
1

Basic C++ for SystemC

David C Black

• www.ESLX.com

• Info@ESLX.com

• Version 1.2

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Founded 2003

– Broad Background (Hardware/Software/Methodology/Systems)

– Active in SystemC Standardization working groups

– Authors of book SystemC: From the Ground Up

– Merged with XtremeEDA Corporation as a US subsidiary July 2008

• Services
– ESL Adoption Planning

– Methodology and Flow Definition & Development
• General Modeling and Software Development Platforms

• Architectural and Functional Verification

• Behavioral Synthesis

– Staffing
• Mentoring

• Peak staffing needs

– Training and Quick Ramp Mentoring

• Clients include small “startups” to Fortune 500

XtemeESL Corporation – ESL Specialists

Call us today and
let our experts

help your company

become successful
with ESL

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 1 of 61

Restricted Material

2

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Provide a quick C++ review

– Assumes a knowledge of C

• Make it easier to learn SystemC

– Focus on elements used by SystemC

• NOT a ground up tutorial

– See references for that

– Use as a guideline on what to learn

Fasten your seatbelts!

Objectives - C++ for SystemC

© 2009 XtremeEDA USA Corporation - Version 080721.10

Agenda - C++ for SystemC

• Nature of C++

• Strings

• Streaming I/O

• Namespaces

• Functions
– Defining & using

– Pass by value & reference

– Const arguments

– Overloading

– Operators as functions

• Templates
– Defining

– Using

• Classes (OO)

– Data & Methods

– Constructors

– Destructors

– Inheritance

– Polymorphism

– Constant members

– Static members

– Guidelines

• STD Library tidbits

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 2 of 61

Restricted Material

3

© 2009 XtremeEDA USA Corporation - Version 080721.10

• In 1980, Bjarne Stroustrup, from Bell labs, began the development
of the C++ language, that would receive formally this name at the
end of 1983, when its first manual was going to be published. In
October 1985, the first commercial release of the language
appeared as well as the first edition of the book "The C++
Programming Language" by Bjarne Stroustrup.

• During the 80s the C++ language was being refined until it
became a language with its own personality. All that with very few
losses of compatibility with the code with C, and wothout resigning
to its most important characteristics. In fact, the ANSI standard for
the C language published in 1989 took good part of the
contributions of C++ to structured programming.

• From 1990 on, ANSI committee X3J16 began the development of a
specific standard for C++. In the period elapsed until the
publication of the standard in 1998, C++ lived a great expansion in
its use and today is the preferred language to develop professional
applications on all platforms.

History of C++

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Procedural programming - C

– Simple data, Conditionals, Loops & Functions

• Modular programming
– Namespaces, Exception handling

• Data abstraction

– Structures, User defined types (enums & simple classes)

– Concrete types & abstract types

• Object Oriented

– Class hierarchies, inheritance, overriding, polymorphism

• Generic Programming

– Templates, Containers, Algorithms

Multi-paradigm language

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 3 of 61

Restricted Material

4

© 2009 XtremeEDA USA Corporation - Version 080721.10

C-style “strings”

char* msg = “Hello there”;

char mesg2[80];

• Really just pointer to unchecked array
– Danger, Will Robinson! Danger!

typedef char* cstr;

cstr name = “K&R”; // Array of 4 chars

#include <cstring>

strcpy(cstr,cstr), strcat(cstr,cstr),

strcmp(cstr,cstr), strlen(cstr), strchr(cstr,c)

#include <ctype.h>

isalpha(c), isupper(c), isdigit(c), isspace(c),

isalnum(c), toupper(c), tolower(c)

© 2009 XtremeEDA USA Corporation - Version 080721.10

std:string

#include <string>
std::string mesg3(“Hello”);
std::string mesg4;

• Much better/safer than C-strings
– Assign operator= and Concatenate operator+

• Dynamically resizes

–s.length()<string::npos, s.size(),
s.capacity(), s.resize(N), s[pos]

– Compare with operators ==, !=, >, <, <=, >=

– Methods .insert(), .find(), .replace(),
 .substr(), swap()

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 4 of 61

Restricted Material

5

© 2009 XtremeEDA USA Corporation - Version 080721.10

– Terse format limited to predefined types

• “%d %s %f %x %c”

– Not type checked at compile-time

• Guidelines

– Discouraged in C++ (see next slides)

C-style I/O

printf(char* fmt,var1, var2, …);

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Streaming I/O makes it more natural

• Objects "output themselves in an appropriate format."

– No need to remember the correct %d %f %s

– All output is consistent

Streaming I/O

#include <iostream>

cout << "Heading: " << obj << endl;

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 5 of 61

Restricted Material

6

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Define for every datatype
– ostream& operator<<(const ostream& s, const Data& d)

– {

 os << “Data field: “ << d.data … ;

– } // no endl please

• Also
– ofstream& operator<<(const ofstream&, const Data&);

• Use boost::format to aid

Streaming I/O guidelines

© 2009 XtremeEDA USA Corporation - Version 080721.10

C Scope

1. float joe(3.14159);

2.

3. extern float joe;

4. void func() {

5. signed joe;

6. for (long joe = 0; joe!=3; ++joe)

7. cout << joe << ‘ ‘ << ::joe << endl;

8. }

9. int main() {

10. char joe = ‘c’;

11. { BLOCK:

12. double joe = 6.28318; // Hides main joe

13. cout << joe << ‘ ‘ << ::joe << endl;

14. func();

15. }

16. }

6.28318 3.14159
0 3.14159
1 3.14159

2 3.14159

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 6 of 61

Restricted Material

7

© 2009 XtremeEDA USA Corporation - Version 080721.10

Namespaces - powerful

float joe(3.14159); // global

namespace gi { complex joe(2007,1984); }

namespace your { string joe(“your”); }

namespace my { namespace gi { short joe(42); }}

#include ”some.h” // externs to above

using your;

namespace my {

 string joe(“along”);

 void moe() {

 long joe = 96;

 { NESTED:

 char joe = ‘c’; // Hides long joe

 cout << ::joe << ‘ ‘ << joe << ‘ ‘ << gi::joe << ‘ ‘

 << ::gi::joe << ‘ ‘ << my::joe << endl;

 }

 }

}

int main() { my::moe(); }

3.14159 c 42 2007+1984j along

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Good for hiding

• Preferred alternative to file static

Namespaces - anonymous

namespace {
 int magic = 42;
}
void use_magic() {
 cout << magic << endl;
}

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 7 of 61

Restricted Material

8

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Some EDA vendors have restrictions
– Cadence disallows sc_module inside namespace

