
1

System Modeling and SystemC

 David C Black

www.xtreme-eda.com
info@xtreme-eda.com

Version 1.7
2009-Aug-20

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Founded 2003 under the name Eklectically Inc. (later DBA ESLX Inc.)

– Broad Background (Hardware/Software/Methodology/Systems)

– Active in SystemC Standardization working groups

– Authors of book SystemC: From the Ground Up

– Became XtremeEDA USA, a subsidiary of XtremeEDA in 2008

• Services

– SystemC Adoption Planning

– Methodology & Flow Definition & Development

• General Modeling & Software Development Platforms

• Architectural and Functional Verification

• Behavioral Synthesis

– Staffing

• Mentoring

• Peak staffing needs

– Training & Quick Ramp Mentoring

• Clients include small “startups” to Fortune 500

XtremeEDA USA - SystemC Specialists

Let our experts
help your company

be successful

with SystemC

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 1 of 48

Restricted material

2

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Provide a quick overview of the topics

– Several fast paced hours of lecture

– What is system modeling

– How does SystemC fit

– Brief introduction to SystemC syntax

• NOT a complete tutorial

– See books or call us for in-depth training

– Use this as a guideline on what to learn

Objectives - System Modeling and SystemC

© 2009 XtremeEDA USA Corporation - Version 090820.10

• System Design Context

– General Methodology

– Refinement

– Benefits

• SystemC Overview

• Anatomy of an SC_MODULE

• SystemC Simulation Kernel

• An Example

• Some Homework

Topics

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 2 of 48

Restricted material

3

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC

Languages Usage

Requirements

Algorithm and Architectural

Functional and Software Development

Behavioral

SoC Verification

IP Verification

RTL

Gates

Transistors

Verilog VHDL

System
Verilog

Vera
e

PSL

* Modified from DVCon

 - Gabe Moretti EDN

Matlab &
C/C++

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Terms used to characterize models

– UnTimed Functional (UTF)

– Timed Functional (TF)

– Bus Cycle Accurate (BCA)

– Pin Cycle Accurate (PCA)

– Register Transfer (RT) accurate

• Model types

– System Architectural Model (SAM)

– System Performance Model (SPM)

– Transaction Level Model (TLM)

– Functional Level Model (FLM)

– System Level Model (SLM)

– Behavioral Level Model (BLM)

– Register Transfer Level (RTL) model

Modeling Characteristics and Models

UT

TF

RT

UT TF BCA PCA

M
o

d
e

l
F
u

n
c
ti

o
n

a
li

ty

Model Interface

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 3 of 48

Restricted material

4

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC allows model refinement to proceed independently
for functionality and interface

 Model Refinement

UT

TF

RT

UT TF BCA PCA

M
o

d
e

l
F
u

n
c
ti

o
n

a
li

ty

Model Interface

SAM
FLM

SLM
BLM

BFM

RTL

TLM

SPM BSynth

Abstract

Detailed

Detailed

© 2009 XtremeEDA USA Corporation - Version 090820.10

Requirements
Definition

Requirements
Document

System Architecture
Model Development

SAM

Transaction Level Model
Development

TLM Software
Design

and
Development

Hardware
Verification

Environment
Development Hardware

Refinement

RTL

RTL to GDSII Flow

TLM Based ESL Methodology

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 4 of 48

Restricted material

5

© 2009 XtremeEDA USA Corporation - Version 090820.10

Architectural
Verification

Hardware
Development

Hardware
Verification

Software
Development

System
Integration

Disparate Teams:

ESL Impacts on Schedule - before

9

Algorithm Architecture Hardware Verification Software

© 2009 XtremeEDA USA Corporation - Version 090820.10

Algorithm

Disparate Teams:

Architecture Hardware Verification Software

Architectural
Verification

Hardware
Development

Hardware
Verification

Software
Development

ESL Impacts on Schedule - after

10

Model
Development

Model

System
Integration

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 5 of 48

Restricted material

6

© 2009 XtremeEDA USA Corporation - Version 090820.10

“Architectural Verification” vs.
“Implementation Verification”

• Architectural Verification
– “Have we defined ‘the right’ architecture?”
– “Will it enable our customers to succeed?”
– “Have we addressed specific use case requirements?”

