = e_add;
d_sub:    ex = e_sub;
d_and:    ex = e_and;
d_or:       ex = e_or;

endcase
end

h = [G((insn == f_add)  XX(res == a+b))]
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dec = d_add dec = d_and dec = d_ordec = d_sub

insn?

f_add
f_sub f_and

f_or

ex = e_add ex = e_and ex = e_orex = e_sub

dec?

d_add
d_sub d_and

d_or

res = a + b res = a & b res = a | bres = a - b

ex?

e_add
e_sub e_and

e_or

TRUE

FALSE

Example contd.
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Checking the truth of the antecedent

(insn == f_add) 

Antecedent 
symbolic expression

Symbolic simulation
of a node in CFG

dec(t+1) = ITE( (insn==f_add)(t)^ 
~(insn == f_sub)(t)^ 
~(insn == f_and)(t)^ 
~(insn == f_or), 
d_add(t), dec(t)) 

(dec = d_add) 

T

Node retained

T: Retained
X: Retained
F: Not retained

RewriterRewriter
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Complexity of Antecedent Conditioned Slicing

• Symbolic simulation of all nodes in each process
• Expression computation over all processes in the 

program
– Handles global predicates

• Symbolic simulation of the antecedent 
• Looking forward in time

– Depends on n in (A => XnC) 

• Decision procedure for checking truth of antecedent
– Could be arbitrarily hard

• Path traversal of all processes
– Pruning non-retained nodes

• Worst case: retain all nodes
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Correctness of Antecedent 
Conditioned Slicing

Theorem: An LTL formula h of the type, where h is 
G(a => c) 
G (a => X=n c) 
G (a => F<= k c) 

holds on the original program iff it holds on the antecedent conditioned slice.

Proof intuition: 
For a Kripke structure of the slice, all states satisfy a=>c.

These include states of the original Kripke structure that satisfy a. 
Thus all states of the original that satisfy a must satisfy h. 

All states of the original that satisy ¬a, satisfy a=>c vacuously. 
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Example of Antecedent Conditioned Slicing

always @ (clk) begin
case(insn) 

f_add:    dec = d_add;

endcase
end

always @ (clk) begin
case(ex) 

e_add:    res = a+b;

endcase
end

always @ (clk) begin
case(dec) 

d_add:    ex = e_add;

endcase
end

h = [G((insn == f_add)  XX(res == a+b))]

Single instruction behavior for f_add instruction
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Experimental Results

• Verilog RTL implementation of USB 2.0 
function core

• Properties taken from specification 
document
– Safety properties expressed in LTL
– Mostly control based, state machine related

• Used Cadence SMV-BMC
– Circuit too big for SMV
– Used a bound of 24

• 450 MHz, Ultra Sparc dual processor with 1 
GB RAM
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Results on USB G(a=>c)Properties 
CPU Seconds, 450 MHz dual UltraSPARC-II with 1 GB RAM  

P1 P2 P3 P4 P5 P6 P7 P8 P9
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20

40

60
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140

160

180

200
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Static Slicing

Conditioned Slicing
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Results of Antecedent 
Conditioned Slicing

• Temporal property verification for USB 2.0

• Safety properties of the form
– G(a => Xc)
– G(a => a Us c)

• Liveness Properties
– G(a => Fc)

• USB has many interacting state machines
– Approximately 1033 states

• Bound of 50 
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Example Properties of the USB
• G((crc5err) V match) => send_token))

– If a packet with a bad CRC5 is received, or there is an 
endpoint field mismatch, the token is ignored

• G((state == SPEED_NEG_FS) => X((mode_hs) ^ 
(T1_gt_3_0ms) => (next_state == RES_SUSPEND))

– If  the machine is in the speed negotiation state, then in 
the next clock cycle, if it is in high speed mode for 
more than 3 ms, it will go to the suspend state

• G((state == RESUME_WAIT) ^ (idle_cnt_clr) =>F(state == 
NORMAL))

– If the machine is waiting to resume operation and a 
counter is set, eventually (after 100 mS) it will return to 
normal operation
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Results on Temporal USB Properties 
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Verification of challenging problems 
with high level static analysis

– Antecedent conditioned slicing 

– Domain aware analysis
• Instruction wise case splitting

– Decision procedure
• Model checker

• Reason with the entire state of the 
machine (Burch and Dill) 

• Enhancements use theorem 
proving techniques
–Significant manual component 

–Construct complicated invariants

–High-level model based

Automatic techniques do not 
scale to instruction level 
verification

Pipelined
Processor

Verification
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Single instruction verification