• Use, but don’t abuse
– Good for modular programming

– Keeps nests < 2 deep

– XtremeEDA uses top-level ::XEDA for library

• Use anonymous instead of static
– For file scoped variables

• Use ::global for clarity
– Identifies globals & discourages their use

• Convenience of using
– Do using ::SPACE::MEMBER; as needed

– Don’t using namespace SPACE; in headers

Namespace - Guidelines

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ supports procedural programming

• Functions are the basis for procedures

• The following topics will be covered:

– Declaring, defining and using functions

– Passing arguments by value

– Pass arguments by reference

– Const arguments

– Overloading function names

– Operators as functions

Agenda - Functions

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 8 of 61

Restricted Material

9

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Simple indicates the syntax for usage and makes it
available for use

• Often included in header (.h) files

• May be repeated without causing errors

Declaring functions

int main(int argc, char* argv[]);

void display(string message);

float sum(vector v);

void status(void);

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Defines behavior

• May only be done once

Defining functions

void display(string message) {
 cout << message << endl;
}
typedef vector<int>::iterator vi_t;
int sum(vector<int> v) {
 int total = 0;
 for (vi_t e=v.beg();e!=v.end();++e) {
 total+=*e;
 }
 return total;
}

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 9 of 61

Restricted Material

10

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Straight forward

• It is possible to pass address of function

– Use in lookup tables

– As a parameter to a generic algorithm

Using functions

display(“Hello there”);
int y = sum(v) + 3;
status();

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Copy supplied arguments into variables

– Only way in C

• Example

Passing arguments by value

void f(int a) {
 a = a+1;
 cout << “a=“ << a << endl;
}
int main() {
 int x = 42;
 f(x);
 f(5);
 cout << “x=“ << x << endl;
 return 0;
}

a=43
a=10
x=42

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 10 of 61

Restricted Material

11

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Make variables point to original argument

– Had to use messy pointers in C

• Example

Passing arguments by reference

a=43
x=43

void f(int& a) {
 a = a+1;
 cout << “a=“ << a << endl;
}
int main() {
 int x = 42;
 f(x);
 // f(5); ILLEGAL - Cannot modify “5”
 cout << “x=“ << x << endl;
 return 0;
}

New C++ syntax

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Compiler enforces “read-only” use

• Similar to task input in Verilog

• Good for passing large values by reference

• Documents intent

Const arguments

int sum(const std::vector<int>& v);

New C++ syntax

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 11 of 61

Restricted Material

12

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Use same name for several different functions
– Distinguished by number of arguments -or-

– Distinguished by types of arguments

– This is illegal in C
int add(const std::vector<int>& v);

float add(const std::vector<float>& v);

int add(int* a, int size);

int add(int a, int b);

int add(complex a, int b);

int add(int b, complex a);

void add(float a, complex a, complex& result);

• Return type not considered as part of signature

Overloading function names

© 2009 XtremeEDA USA Corporation - Version 080721.10

• a+b is another way of saying add(a,b)

• C++ allows you to overload operators

– May only use existing operators

– May not change # arguments or precedence

– May not redefine existing combinations

• E.g. may not redefine int + int (this is goodness)

– Some operators require reference or const

• Example
– complex operator+(complex lhs, complex rhs);

• Use only where it makes intuitive sense

– What does car + car = mean?

Operators as functions

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 12 of 61

Restricted Material

13

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ supports generic programming

• The following topics will be covered:

– Using

– Defining

– Guidelines

Topics - Templates

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Suppose you want to create a struct/class that can hold
several data types and perform operations on them
cleanly.

– Could use union, but code has to store information about
which data type is currently active, and code has to be
duplicated to do different tasks.

Why generic programming?

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 13 of 61

Restricted Material

14

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Using templates is fairly easy & powerful

– Standard template library (STL) is based on (drum roll) . . .
Templates!

– SystemC uses templates a lot

• Defining templates is a bit messy

– Guideline: Design a class without templates before you add
the details of templatization

• Functions and classes may be templated

– Most folks familiar with class templates

Templates (generic programming)

© 2009 XtremeEDA USA Corporation - Version 080721.10

• From STL

– list<pixel> image_list;

– map<string,bool> used;

• From SystemC

– sc_int<12> reg;

– sc_fifo<int> int_fifo;

– sc_fifo<packet> pkt_fifo;

– sc_fixed<8,4> scale;

Ex: using templates

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 14 of 61

Restricted Material

15

© 2009 XtremeEDA USA Corporation - Version 080721.10

Defining templates

• To define a template
class use the template
reserved word and
include argument
specifications in angle
brackets (<>) as shown
here

template<class T, int N>

struct fifo {

 T buff[N];

 void push(T v);

 T pop();

};

int main() {

 fifo<string,5> s_fifo;

 fifo<int,32> i_fifo;

 s_fifo.push(“hello”);

 i_fifo.push(50);

}

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Plate tectonics are powerful too!

• Several types of templates
– Template classes

 template<typename T> CLASSNAME {…};

– Template functions

 template<typename T> RETURN FUNC(ARGS) {…};

• Get basic class working before templating

• Can have several arguments

– Both typename’s and integral values

– Latter arguments may have defaults

Templates are powerful

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 15 of 61

Restricted Material

16

© 2009 XtremeEDA USA Corporation - Version 080721.10

• An entire book devoted to the subject!

• Must consider disambiguation

– C++ rules can be challenging

– Will two classes/functions suffice?

• Quite a few idiosyncrasies
– Best to use template<typename T>

– #include “CLASSNAME.cpp”

– Use this-> for members

• Partial & complete specialization

Defining templates can hurt

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ supports the Object-Oriented (OO) paradigm

• The following topics will be covered:

Agenda - Object-Oriented C++

- Multiple inheritance

- Protection & friends

- Virtual methods

- Pure virtual

- Abstract classes

- Interface classes

- Virtual inheritance

- Constant members

- Static Members

- Defining a class

- Methods

- Access types

- Constructors & initialization

- Destructors

- Inheritance

- Initializing base classes

- Adding members

- Overriding methods

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 16 of 61

Restricted Material

17

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Objects are data types
– Examples: integer; processor; complex number;

creature; shape; window

• Objects have state
– Examples: integer value; processor register contents;

real & imaginary portion of complex; size & orientation
of a shape; window name, type & color

• Objects have behavior
– Examples: integer can be added, subtracted,

multiplied; processor can execute instructions; complex
can be added, multiplied (scalar & cross); shape can
be drawn, inquired of size; window can be moved,
resized, drawn, closed

Properties of objects

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Classes are custom data types

– Effectively extend a programming language

• Classes define object types

– Define data such as properties, and state

– Define behaviors and capabilities

• Classes have:

– State (member data)

– Methods (member functions)

What is a class?