• Block-Level Implementation Verification
– “Have we implemented a given piece of the architecture

correctly?”
– “Does the implementation match the specification?”

• System-Level Implementation Verification
– “Have we implemented the complete architecture (system)

correctly?”
– “Does the implementation match the specification?”

© 2009 XtremeEDA USA Corporation - Version 090820.10

Considered by many to be the missing Link for ESL Flows

• Several Vendors now offering solutions

– Forte Design Systems

– Mentor

– Cadence

– Agility

– AutoESL

– Synfora

• Takes “behavioral code” and “synthesizes” to RTL code

• Results comparable to human generated RTL

– Less code faster design cycle

– More microarchitectures considered

Behavioral Synthesis

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 6 of 48

Restricted material

7

© 2009 XtremeEDA USA Corporation - Version 090820.10

Modeling Abstraction Levels

Algorithmic level (AL) Abstract

 Major events

Programmer’s view (PV) TLM – minimal bus

Loosely Timed (LT) Instruction seq.

Approximately Timed (AT) TLM – generic bus

 Performance Anal.

Cycle Approximate (CA) TLM – arch. bus

 Cycle-accurate I/F

RT level (RT) Signal/Bit

 Cycle-accurate

Fa
ste

r sp
e
e
d

B
e
tte

r a
ccu

ra
cy

S
D

L
,

M
a
tla

b

P
a
n
a
m

a

S
y
ste

m
C
, M

a
x
sim

,

C
o
w

a
re

, …

V
H

D
L
,

V
e
rilo

g

S
o
ftsim

V
irtio

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Speed

– Quick turn-around for architectural exploration

– Appropriate for software development

– Regression-style verification

• Independently refinable

– Independently refine functionality and communication

– Affords traceability from Architectural Specification to Hardware
Specification and implementation

• Use of Existing Techniques

– TLM is already widely used for verification (not just SystemC)

– TLM Interface Spec v1.0 April 2005

– TLM Specification v2.0 approved June 2008

TLM – Motivations

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 7 of 48

Restricted material

8

© 2009 XtremeEDA USA Corporation - Version 090820.10

TLM – Model Mix and Match

AT Element

LT Element

CC Element Adaptor

RT Element

LT Element AT Channel

Adaptor

© 2009 XtremeEDA USA Corporation - Version 090820.10

RT

CA

Relative Performance

Timing Accuracy

AT

1 G
a
te

s 10

100

1K

10K

100K

1M

10M

0 % 100 % 50 % 25 % 75 %

Loosely Timed
(instruction- and

register-accurate); little
or no timing

Performance modeling
(variable degree of timing)

Cycle-Approximate
(interface timing)

RTL

Gate-level

LT

AL

Algorithm (non-functional)

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 8 of 48

Restricted material

9

© 2009 XtremeEDA USA Corporation - Version 090820.10

• System Design Context

– General Methodology

– Refinement

– Benefits

• SystemC Overview

• Anatomy of an SC_MODULE

• SystemC Simulation Kernel

• An Example

• Some Homework

Topics

© 2009 XtremeEDA USA Corporation - Version 090820.10

• IEEE Standards Group 1666

• OSCI - systemc.org
– LWG (Language Working Group)

– VWG (Verification Working Group)

– SWG (Synthesis Working Group)

– TWG (Transaction Level Modeling Working Group)