• Obtain single instruction machine by 
antecedent conditioned slicing
– Antecedent is instruction word

• Property is G (I => R) where

– I = i1 ^ Xi2 ^ XXi3…Xnin
• it represents the antecedent in pipeline stage t

– R is the result of I in terms of its target register 
values

fetch decode exec

Model checking of instruction  I
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i1

i1

i1

i1

i1

i2

i2i3i4i5i6

i3 i2

i3

i2

i2

i3i4

i4

i5

F D E M W Register
File

write to register file

Non-target
Register

Target
Register

Interaction between instructions

Lemma: Instructions should write back only 
to target register only on writeback stage
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Notion of processor correctness

fetch decode exec

Model checking of    l.sll

fetch decode exec

Model checking of l.xor

fetch decode exec

Model checking of l.sub

fetch decode exec

Model checking of l.mulu

fetch decode exec

Model checking of  l.addc

Memory
and

Register
file

Conflict
free 

writeback
lemma

Single
Instruction

Slices

Control logic
lemmas

model checked

Theorem: The instruction slices, when executed in 
the same sequence as the corresponding instructions 
in the original pipelined machine, will produce the 
same result as the original pipeline
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Results of OR1200 verification

DNF30094159.64l.cmovBRANCH
DNF3107354.09l.jalrBRANCH
DNF3196957.36l.jBRANCH
DNF46350139.47l.bnfBRANCH
DNF44281132.63l.bfBRANCH
DNF2280126.63l.muluMAC
DNF4983125.28l.mulMAC
DNF2276124.01l.orALU
DNF2172723.28l.andALU
DNF2483124.84l.xorALU
DNF1965821.6l.addiALU
DNF2401824.7l.subALU
DNF2379625.65l.addALU

SMV 
Time(s) 

UNSLICED

Memory 
usage 
(KB) 

SMV 
Time(s) 
SLICEDInsnClass

• OpenRISC 1200

• 32-bit scalar RISC 
processor

• 5 stage integer 
pipeline

• Publicly available

• Intended for 
portable/embedded  
applications 
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Results of OR1200 verification

DNF48627212.27l.mtsprSPRS
DNF50696226.97l.mfsprSPRS
DNF2691927.93l.rorSHF/ROT
DNF2486527.83l.srlSHF/ROT
DNF2377126.81l.sllSHF/ROT
DNF3094138.32l.sdLSU
DNF2910433.91l.lwsLSU
DNF6311235.85l.ldLSU
DNF53801194.43l.sfgtCOMPARE
DNF51731183.01l.sfneCOMPARE
DNF30004157.29l.sfeqCOMPARE

SMV 
Time(s) 

UNSLICED
Memory 

(KB) 

SMV 
Time(s) 
SLICEDInsnClass • 3GHz Pentium4

• 1GB RAM

• Bolstered use of 
several Boolean 
level engines

– Model checkers, 
SAT, BDD 
based engines

All instructions of a pipelined processor were verified
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Verification of challenging problems 
with high level static analysis

Sequential equivalence 
checking
– High level symbolic simulation 

of RTL implementation 

– High level symbolic simulation 
of System level spec

– Domain aware analysis
• Sequential compare points 

obtained using heuristics 

– Decision procedure
• SAT solver

SoC Verification
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Term Rewriting for Arithmetic Circuit 
Checking

• Significant success with RTL Term level 
reductions

• Verification of arithmetic circuits at the RTL 
level using term rewriting

• RTL to RTL equivalence checking

• Verified large multiplier designs like Booth, 
Wallace Tree and many optimized multipliers 
using this rewriting technique 
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Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Rewrite rules:
– GCD(x,y) ) GCD(y,x)       if x > y, y  0

– GCD(x,y) ) GCD(x,y-x)    if x · y, y  0

• Initial term: GCD(initX, initY)
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VERIFIRE
• Dedicated Arithmetic Circuit Checker
• Vtrans: Translates Verilog designs to Term 

Rewriting Systems
• Vprover: Proves equivalence of Term 

Rewriting Systems
– Iterative engine
– Returns error trace if proof not found
– Maintains an expanding rule base for expression 

minimization
– Incomplete, but efficient engine
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Results on Multipliers

UnfinishedUnfinished60s64 X 64

UnfinishedUnfinished40s32 X 32

Unfinished Unfinished25s16 X 16

16s18s18s8 X 8 

9s10s14s4 X 4

Commercial Tool 
2

Commercial 

Tool 1

VERIFIREWallace Tree

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
58

System Level Equivalence Checking

• Sequential equivalence checking
– Verifying two models with different state encodings