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 17 of 61

Restricted Material

18

© 2009 XtremeEDA USA Corporation - Version 080721.10

• In C++, all data types are classes

• Instances of a data type are called objects

–int a; // creating an object instance

• Objects have functions they can perform

–a = 5; // store

–a = a + 5; // retrieve, add & store

• C++ uses keywords struct or class

– Functions are allowed as members

Member Data & Member Functions

© 2009 XtremeEDA USA Corporation - Version 080721.10

• In C++, a class is simply a struct that has at least one
member function (aka method).

struct NAME {

 void METHOD(); // makes NAME a class

};

• By default, all members of a struct or public (i.e.
accessible directly from the outside using the “dot”
operator.)

• The keyword class was introduced to help document
intent and almost synonymous to struct except for a
minor detail of access that will be discussed later.

class NAME2 { // also a class

 void METHOD(); // makes NAME a class

};

What is a class in C++?

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 18 of 61

Restricted Material

19

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Comments in the implementation (cpp) should be limited
to internal how or why things are done (i.e.
implementation notes)

• Separate data from functions

– Strict OO programming dictates all access to an object should be
through member functions.

– Considered taboo to modify member data of a class

• C++ convention

– Prefix member data variables with m_.

• Put plenty of usage comments in the header

– The header is the file that users will see

Class suggestions

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Separate specification (declaration) from implementation
(definition)

– Use header file (.h) to specify

– Use implementation file (.cpp) to define

• Use struct or class

– OO purists prefer class

– SystemC historically used struct, but changed its tune
during the standardization process

Creating a class

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 19 of 61

Restricted Material

20

© 2009 XtremeEDA USA Corporation - Version 080721.10

#ifndef TAIL_LIGHT_H

#define TAIL_LIGHT_H

class tail_light {

 public: // Member functions - behavior

 bool is_on();

 void set_on();

 void set_off();

 void set_rate(float duty_cycle); // 0.0 to 1.0

 void set_rate(bool light[10]);

 float get_rate();

 // Member data – internal state

 bool m_on;

 bool m_light[10]; // 1/10th of duty cycle status

};

#endif

Ex: tail_light.h (specify a class)

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Treat a class as a new data type (like int)

– Happens to be user-defined

– Has unique behaviors

– CLASSNAME IDENTIFIER();

• Use of the member functions follows the same syntax we
use with member data in a struct

– Uses the dot operator

– OBJECT.FUNCTION(ARGS…)

Using a class

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 20 of 61

Restricted Material

21

© 2009 XtremeEDA USA Corporation - Version 080721.10

#include “headlight.h”

#include “tail_light.h”

int main() {

 // create objects (instantiate)

 headlight left_front, right_front;

 tail_light left_rear, right_rear;

 // call member functions

 left.set_rate(0.5);

 left_rear.set_on();

 right_rear.set_off();

 if (left_rear.is_on()) {

 cout << “Left tail light is on” << endl;

 }

}

Ex: main.cpp (use a class)

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Implementation means defining the behaviors
of member functions (methods)

• Place implementation in separate .cpp file

• Include the header file

• Use of a namescope operator (::) to identify
methods (member functions)

– Indicates function belongs to the class

–TYPE CLASSNAME::METHODNAME(ARGS){BODY}

Implementing a class

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 21 of 61

Restricted Material

22

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: tail_light.cpp (1 of 3)

#include “tail_light.h”

// Define methods in tail_light

bool tail_light::is_on() {

 return m_on;

}

void tail_light::set_on() {

 m_on = true;

}

void tail_light::set_off() {

 m_on = false;

}

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: tail_light.cpp (2 of 3)

void tail_light::set_rate(float duty) {

 if (duty < 0.0 || 1.0 < duty) {

 cout << “ERROR: Illegal rate “

 << duty << endl;

 } else {

 for (int i=0;i!=10;++i) {

 m_light[i] = (i >= 10*duty);

 }//endfor

 }//endif

}

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 22 of 61

Restricted Material

23

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: tail_light.cpp (3 of 3)

float tail_light::get_rate() {
 float rate = 0;

 for (int i=0;i!=10;++i) {
 if (m_light[i]) {
 rate += 0.1;

 }//endif

 }//endfor
 return rate;
}

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Data members of a class are objects
– Hierarchies of class instantiations are a powerful way

of creating complex classes

– This is known as composition

– This establishes a “has a” relationship

– For instance:
struct T1 { int k; };

struct T2 { T1 o2; };

struct T3 { T2 o3a; T1 o3b};

– Class T1 has a int

– Class T2 has a T1

– Class T3 has a T1 and has a T2

The “has a” relationship

T1 T2

int k T1 o2

T3

T2 o3a
T1 o3b

UML class diagrams

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 23 of 61

Restricted Material

24

© 2009 XtremeEDA USA Corporation - Version 080721.10

• In the preceding, class declaration (header) was kept
separate from class implementation (cpp)

• It is possible to do both in one step
struct A {

 int m_v;

 void print() { cout << “v=“<<v<<endl;}

};

• The method print is created inline with the code
where it is invoke (if possible).
– Creates very fast code - good

– Larger executable - ok

– Exposes implementation to end user

• Use only for extremely simple methods
– get & set methods are good examples

Inline methods

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: inline

#ifndef TAIL_LIGHT_H
#define TAIL_LIGHT_H

struct tail_light {
 // Member functions - behavior
 bool is_on() { return m_on; }
 void set_on() { m_on = true; }

 void set_off() { m_on = false; }
 void set_rate(float duty_cycle); // 0.0 to 1.0
 void set_rate(bool light[10]);

 float get_rate();
 // Member data – internal state
 bool m_on;
 bool m_light[10]; // 1/10th of duty cycle status

};
#endif /* TAIL_LIGHT_H */

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 24 of 61

Restricted Material

25

© 2009 XtremeEDA USA Corporation - Version 080721.10

• By default all members of a struct are public

• It is desirable to hide parts of class from users
(e.g. member data or private functions)