• GreenSOCs.org

– Boost.org equivalent

• Users Groups

– European SystemC User’s Group

– North American SystemC User’s Group

– Latin America SystemC User's Group

– India SystemC User's Group

SystemC Organizations

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 9 of 48

Restricted material

10

© 2009 XtremeEDA USA Corporation - Version 090820.10

• IEEE Standards Association

standards.ieee.org/announcements/pr_p1666.html

• OSCI www.systemc.org

• NASCUG www.nascug.org

• ESCUG
www-ti.informatik.uni-tuebingen.de/~systemc/systemc.html

• GreenSOCs www.greensocs.org

• Boost www.boost.org

Websites

© 2009 XtremeEDA USA Corporation - Version 090820.10

systemc.org

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 10 of 48

Restricted material

11

© 2009 XtremeEDA USA Corporation - Version 090820.10

standards.ieee.org

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC Books

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 11 of 48

Restricted material

12

© 2009 XtremeEDA USA Corporation - Version 090820.10

Coming in December

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Advanced Verification Techniques: A Systemc Based Approach for Successful
Tapeout by Leena Singh, Leonard Drucker and Neyaz Khan ©2004

• ESL Design and Verification by Brian Bailey, Grant Martin and Andrew Piziali
©2007

• Microelectrofluidic Systems: Modeling and Simulation by Tianhao Zhang,
Krishnendu Chakrabarty, Richard B Fair, Zhang Zhang ©2002

• SystemC: From the Ground Up by David Black and Jack Donovan ©2004
(now in paperback!)

• System Design with SystemC by Thorsten Groetker, Stan Liao, Grant Martin
and Stuart Swan ©2002

• SystemC: Methodologies and Applications by Wolfgang Muller, Wolfgang
Rosenstiel and Jurgen Ruf

• SystemC Primer by Jayram Bhasker ©2004

• Transaction-Level Modeling with SystemC - TLM Concepts and Applications
for Embedded Systems by Frank Ghenassia ©2005

SystemC Books: Details

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 12 of 48

Restricted material

13

© 2009 XtremeEDA USA Corporation - Version 090820.10

No - C/C++ lacks

• Notion of simulated time

Time sequenced operations

• Concurrency

Hardware and systems are inherently concurrent,
i.e. they operate in parallel

• Hardware data types

Bit type, bit-vector type, multi-valued logic type, signed and
unsigned specific width integer types and fixed-point types

Can C++ be used as is?

© 2009 XtremeEDA USA Corporation - Version 090820.10

Enable C++ without extending the language (syntax)
- use classes and templates

SystemC C++ Classes

bit vectors, arbitrary

precision signed and
unsigned integers,

fixed-point numbers

Channels, events

Clocks, sc_time

Processes Concurrency

Notion of Time

Communication

Hardware Data Types

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 13 of 48

Restricted material

14

© 2009 XtremeEDA USA Corporation - Version 090820.10

Contains functionality for modular design, easy integration,
testing and simulation management

SystemC Simulation & Testing Functionality

Scheduler Running

Verification library Test Bench

Modules Hierarchy

TLM Standard Interoperability

© 2009 XtremeEDA USA Corporation - Version 090820.10

Using SystemC With OSCI PoC Simulator

class library
and

simulation kernel source files for system
and testbenches

Standard
C++ development

environment

compiler

linker

debugger

libraries

header files

"executable

specific
atio

n"

..
.

..
.

executable = simulator

a.out

"make"

ASIC

IP-Core

Interface

DSP

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 14 of 48

Restricted material

15

© 2009 XtremeEDA USA Corporation - Version 090820.10

• System Design Context

– General Methodology

– Refinement

– Benefits

• SystemC Overview

• Anatomy of an SC_MODULE

• SystemC Simulation Kernel

• An Example

• Some Homework

Topics

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC Language Architecture

C++ Language Standard

Core Language
Modules

Ports

Processes
Interfaces

Channels
Events & Time

Event-driven simulation

Data Types
4-valued Logic type

4-valued Logic Vectors

Bits and Bit Vectors
Arbitrary Precision Integers

Fixed-point types
C++ user-defined types

Primitive Channels

Signal, Mutex, Semaphore, FIFO, etc.

Layered Libraries
Verification Library, etc.