• System specifications as system level model (SLM) 
– Higher level of abstraction 

– Timing aware models

• Design concept in RTL needs checking
– Retiming, power, area modifications

– Every change requires verification against SLM

• Simulation of SLM
– Tedious to develop

– Inordinately long running times
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Equivalence Checking Using 
Sequential Compare Points

• Variables of interest (observables) obtained from 
user/block diagram
– Primary outputs / Relevant intermediate variables

• Symbolic expressions obtained for observables 
assigned in a given cycle (high level symbolic 
simulation) 

• Introduce notion of sequential compare points
– Identification with respect to relative position in time
– Identification with respect to space (data or variables) 

• Symbolic expressions compared at sequential compare 
points

• Comparison using a SAT solver in this work
– Other Boolean level engines can also be used
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Algorithm 
M: System level model

V: RTL model
O: list of observables

Construct the control flow
graph for both M and V

For all sequential compare points C

Obtain Proof

If satisfiable

Error Trace

If not satisfiable

Compute symbolic expression at
sequential compare point C using 

high level symbolic simulation 
for both M and V

Check equivalence of 
symbolic expressions

at sequential compare point C
using a SAT solver
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Correctness theorem

Theorem: 
Let two systems M and V such that, PI(M) = PI(V) and PO(M) = PO(V) = PO. 
Let n be the longest cycle length taken to obtain all primary outputs in both systems. 
Let M and V be compared at every point C = (t,d) such that t <= n. 
Let ~c be the simulation relation that denotes the symbolic expression equality at C. 
Then, for all C, V ~c M => V ~POM.

Proof intuition: 
The base case is at time t=0, at initial state. 
The induction hypothesis is relieved using a lemma that proves that 

at any cycle t, if the two systems have 
the same value for the symbolic expression of all variables d, 
~c holds at that cycle. 

If all primary outputs are generated by cycle n, the relation holds.
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Viterbi Decoder: SystemC Specification
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Viterbi Decoder Implementation 1
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≡

Cycle t

MDs[1:0][31:0]

MDv[1:0][31:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

bmds[63:0]

bmdv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-3

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-4

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-5

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-6

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-7

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-8

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:0]

TMv[63:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

btms[63:0]

btmv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

Decomposition of Equivalence Checking 
between SystemC and Implementation - 1

Proof of FF Buffer (8 cycles) 

Proof of Trellis Computation (2 cycles) Proof of Matdec DecisionTable (2 cycles) 
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Decomposition of Equivalence Checking 
between SystemC and Implementation - 2

≡

Cycle t-8

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-10

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-11

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-12

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-13

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-14

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-15

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:48]

TMv[63:48]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

btms[63:48]

btmv[63:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

TMs[47:32]

TMv[47:32]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

btms[47:32]

btmv[47:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

TMs[31:16]

TMv[31:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

btms[31:16]

btmv[31:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

TMs[15:0]

TMv[15:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

btms[15:0]

btmv[15:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

≡

Cycle t

MDs[31:24]

MDv[31:24]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

bmds[55:48]

bmdv[55:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

MDs[23:16]

MDv[23:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

bmds[39:32]

bmsv[39:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

MDs[15:8]

MDv[15:8]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

bmds[23:16]

bmdv[23:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

MDs[7:0]

MDv[7:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

bmds[7:0]

bmdv[7:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

Proof of FF Buffer (8 cycles) 
Proof of Trellis Computation (2 cycles) Proof of Matdec DecisionTable (2 cycles) 
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Results of using a SAT solver

1792MatDec per 
butterfly

896MatDec each stage 
of butterfly

57344Trellis per 
butterfly

28672Trellis computation 
in each stage of 

butterfly

14336Trellis Condition in 
the butterfly

32LESSTHAN

448PLUS

Number of clauses 
in the CNF formula

Block/Function

1892352Monolithic Trellis

Number of 
clauses in the 
CNF formula

Design

RTL 
decomposition 
(Design 1) 

59136

RTL 
decomposition 
(Design 2) 

59136
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Results

66128Trellis 
(decomposed) 

21122304Trellis (monolithic) 

66128Butterfly

264PLUS

Number of 
symbolic variables 

generated

Number of 
variables

Block/Function
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Verifying Embedded Software

• Software Testing
– Execute software for test cases

– Analogous to simulation in hardware

• Testing Criteria
– Coverage measures

• Formal analysis of software
– Model Checking

– Theorem Proving
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Path Testing