• Three keyword labels control access to members
of a class:
– public: // anyone can access

– private: // only for members of this class

– protected: // available to family members

• More on this later

• By default
–struct is public

–class is private

Class Accessibility

© 2009 XtremeEDA USA Corporation - Version 080721.10

Adding access to a struct

• struct default is public

• Public members on right
– func(), help(), m_y

• Private member on right

– sub() m_x, m

• T2 is not very useful
– Cannot acces m!

struct T1 {

 int func(float rate);

 void help();

 private:

 int sub(char c);

 int m_x;

 public:

 int m_y;

};

struct T2 {

 private:

 int m;

};

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 25 of 61

Restricted Material

26

© 2009 XtremeEDA USA Corporation - Version 080721.10

Adding access to a class

• class default is public

• Public members on right
– display(), m_y, m

• Private member on right

– task(), help(),

sub() m_x

• T4 acts like a struct

class T3 {

 void task(int& w);

 void help();

 private:

 int sub(char c);

 int m_x;

 public:

 void display();

 int m_y;

};

class T4 {

 public:

 int m;

};

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Public & Private

#ifndef TAIL_LIGHT_H
#define TAIL_LIGHT_H

class tail_light {
public: // Member functions - behavior
 bool is_on() { return m_on; }
 void set_on() { m_on = true; }

 void set_off() { m_on = false; }
 void set_rate(float duty_cycle); // 0.0 to 1.0
 void set_rate(bool light[10]);

 float get_rate();
private: // Member data – internal state
 bool m_on;
 bool m_light[10]; // 1/10th of duty cycle status

};
#endif /* TAIL_LIGHT_H */

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 26 of 61

Restricted Material

27

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Always precede members of a class with access
designations (i.e. public, private)

• When defining classes, prefer the keyword class

• Place public stuff first, private last

– It’s what the user wants to know

• Minimize private stuff

Notes on Using Public and Private

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Our tail_light class is missing something

– Initial values of the member data are unknown

– Need initialize

• Functional programming suggests adding a member
method called reset or initialize

– Problematic
• Requires user call every time object is created

• Experience shows the user will eventually forget

• Failure to initialize variables difficult to debug

Constructors

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 27 of 61

Restricted Material

28

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Perhaps we can just initialize?

struct tail_light {

 bool m_on(true);

 bool m_light[10]= {false,
 /*etc*/, false };

};

• Problematic

– C++ doesn’t allow this syntax

– m_on(true) syntactically looks like a function defn

Initialization - the wrong way

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ has a special syntax for initialization

– Special method called a constructor

• A constructor is a member function that has the
same name as the class name, and returns no
value:

struct CLASSNAME {

 CLASSNAME(ARGS…);

};

• Constructor with no args is “default constructor”

Solution: Use a constructor

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 28 of 61

Restricted Material

29

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Default Constructor

struct tail_light {

 …

 // default constructor

 tail_light(void);

 …

};

No return type Class name No arguments

tail_light::tail_light(void) {

 m_on = true;

 // Default 50% duty cycle

 for (int i=0;i!=10;++i) {

 m_light[i] = (I<5);

 }//endfor

}

No arguments No return type Class name Class name

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Possible to have a constructor take an argument

– Useful to establish a tail_light with a different initial
duty cycle

• Because constructors are simply functions

– Can overload them the same way as any function

– Might have both a default constructor (50% duty
cycle), and the constructor that takes an argument. A
constructor is always invoked when objects are
instantiated.

Constructors with arguments

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 29 of 61

Restricted Material

30

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Constructor (non-default)

struct tail_light {

 …

 // constructor with args

 tail_light(int percent);

 …

};

No return type

tail_light::tail_light(int pct) {

 m_on = true;

 int div = int(10*pct/100+0.5);

 for (int i=0;i!=10;++i) {

 m_light[i] = (i<div);

 }//endfor

}

© 2009 XtremeEDA USA Corporation - Version 080721.10

• If you do not provide a constructor, then the “default
constructor” is provided for you.

– Default constructor simply allocates space for the data members
(i.e. no initial values).

• If you specify a constructor with one or more arguments,

then the “default constructor” will not be provided unless
you provide it (i.e. overload).

• If you do not specify a constructor when instantiating,
then the “default constructor” is invoked for you.

• If you do not specify a constructor when instantiating and
there is no default constructor, then it is an error.

Default constructors

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 30 of 61

Restricted Material

31

© 2009 XtremeEDA USA Corporation - Version 080721.10

• There is still a potential problem with our approach to
initialization

• Consider a class that instantiates a class

Choosing the constructor

struct Complex {
 double re; double im;
 // No default constructor
 Complex(double r, double i);
};
struct Amplifier {
 Complex x;
};

© 2009 XtremeEDA USA Corporation - Version 080721.10

• A syntactical construct was added to C++ to allow
choosing the constructor for data members

Initializer lists

CLASSNAME::CLASSNAME(ARGS…)
: ELT(ARGS),… // initializer list
{

 // BODY
};

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 31 of 61

Restricted Material

32

© 2009 XtremeEDA USA Corporation - Version 080721.10

Initializer notes

• Occurs before the body of the
constructor is executed

• Using empty parentheses
invokes the default constructor
for a class

– For int, this means set to zero

• Proceeds in the order data
members are declared

– HINT: List them in the same
order as declared

– If order dependences exist,
document them

• Initialization arguments may
be an expression

– valid at construction time

class T1 {

 float m_k;

 T1(float k): m_k(k) {

 m_k++;

 }

};

class T2 {

 int m_n;

 T1 m_a1;

 T2() : m_n(), T1(1) {}

};

class T3 {

 int x, y, z;

 T3(): y(1), x(y+1), z(y) {}

};

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Initializer list

tail_light::tail_light(int pct)
: m_on(true)

{
 int div = int(10*pct/100+0.5);
 for (int i=0; i!=10; ++i) {
 m_light[i] = (i<div);

 }//endfor
}

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 32 of 61

Restricted Material

33

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Objects/data are destroyed when

– Code leaves a scope

– delete is explicitly called

– program terminates

• It is desirable to do cleanup

– Free storage

– Output statistics

– Delete embedded linked list (avoid leaks)

• For this C++ provides a destructor

What is a destructor?