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 15 of 48

Restricted material

16

© 2009 XtremeEDA USA Corporation - Version 090820.10

A Simple Module – conceptual (not SystemC)

jpeg image fifo

camera

camera

fifo image jpeg

Connectivity

Hierarchy

module camera(ccd_p,img_p);
 image M1(…);
 fifo CH1(…);

 image M2(…);
endmodule camera;

Verilog

M1 M2

CH1

M1 M2 CH1

module image(ccd_p,out);
 // capture picture
endmodule

module jpeg(raw,jpg);
 // compress image
endmodule

module fifo(in,out);
 // buffer image
endmodule

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - module

SC_MODULE(module_name)

{

 // port declarations

 // channel declarations

 // variable declarations

 // event declarations

 // process declarations

 // helper method declarations

 // module instantiations

 SC_CTOR(module_name)

 : // initialization list

 {

 // connectivity

 // process registration

 }

};

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 16 of 48

Restricted material

17

© 2009 XtremeEDA USA Corporation - Version 090820.10

Module declaration

//Filename: Camera.h
#include <systemc>

// Sub-module declarations

struct Camera
: public sc_module
{

 // Ports

 // Local channels & instances

 // Local events

 // Processes

 // Constructor

 Camera(sc_module_name nm);

 private:

 // Helper member functions

 // Local data

};

Class declaration

jpeg image fifo

camera

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - ports

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 17 of 48

Restricted material

18

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Graphical View

p1

p2

connections outer

Ch1 ci1

pr1

pr3

if3 if1

Ch2 ci2

ifD ifB

if4

p3

p4

ev1

pr2

Ch3 ci3

ifY ifX if2

M2 mi2

pD[0]

pE

pF

ev2

ifZ

ifF

M1 mi1

pA

pB

ifW

p5
if5

pC
ifD

pD[1]
if6

pG p6

Process

(oval)

Channel
(hex)

Module
(rectangle)

Port
(square)

Interface
(circle)

Event
(dash+arrow)

Export
(diamond)

Ch=channel If=interface M=module P=port/pointer Pr=process

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_PORT

modA mA

pA->write(v);

modB mB

v=pB->read();

sc_fifo<int> c;

Pointer Access

read()…

write()…

sc_port<
 sc_fifo_out_if<int> >

sc_port<
 sc_fifo_in_if<int>> pB pA

“points to
 the channel via

the interface”
Interface
(aka API)

A_thread B_thread

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 18 of 48

Restricted material

19

© 2009 XtremeEDA USA Corporation - Version 090820.10

Port Declarations

SC_MODULE(fir_arch) {
 //Port Declarations
 sc_port< sc_fifo_in_if<double> > data_i;
 sc_port< sc_fifo_out_if<double> > data_o;
…
}; //end fir_arch

sc_port<interface_type> port_name;

templated interface

j = data_i->read();
data_i->read(j);
data_o->write(k);

© 2009 XtremeEDA USA Corporation - Version 090820.10

Ports added

//Filename: Camera.h

#include <systemc>

// Sub-module declarations

struct Camera : public sc_module {

 // Ports

 sc_port<ccd_p_if> ccd_p;

 sc_port<firewire_if> img_p;

 // Local channels & instances

 // Local events

 // Processes

 // Constructor

 Camera(sc_module_name nm);

 private:

 // Helper member functions

 // Local data

}; jpeg image fifo

camera

ccd_p img_p

Ports bound

to interfaces

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 19 of 48

Restricted material

20

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_EXPORT

modA mA

c.write(v);

modB mB

v=pB->read();
Pointer Access

sc_export<sc_fifo_in_if<int> > pA

sc_port<sc_fifo_in_if<int> >

A_thread

B_thread

pB

sc_fifo<int> c;

read()…
write()…

“exports the
 interface of

the channel”

Direction of
subroutine call
reversed.