• Assumption: bugs affect the control flow

• Execute all possible control flow paths 
through the program
– Attempt 100% path coverage

• Execute all statements in program at least 
once
– 100% statement coverage

• Exercise every branch alternative during test
– Attempt 100% branch coverage
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Software Verification

• Formal analysis of code

• Result, if obtained, is guaranteed for all 
possible inputs and all possible states

• Example of software model checker:

SPIN

• Problem: applicable only to small modules

) State Explosion
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Data Abstractions

• Abstract data information
– Typically manual abstractions

• Infinite behavior of system abstracted
– Each variable replaced by abstract domain 

variable

– Each operation replaced by abstract domain 
operation

• Data independent Systems
– Data values do not affect computation

– Datapath entirely abstracted



37

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
73

Data Abstractions: Examples
• Arithmetic operations

– Congruence modulo an integer
• k replaced by k mod m

• High orders of magnitude
– Logarithmic values instead of actual data value

• Bitwise logical operations
– Large bit vector to single bit value

• Parity generator

• Cumbersome enumeration of data values
– Symbolic values of data
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Abstract Interpretation

• Abstraction function mapping concrete 
domain values to abstract domain values

• Over-approximation of program behavior
– Every execution corresponds to abstract 

execution 

• Abstract semantics constructed once, 
manually



38

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
75

Abstract Interpretation: Examples

• Sign abstraction
– Replace integers by their sign

• Each integer K replaced by one of {> 0, < 0, =0}

• Interval Abstraction
– Approximates integers by maximal and minimal 

values
• Counter variable i replaced by lower and upper limits 

of loop

• Relational Abstraction
– Retain relationship between sets of data values

• Set of integers replaced by their convex hull
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Counterexample Guided Refinement
• Approximation on set of states

– Initial state to bad path

• Successive refinement of approximation
– Forward or backward passes

• Process repeated until fixpoint is reached
– Empty resulting set of states implies property proved
– Otherwise, counterexample is found

• Counterexample can be spurious because of 
over-approximations

• Heuristics used to determine spuriousness of 
counterexamples
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Counterexample Guided Refinement

• Predicate Abstraction
– Predicates related to property being verified 

(User defined) 

– Theorem provers compute the abstract 
program

– Spurious counterexamples determined by 
symbolic algorithms

– Some techniques use error traces to identify 
relevant predicates
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Counterexample Guided Refinement

• Lazy Abstraction
– More efficient algorithm

– Abstraction is done on-the-fly

– Minimal information necessary to validate a 
property is maintained

• Abstract state where counterexample fails is “pivot 
state”

• Refinement is done only “from the pivot state on”



40

SoC Design, Fall 2009
November 14, 2009

J. A. Abraham Verification of SoC Designs
79

Specialized Slicing for Verification

• Amorphous Slicing
– Static slicing preserves syntax of program

– Amorphous Slicing does not follow syntax 
preservation

– Semantic property of the slice is retained

– Uses rewriting rules for program transformation
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Example of Amorphous Slicing

begin
i = start;
while (i <= (start + num)) 

{
result = K + f(i);
sum = sum + result;
i = i + 1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K}) 
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Example of Amorphous Slicing
Amorphous Slice: 
begin

sum = sum + K + f(start);
sum = sum + K + f(start + num);

end

Program Transformation rules applied
• Induction variable elimination
• Dependent assignment removal

• Amorphous Slice takes a fraction of the time as the real 
slice on SPIN
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Amorphous Slicing for Verification

• Similar to term rewriting
– Used by theorem provers for deductive 

verification

• What is different?
– Theorem provers try to prove entirely by 

rewriting

– Hybrid approach
• Rewriting only part of the program, based on slicing 

criterion

• Model checking the sliced program
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Conditioned Slicing 

• Theoretical bridge between static and 
dynamic slicing

• Conditioned Slices specify initial state in 
criterion
– Constructed with respect to set of possible 

inputs

– Characterized by first order predicate formula

• Yields much smaller slices than static slices
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Example Results – Conditioned Slicing

• Group Address Registration Protocol 
(GARP) and X.509 authentication protocol

• SPIN model checker
– Memory limit of 512 MB given 

– Max search depth of 220 steps

• All properties were in the form
Antecedent  => Consequent
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Experimental Results

Property 
Proved

Conditioned

Sliced 

Unsliced*Property

Yes10.23117.81P5

Yes1.95154.96P4

Yes8.41145.36P3

Yes8.44145.78P2

Yes1.7291.65P1

*Static slicing in SPIN was enabled