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ destructor is a method named after the class with a
preceding tilde (~) that takes no arguments (ever) and
returns no value (where would it go)

• If you don’t provide a destructor, the compiler will
provide a default that simply frees member data memory.

Defining the destructor

CLASSNAME::~CLASSNAME() {
 BODY
}

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 33 of 61

Restricted Material

34

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Declaration

• Implementation

Ex: Destructor

struct tail_light {
 …
 // destructor
 ~tail_light();
};

tail_light::~tail_light() {
 cout<<“destroyed tail_light”<<endl;
}

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Called for every object as it is destroyed

• There is only one destructor per class

• If you rely on the default destructor, put a comment to

that effect in the header.

Destructor notes

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 34 of 61

Restricted Material

35

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Some classes share common attributes

– Sedan & hatchback automobiles could be modeled as classes

• Both have 4 wheels, engine, steering, etc.

– Managers & engineers could be classes

• Both have names, ages, etc.

– Circles & squares

• Both have sizes, positions & orientations

• Desirable to only write code once for common features

• Ability of one class to “inherit” from another
– Sedan & hatchback inherit from car class

– Manager & engineer inherit from employee class

– Circle & square inherit from shape class

Inheritance motivation

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Design the base (parent) class carefully

• Specify the class to inherit with the syntax
class DERIVED_CLASS

: PARENT_CLASS_LIST {

 …

};

• Parent class list
– Comma separated

– Name of class

– Optional access specifier

– Syntax

public|private|protected CLASSNAME,…

How to inherit

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 35 of 61

Restricted Material

36

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Parent class - light.h

#ifndef LIGHT_H
#define LIGHT_H

#include <string>
class light {
public:
 enum Color {WHITE,RED,YELLOW,GREEN };

 light(Color c); // constructor
 light(std::string k, Color c); // constructor
 bool is_on() {return m_on; }

 void set_on() {m_on = true; }
 void set_off() {m_on = false; }
private:
 Color m_color;

 bool m_on;
 std::string m_kind;
};
#endif

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Inheritance

#ifndef TAIL_LIGHT_H

#define TAIL_LIGHT_H

#include “light.h”

class tail_light : public light {

 public: // Member functions - behavior

 tail_light(); // default constructor

 tail_light(int percent_on); // constructor

 ~tail_light(); // destructor

 void set_rate(float duty_cycle); // 0.0 to 1.0

 void set_rate(bool light[10]);

 float get_rate();

 private: // Member data – internal state

 bool m_light[10]; // 1/10th of duty cycle status

};

#endif

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 36 of 61

Restricted Material

37

© 2009 XtremeEDA USA Corporation - Version 080721.10

The “is a” relationship

• A parent class (base) & a
child class (derived) use
the “is a” relationship
– The child class “is a”

parent class

– The converse is not true

• TG1 is a TG0

• TG2 & TG3 are a TG1

class TG0 {…}

class TG1:TG0 {…}

class TG2:TG1 {…}

class TG3:TG1 {…}

TG0

TG1

TG2 TG3

© 2009 XtremeEDA USA Corporation - Version 080721.10

• When constructing a class that instantiates another class
within it

– Base (parent) classes are constructed first

• What if you need to specify arguments to base class

constructor

– e.g. parent class has no default constructor

• Use the initializer list!

Initialization of inherited classes

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 37 of 61

Restricted Material

38

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Initializer list

tail_light::tail_light(int pct)
: light(Red)

{
 int div = int(10*pct/100+0.5);
 for (int i=0;i!=10;++i) {
 m_light[i] = (i<div);

 }//endfor
}

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Inheriting class (child or derived class) may define new
behaviors and data

– Sports car has spoiler

– Manager has ability to approve raises

– Square has sides

• Simply add new member functions/data

Adding Members

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 38 of 61

Restricted Material

39

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Derived classes may have different data/behaviors for
given function

– Sports car has 2 doors instead of 4

– Manager attends more meetings

– Circle draws differently

• Defining the same method again in the derived class
effectively hides the parent method

Overriding Inherited traits

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Overriding methods

class tail_light : public light {
 public:

 bool is_on(); // override
 …

};

bool tail_light::is_on() {
 // on if m_on is true and current
 // light cycle is true

 …
}

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 39 of 61

Restricted Material

40

© 2009 XtremeEDA USA Corporation - Version 080721.10

• A derived class can access all the public/
protected members of the base class
– Even if it overrides the parent

BASECLASS::METHOD(ARGS…)

• This allows modification of base behavior
DERIVEDCLASS::METHOD(ARGS) {

//pre modifications

BASECLASS:METHOD(ARGS);

// post modifications

return RESULT;

}

Accessing parent methods

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ allows inheritance from more than one parent class

– Known as multiple inheritance

– Used judiciously, it is powerful and useful

• What happens if two base classes have the some

common method signatures?

– Simply override and specify which one rules…

• What if two base classes share a common ancestor

(famous diamond problem)?

Multiple inheritance

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 40 of 61

Restricted Material

41

© 2009 XtremeEDA USA Corporation - Version 080721.10

• private access specification means private to the class
where used

– Children may not access parent’s private info

• What about “family” secrets?

– Use the designation protected

– Protected information is available to class where declared
and any derived class

• When designing a class must think ahead

Protected members

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Protected

class light {
 public:

 enum Color {WHITE,RED,YELLOW,GREEN};
 light(Color c); // constructor
 bool is_on() {return m_on; }
 void set_on() {m_on = true; }

 void set_off() {m_on = false; }
 protected:
 bool m_on;

 private:
 Color m_color;

};

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 41 of 61

Restricted Material

42

© 2009 XtremeEDA USA Corporation - Version 080721.10

• What if we would like to extend access to another
function or class that is not a part of the family?

– Specify the function or class as a friend

– WARNING: Friends can access everything
class B;

class A {

 friend B;

};

– Use sparingly

Friends

© 2009 XtremeEDA USA Corporation - Version 080721.10

• The ability to have a function or method that takes
derived objects as base class arguments and behaves
correctly with respect to overridden behaviors.

What is polymorphism?

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 42 of 61

Restricted Material

43

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Consider a class of shapes

– A shape might have an inherent ability to draw itself; however…

– A circle has a unique draw method

• i.e. overrides base shape::draw

– A square has a different draw method

• i.e. overrides base shape::draw

– It would be nice to be able to have a list of shapes and then just
draw each one

• Consider a base printer class

– Both laser and inkjets have the ability to print

– Print works differently in the laser and inkjet printers

– A test function might take a generic printer as a parameter and
attempt to print regardless of the sub-class of printer

Why polymorphism?