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - channels

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 20 of 48

Restricted material

21

© 2009 XtremeEDA USA Corporation - Version 090820.10

Channel Declarations

SC_MODULE(fir_arch) {
 //Channel Declarations
 sc_fifo<double> orig_in_fifo; //stimulus to results
 sc_fifo<double> data_in_fifo; //stimulus to filter
 sc_fifo<double> data_out_fifo;//filtered data
…
}; //end fir_arch

channel_type channel_name;

templated channel type

j = orig_in_fifo.read();
data_in.read(j);
data_out_fifo.write(k);

// Example using channels

© 2009 XtremeEDA USA Corporation - Version 090820.10

//Filename: Camera.h
#include <systemc>
struct Camera : public sc_module {
 // Ports
 sc_port<ccd_p_if> ccd_p;
 sc_port<firewire_if> img_p;
 // Local channels & instances
 sc_fifo<image_t> CH1;
 // Local events
 // Processes
 // Constructor
 Camera(sc_module_name nm);
 private:
 // Helper member functions
 // Local data
};

Channels added

jpeg image fifo

camera

ccd_p img_p

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 21 of 48

Restricted material

22

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - variables

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

© 2009 XtremeEDA USA Corporation - Version 090820.10

Variable Declarations

• Simply member data – Local to all methods in module

– C++ data types

– User Defined data types

– SystemC data types

SC_MODULE(fir_arch) {
…
 sc_uint<16> m_taps;
 unsigned m_tap;
 unsigned m_results_cnt;
 char* m_cfg_filename;
};//end fir_arch

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 22 of 48

Restricted material

23

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - events

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

© 2009 XtremeEDA USA Corporation - Version 090820.10

Event Declarations

• Event object
– Event is a basic synchronization object

– Event is used to synchronize between processes
– Channels use events to implement blocking

– Event has no data type, only control

– Declared inside of a module
• Used for synchronization between the processes inside a module
• Declare as many as wanted

SC_MODULE(fir_sys) {…
 //Event Declarations
 sc_event fir_done_evt;
…
}; //end fir_sys

sc_event event_name, event_name,... ;

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 23 of 48

Restricted material

24

© 2009 XtremeEDA USA Corporation - Version 090820.10

Event Notify

• Will discuss making simulation processes “sensitive” to events later

//within a simulation process
sc_time time_out(10,SC_MS);
…

event1.notify();
event2.notify(time_out);
event3.notify(1, SC_NS);

The sc_event class has the following methods:
void notify()
void notify(const sc_time&)
void notify(double, sc_time_unit)

© 2009 XtremeEDA USA Corporation - Version 090820.10

notify() Behaviors

• Three notify() behaviors

– Immediate notification

• Causes processes which are sensitive to the event to be made
immediately ready to run

– Run in the current evaluate phase

– Useful for modeling software systems and operating systems,
which lack the concept of delta cycles

– Delayed

• Causes process which are sensitive to the event to be made ready to
run in the next evaluate phase

– Timed notification

• Causes processes which are sensitive to the event to be made ready
to run at a specified time in the future

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 24 of 48

Restricted material

25

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - processes

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Functionality is described in simulation processes

• C++ Methods “registered” with the simulation kernel

– Simulation kernel is the ONLY legal caller

– Called based on the sensitivity (discussed later)

– SC_METHOD processes execute when called and return
control to the calling mechanism

• behave like ordinary C++ method

• Verilog always block or VHDL process

– SC_THREAD and SC_CTHREAD processes are called once,
and then can suspend themselves and resume execution
later

• behave like threads

• Verilog initial block

Simulation Processes

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 25 of 48

Restricted material

26

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Three different process types:

– Methods (SC_METHOD)

– Threads (SC_THREAD)

– Clocked Threads (SC_CTHREAD) – will be deprecated

• May have many processes inside the same module

Process Types

Process Usage:
• System architectural models tend to use Threads
• System Performance models tend to use primarily Threads
• Transaction Level Models tend to use primarily Threads
• Behavioral synthesis uses clocked Threads only
• RTL models use Methods
• Test benches may use all process types

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_THREAD

• Runs only when invoked
by the SystemC scheduler
(part of SystemC kernel)

• Invoked based upon:

– Start of simulation

– Sensitivity

• To event(s) in channels
connected to ports

• To event(s) in local
channels

• Local declared events
(sc_event)