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: Without polymorphism

class printer {

 public:

 void print(string s)
{ cerr<<“Base:Oops!”<<endl;
}

};

class laser : public printer {

 public:

 void print(string s)

 {cout<<“Laser:”<<s<<endl;}

};

class inkjet : public printer
{

 public:

 void print(string s)

 {cout<<“Inkjet:”<<s<<endl;}

};

void f(printer p) {

 p.print(“hello”);

}

int main() {

 printer generic;

 laser lj5550;

 inkjet dj2800;

 f(generic);

 f(lj5550);

 f(dj2800);

}

% test_print
Base:Oops!
Base:Oops!
Base:Oops!

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 43 of 61

Restricted Material

44

© 2009 XtremeEDA USA Corporation - Version 080721.10

• To enable polymorphism C++ designates the shared
methods as virtual

– virtual RTN_TYPE METHOD(ARGS);

• This causes C++ to create a lookup table in the class,

which allows a derived class to specify an overridden
function.

Virtual methods

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: With polymorphism

class printer {

 public:

 virtual void print(string s)

 {cerr<<“Base:Oops!”<<endl;}

};

class laser : public printer {

 public:

 void print(string s)

 {cout<<“Laser:”<<s<<endl;}

};

class inkjet : public printer
{

 public:

 void print(string s)

 {cout<<“Inkjet:”<<s<<endl;}

};

void f(printer p) {

 p.print(“hello”);

}

int main() {

 printer generic;

 laser lj5550;

 inkjet dj2800;

 f(generic);

 f(lj5550);

 f(dj2800);

}

% test_print
Base:Oops!
Laser:hello
Inkjet:hello

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 44 of 61

Restricted Material

45

© 2009 XtremeEDA USA Corporation - Version 080721.10

• It would be nice if we could ensure that all printers had a
print function at compile-time instead of a run-time error

• Declaring a method to be pure enables this

– virtual RTN_TYPE METHOD(ARGS)=0;

• Think of =0 as meaning “This function has no
implementation.”

Pure virtual methods

© 2009 XtremeEDA USA Corporation - Version 080721.10

• A class containing a pure virtual method is called
an abstract class.

• An abstract class cannot be instantiated because

there is no definition for the pure virtual method.

• A class containing only pure virtual methods (no
data either), is call an interface class.

• An interface class is effectively an API
(Application Programming Interface) for a class.

Abstract & Interface classes

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 45 of 61

Restricted Material

46

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: With pure virtual

class printer {

 public:

 virtual void print(string s)

 =0;

};

class laser : public printer {

 public:

 void print(string s)

 {cout<<“Laser:”<<s<<endl;}

};

class inkjet : public printer
{

 public:

 void print(string s)

 {cout<<“Inkjet:”<<s<<endl;}

};

void f(printer p) {

 p.print(“hello”);

}

int main() {

 //printer generic; ILLEGAL

 laser lj5550;

 inkjet dj2800;

 f(lj5550);

 f(dj2800);

}

% test_print
Laser:hello
Inkjet:hello

© 2009 XtremeEDA USA Corporation - Version 080721.10

The dreaded diamond

• When inheriting from
multiple classes that
inherit from a base class,
it is possible that
duplication of data
occurs.

• TG1 & TG2 each have a
copy of TG0::m

• TG3 has two copies

– TG1::TG0::m

– TG2::TG0::m

class TG0 {T m;}

class TG1:TG0 {}

class TG2:TG0 {}

class TG3:TG1,TG2 {}

TG0

T m

TG1

TG0::m

TG2

TG0::m

TG3

TG1::TG0::m
TG2::TG0::m

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 46 of 61

Restricted Material

47

© 2009 XtremeEDA USA Corporation - Version 080721.10

Virtual inheritance
(Avoiding the dreaded diamond)

• To prevent this, declare
the inherited class as
virtual.

• NOTE: This is a
completely different
concept from virtual
methods.

class TG0 {T m}

class TG1

: virtual TG0 {…}

class TG2

: virtual TG0 {…}

class TG3:TG1,TG2 {…}

TG0

T m

TG1

TG0::m

TG2

TG0::m

TG3

TG0::m

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Adding the keyword const to a method restricts the
method from modifying any member data

• May not call non-const methods inside a const

• Use const whenever possible
– Good for get methods

Constant members

class T1 {
 public:
 int get() const { return m; }
 void get(int& v) const { v = m; }
 void set(int v);
 private:
 int m;
};

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 47 of 61

Restricted Material

48

© 2009 XtremeEDA USA Corporation - Version 080721.10

Ex: const members - light.h

#ifndef LIGHT_H
#define LIGHT_H

#include <string>
class light {
public:
 enum Color {WHITE,RED,YELLOW,GREEN };

 light(Color c); // constructor
 light(std::string k, Color c); // constructor
 bool is_on() const {return m_on; }

 void set_on() {m_on = true; }
 void set_off() {m_on = false; }
private:
 Color m_color;

 bool m_on;
 std::string m_kind;
};
#endif

© 2009 XtremeEDA USA Corporation - Version 080721.10

Static members

• Inside ordinary functions,
static is used to create
variables that have infinite
lifetimes. The same is true for
classes.

• Static member functions may
not alter non-static member
data nor call non-static
methods.

• Must initialize static member
data externally

• Use static to gather statistics
for all the objects of an entire
class

class T1 {

 T1():m(0) {++cnt;}

 ~T1() {--cnt;}

 void set(int v) {m=v;}

 static void count(){

 cout<<k<<endl;}

 int m;

 static int cnt;

};

static int T1::cnt(0);

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 48 of 61

Restricted Material

49

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Use private or protected to disable

– Sometimes you want to prevent copying or
construction (e.g. interfaces)

– Use comment to clarify intent

Disabling default methods

class no_copy {
 protected: // Disable the following

 no_copy(); // Constructor

 private: // Disable the following for everyone

 no_copy& operator=(const no_copy& rhs) {}
 no_copy(const no_copy& old) {}
};

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Always define and comment constructor(s)

 CLASSNAME(ARGS…); // Constructor

• Avoid implicit conversions by using explicit

 explicit CLASSNAME(ARG);

• Always define or disable the copy constructor & operator=

– At minimum provide a comment // Default copy

 CLASSNAME(const CLASSNAME&);

 CLASSNAME& operator=(const CLASSNAME);

• Interface classes define API

– Pure virtual methods have no implementation

 virtual RETURN METHOD(ARGS) = 0;

• Destructors are your friend - destroy data leaks

– Allows correct polymorphism

 virtual ~CLASSNAME();

Take control of the class

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 49 of 61

Restricted Material

50

© 2009 XtremeEDA USA Corporation - Version 080721.10

• C++ provides a mechanism to handle exceptions

– Divide by zero

– System call errors (e.g. read error)

– User-defined exceptions ("FIFO underflow")

• SystemC does not currently use exceptions

– Proposed extensions for modeling do use exceptions

– Modeling situations may use exceptions

Exceptions

© 2009 XtremeEDA USA Corporation - Version 080721.10

try {
some_func();

}

catch (my_exception& problem) {

 REPORT_ERROR(problem.msg);

 if (unrecoverable) throw; //upward again

}

catch (other_exception& problem) {…}

class my_exception {

 string msg; my_exception(string m):msg(m){}

};

void some_func():my_exception {

 if (bad_situation) throw my_exception(“Oops”);

}

• Easy syntax/concept

Exceptions in 3 parts

class to hold information on the exception

Function might throw the exception

Throw it

try it Catch it

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 50 of 61

Restricted Material

51

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Always catch by reference

• May confuse threading, so use with care
– Always catch if thrown unless desire abort

– Don’t expect kernal to understand

– SC_REPORT_ERROR or SC_REPORT_FATAL may
be better for many instances

• Can lead to spaghetti code
– How much preventative coding do you do?

– Clean design of classes is important

• Can lead to memory leaks
– Watch those automatic variables

Exceptions - Caveats

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Pass by Value or Reference when possible

– Less error prone to use by reference than pointers

• Use const where possible

– Avoids possibility of side effects catching you unaware

Safe Code Techniques

void Func2(long &v) {
 v = 55;
}

long v;
Func2(v);

void Func1(long *v_ptr) {
 *v_ptr = 55;
}

long v;
Func2(&v);

char const * const RCSID = “Id”;
class myclass {
 double const m_maxval;
 myclass(const double maxval) :m_maxval(maxval) {…}
 bool legal(const double ref&) const;
};

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 51 of 61

Restricted Material

52

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Data hiding provides implementation freedom

• Good for IP (eslx library)

Hiding data in a class

class my_private; // no need to #include header!
class my {
 my(); // Constructor

 virtual ~my(); // Destructor
 private:
 my_private* m;
};

struct my_private { // no need for private
 int hidden_int;
 my_private() {…} // Constructor

 void hidden_func() {…}
};
my::my(): m(new my_private) {…}
// use m->hidden_int or m->hidden_func()

my.h

Forward

declaration

Needs only space

for private pointer

my.cpp

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Hiding speeds up compliation

– No need to parse headers

• May hide too much

– If need to debug (waveforms), should expose specific data
or provide methods to do so.

• SYSTEMC GUIDELINES

– Ports are public

– Signals that may need tracing are public

To hide or not to hide

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 52 of 61

Restricted Material

53

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Standard Template & BOOST Libraries
– Free, reviewed, debugged

• Quick Overview
– History

–cstring vs std::strings

– Streaming I/O + boost::format

–vector<T>::at(), list<T>

–map<T1,T2>, set<T>

–boost::regex

–boost_shared_ptr

NIH - Use it!

© 2009 XtremeEDA USA Corporation - Version 080721.10

• <http://www.sgi.com/tech/stl/>

• The C++ Standard Library is based on the STL published by SGI.
Both include some features not found in the other. SGI's STL rigidly
specifies a set of headers, while ISO C++ does not specify header
content.

• The architecture of STL is largely the creation of one person,
Alexander Stepanov. In 1979 he began working out his initial ideas
of generic programming and exploring their potential for
revolutionizing software development. Although Dave Musser had
developed and advocated some aspects of generic programming as
early as 1971, it was limited to a rather specialized area of software
development (computer algebra).

• Stepanov recognized the full potential for generic programming and
persuaded his then-colleagues at General Electric Research and
Development (including, primarily, Dave Musser and Deepak Kapur)
that generic programming should be pursued as a comprehensive
basis for software development.

STL General Background (Wikipedia)

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 53 of 61

Restricted Material

54

© 2009 XtremeEDA USA Corporation - Version 080721.10

• <http://www.boost.org>

• Free peer-reviewed portable C++ source libraries.

• Emphasizes libraries that work well with the C++ Standard Library and
intended to be widely useful, and usable across a broad spectrum of
applications.

• Boost license encourages both commercial & non-commercial use. Not GNU.

• 10 Boost libraries are already included in the C++ Standards Committee's
Library Technical Report (TR1) as a step toward becoming part of a future C
++ Standard. More Boost libraries are proposed for TR2.

• Why “boost”? Beman Dawes stated “Boost began with Robert Klarer and I
fantasizing about a new library effort over dinner at a C++ committee
meeting in Sofia Antipolis, France, in 1998. Robert mentioned that Herb
Sutter was working on a spoof proposal for a new language named Booze,
which was supposed to be better than Java. Somehow that kicked off the
idea of "Boost" as a name. We'd probably had a couple of glasses of good
French wine at that point. It was just a working name, but no one ever
came up with a replacement.”

Boost General Background

© 2009 XtremeEDA USA Corporation - Version 080721.10

• any - Safe, generic container for single values of different value
types, from Kevlin Henney.

• array - STL compliant container wrapper for arrays of constant size,
from Nicolai Josuttis.

• assign - Filling containers with constant or generated data has
never been easier, from Thorsten Ottosen.

• format - Type-safe 'printf-like' format operations, from Samuel
Krempp.

• math - Several contributions in the domain of mathematics,
includes atanh, sinc, and sinhc

• numeric/conversion - Optimized Policy-based Numeric
Conversions, from Fernando Cacciola.

• interval - Extends the usual arithmetic functions to mathematical
intervals

• multi_array - Multidimensional containers and adaptors for arrays
of contiguous data, from Ron Garcia.

Boost List of Functionality - sampler

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 54 of 61

Restricted Material

55

© 2009 XtremeEDA USA Corporation - Version 080721.10

• random - A complete system for random number
generation, from Jens Maurer.

• rational - A rational number class, from Paul Moore.