• To time delays

• When SC_THREAD
process is invoked:

– Statements are executed
until a wait statement is
encountered

– At the next wait()
statement, the process
execution is suspended

– At the next reactivation,
process execution starts
from the statement
following the wait

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 26 of 48

Restricted material

27

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_THREAD

• Implemented as a method

– Takes no arguments

– Supplies no return value

– Uses wait() to suspend

• Typically implemented with an
infinite loop

– Ensures that the process can
be repeatedly reactivated

– Allows for suspension and
reactivation at different points

– If no infinite loop then process
is executed only once

• May be desired - like in a test
bench for example

void main_thread(void)

{

 for(;;) {

 // Behavior

 wait(args…);

 }//endforever

 //Completely finished

 return;

}

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_METHOD

• Runs only when invoked
by the SystemC scheduler
(part of SystemC kernel)

• Invoked based upon:

– Start of simulation

– Sensitivity

• To event(s) in channels
connected to ports

• To event(s) in local
channels

• Local declared events
(sc_event)

• To time delays

• When SC_THREAD
process is invoked:
– Once invoked

• Entire body of the process
is executed

• Must return

– Upon completion returns
execution control back to
the simulation kernel

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 27 of 48

Restricted material

28

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_METHOD

• Implemented as a method

– Takes no arguments

– Supplies no return value

– Re-invoked as needed

– May use next_trigger()

• May not use infinite loop

– Execution would never
terminate - hang

– May not have wait()

– Uses next_trigger()

• Local variables redefined each
time invoked.

– Need to save the state of the
process in member variables

void my_method(void)

{

 //Behavior

 int local_i;

 next_trigger(args…);

 return;

 //until re-invoked

}

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - subroutines

SC_MODULE(module_name)
{

// port declarations

// channel declarations
// variable declarations
// event declarations
// process declarations
// helper method declarations
// module instantiations
SC_CTOR(module_name)
: // initialization list
{
 // connectivity

 // process registration
}

};

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 28 of 48

Restricted material

29

© 2009 XtremeEDA USA Corporation - Version 090820.10

• C++ Methods (Member functions)

– Same C++ rules

• Called from Simulation Processes (or the Constructor)

• Adds readability and reusability

• NOTE: Can use ordinary C-functions too; however,

– Cannot access module data directly

– Pass explicit arguments

Subroutines - Helper Processes/Subroutines

© 2009 XtremeEDA USA Corporation - Version 090820.10

• A processes are C++ functions (usually within module)

• Declared functions that take and return void

• Need to “register” with the simulation kernel

Simulation Process - Declaration

SC_MODULE(fir_sys)
{…
 // Simulation Processes
 void stimulus_thread(void);
 void fir_thread(void);
 void results_method(void);
 // Helper Processes
 void read_cfg(void);
 . . .
}; //end fir_sys

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 29 of 48

Restricted material

30

© 2009 XtremeEDA USA Corporation - Version 090820.10

Simulation Process - Implementation

Recommended Style - define implementation in a separate
file (module_name.cpp)

void fir_sys::stimulus_thread(void) {
 …
 for (int t=0; t != STIM_PTS; ++t) {
 double data = 0.0;
 if (t==IMP_PT) data = 1.0; //impulse
 orig_in_fifo.write(data);
 data_in_fifo.write(data);
 }//endfor

}//end fir_sys::stimulus_thread() Implied wait ()
within sc_fifo

© 2009 XtremeEDA USA Corporation - Version 090820.10

Simulation Process Implementation

void fir_sys::results_method(void) {
while(data_out_fifo.num_available() > 0) {
 m_results_cnt++;
 cout
 << "DATA: "
 << "[" << setw(2) << m_results_cnt << "]"
 << "= " << setw(9) << fixed
 << setprecision(5) << orig_in_fifo.read()
 << " " << setw(9) << fixed
 << setprecision(5) << data_out_fifo.read()
 << endl;
 }//endwhile
 next_trigger();
}//end fir_sys::results_method()