• regex - Regular expression library, from John Maddock

• uBLAS - Basic linear algebra for dense, packed and
sparse matrices, from Joerg Walter and Mathias Koch.

• smart_ptr - Five smart pointer class templates, from

Greg Colvin, Beman Dawes, Peter Dimov, and Darin
Adler.

• There are many others…

Boost List of Functionality - sampler

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Vectors, the better array
#include <vector>

std::vector<float> fv(50,0.0);

for(int I=0; I!=fv.size(); ++I) { cin >> fv[I]; }

• Linked lists
#include <list>

std::list<smart_int> sample();

sample.push_back(value);

typedef std::list<smart_int>::iterator ilist;

for(ilist I=sample.begin();I!=sample.end();++I) {

 I->randomize();

}

sample.sort();

STL Containers

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 55 of 61

Restricted Material

56

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Maps - associative container, sparse
#include <map>

std::map<packet, int> pstat;

… pstat[pkt]++; …

typedef map<packet,int>::iterator imap;

for(imap i=pstat.begin(); i!=pstate.end(); ++i) {

 cout << i->first.type

 << “ occurred “ << pstat->second << endl;

}//endfor

• Sets
#include <set>

enum BusState {Idle,Rst,SRd,SWr,MRd,MWr};

std::set<BusState> bs; bs.clear();

bs.insert(Idle);

if (bs.count(MWr) == 1) bs.erase(Idle);

STL Containers continued

© 2009 XtremeEDA USA Corporation - Version 080721.10

• An ordinary array with STL extensions like vector
– Doesn’t carry the overhead of resizing that vector does

– Complete array assignment

– Range checks optional

• USAGE:
#include “boost/array.hpp”

boost::array<T,SIZE> VAR;

• EXAMPLE
using boost::array;

array<int,4> a = { (1,2,3,4) };

typedef array<int,4>::iterator iterator_t;

for(iterator_t i=a.begin();i!=a.end();++i){

 *i=f(*i) + a[2]; // silly equation using *i

}

boost::array Intro

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 56 of 61

Restricted Material

57

© 2009 XtremeEDA USA Corporation - Version 080721.10

• vector<T> and array<T,N> classes both have range

checking in the form of .at() method
– Not quite as natural as using operator[]

• Easy to remedy with a derived class
template<typename T, int N>

class Array : public boost::array<T,N> {

public:

 Array(): array<T,N>() {}

 T& operator[](int i) { return at(i); }

 const T& operator[](int i) const {

 return at(i);
}

};

Range checked Array

© 2009 XtremeEDA USA Corporation - Version 080721.10

• printf with argument checks & more…

• EXAMPLE

#include “boost/format.hpp”

cout << boost::format(

 “Hi %s! x=%4.1f :%d-th step\n”

) % “Toto” % 20.19 % 50 ;

boost::format Intro

Hi Toto! x=20.2 :50-th step

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 57 of 61

Restricted Material

58

© 2009 XtremeEDA USA Corporation - Version 080721.10

• cout << boost::format(
“%1% %3% %2% %1%\n”) % ”aa” % ’b’ % ’c’ ;

//OUTPUT: “aa c b aa”

• boost::format fmt(
 “%|2$3x|:>%|1$=20|<%|30Tx|”);

 string s = str(fmt % ”The title” % 17);

 cout<<fmt.size()<<endl<<fmt.str()<< endl;

boost::format continued

30

11:> My title <xxxxx

123456789^123456789^123456789^

© 2009 XtremeEDA USA Corporation - Version 080721.10

• Regular expressions for C++

– grep, sed, perl, vim, emacs searching

– Several varieties of expressions including perl

– Allows for both search and replace

• More general than just character strings

– Can search arrays of data for data patterns

• Lots of methods/syntax

– We’ll limit ourselves to simple string example

• #include “boost/regex.hpp”

• Link with -lboost_regex

boost::regex Intro

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 58 of 61

Restricted Material

59

© 2009 XtremeEDA USA Corporation - Version 080721.10

• boost::regex_match determines if an
expression matches an entire text

• boost::regex_search finds expression within

a text

– Most likely what you want to use

– Allows identifying sub-matches

• boost::regex_replace makes replacements

– Allows for sub-matches in replacement

boost::regex methods

© 2009 XtremeEDA USA Corporation - Version 080721.10

boost::regex Example

#include “boost/regex.hpp”
string text(“This is some text to search”)
string::const_iterator text_beg = text.begin();
string::const_iterator text_end = text.end();
boost::regex expr(“some text”);
boost::match_results<string::const_iterator> rslt;
bool found = boost::regex_search
 (text_beg, text_end, rslt, expr);
if (found) cout << "Matched ”
 << string(rslt[0].first,rslt[0].second)
 << ” @ posn " << (rslt[0].first - text_beg)
 << ” length " << (rslt[0].second - rslt[0].first)
 << endl;

Regular
expression

What to
search

Where
found

The search

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 59 of 61

Restricted Material

60

© 2009 XtremeEDA USA Corporation - Version 080721.10

scoped_ptr Simple sole ownership of single objects. Noncopyable.

scoped_array Simple sole ownership of arrays. Noncopyable.

shared_ptr Object ownership shared among multiple pointers

shared_array Array ownership shared among multiple pointers

weak_ptr Non-owning observers of an object owned by shared_ptr.

intrusive_ptr Shared ownership of objects with an embedded reference
count.

• Pointers are dangerous because it is easy to lose track
of and create memory leaks

• Smart pointers solve this by providing garbage
collection

• Six types

Boost Shared Pointers Intro

© 2009 XtremeEDA USA Corporation - Version 080721.10

Normal pointers

would create
memory leaks

• Shared pointers allow copying without worrying about
dangling pointers. When reference count drops to zero,
the object is destoyed.
– Caveat: Dangerous if circularly linked (RARE)

• USAGE:
– #include “boost/shared_ptr.hpp”

– boost::shared_ptr<T> v1_ptr(new T);

– boost::shared_ptr<T> v2_ptr;

– v2_ptr.reset(new T);

– v1_ptr = v2_ptr;

– *v2_ptr = value;

– std::cout << *v1_ptr << std::endl;

– {boost::shared_ptr<TYPE> v3_ptr(new T);}

boost::shared Intro

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 60 of 61

Restricted Material

61

© 2009 XtremeEDA USA Corporation - Version 080721.10

Questions

Restricted for use by registered
University of Texas students only.

Basic C++ for SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 61 of 61

Restricted Material