assumes static
sensitivity - TBD

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 30 of 48

Restricted material

31

© 2009 XtremeEDA USA Corporation - Version 090820.10

//Filename: Camera.h
#include <systemc>
// Sub-module declarations
struct Camera : public sc_module {
 // Ports
 sc_port<ccd_p_if> ccd_p;
 sc_port<firewire_if> img_p;
 // Local channels & instances
 sc_fifo<image_t> CH1;
 image M1;
 jpeg M2;
 // Processes
 // Constructor
 Camera(sc_module_name nm);
 private:
 // Helper member functions
 // Local data
};

Sub-module instances added

camera

jpeg image

fifo
ccd_p img_p

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - Constructor

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 31 of 48

Restricted material

32

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Normal initialization (as usual in C++)

• Create and initialize an instance of a module:
– Instance name passed to the constructor at instantiation

(creation) time

– Simulation Processes are registered and modules instantiated
inside

Constructor

SC_MODULE(module_name) {
 //port,channels,variables,events,processes
 // Constructor – SystemC Macro
 SC_CTOR(module_name) /* : init list */ {

 //process registration
 //declarations of sensitivity lists
 //module instantiations
 //port connection declarations

 }
};

© 2009 XtremeEDA USA Corporation - Version 090820.10

Constructor implementation

//Filename: Camera.cpp

#include “Camera.h”

// Sub-module includes

// Constructor

SC_HAS_PROCESS(Camera);
Camera:Camera(sc_module_name nm)

: sc_module(nm), ccd_p(“ccd_p”), img_p(“img_p”),
, CH1(“CH1”,1024), M1(“M1”), M2(“M2”)

{

 // Instance elaboration

 // Connectivity

 // Process registration

}

//Continue… jpeg image fifo

camera

ccd_p img_

ports

channel

instances

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 32 of 48

Restricted material

33

© 2009 XtremeEDA USA Corporation - Version 090820.10

Constructor – Simulation Process
Registration

SC_CTOR(fir_sys)
: sc_module(_name)
, …

, orig_in_fifo(32)
, data_in_fifo(32)
, data_out_fifo(32)
{
 SC_THREAD(stimulus_thread);
 SC_THREAD(fir_thread);
 SC_METHOD(results_method);
 …
}//end constructor fir_sys

simulation
process

registration

sc_fifo depth
initialization

© 2009 XtremeEDA USA Corporation - Version 090820.10

• SC_THREAD
– wait(args);
– wait(); implies static sensitivity
– Immediately suspends

• SC_METHOD
– next_trigger(args);
– next_trigger(); implies static sensitivity
– Still continue execution until the process is exited
– Last trigger “wins”

• args
– Specify one or more events to wait for
– Specify a collection of events to wait for
– Specify an amount of time to wait
– Events on a port or channel are “legal”

Simulation Process Dynamic Sensitivity

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 33 of 48

Restricted material

34

© 2009 XtremeEDA USA Corporation - Version 090820.10

wait(args)
for use with SC_THREAD

sc_event e1,e2,e3; // events

sc_time t(200, SC_NS); // variable t of type sc_time

// wait for an event in a list of events

wait(e1);

wait(e1 | e2 | e3); // wait on e1, e2 or e3

// wait for all events in a list

wait(e1 & e2 & e3); // wait on e1, e2 and e3

// wait for specific amount of time

wait(200, SC_NS); // wait for 200 ns

wait(t); // wait for 200 ns

// wait for events with timeout

wait(200, SC_NS, e1 | e2 | e3);

wait(t, e1 | e2 | e3);

wait(200, SC_NS, e1 & e2 & e3);

wait(t, e1 & e2 & e3);

// wait for one delta cycle

wait(0, SC_NS); // wait one delta cycle

wait(SC_ZERO_TIME); // wait one delta cycle

© 2009 XtremeEDA USA Corporation - Version 090820.10

next_trigger(args)
for use with SC_METHOD

sc_event e1,e2,e3; // event
sc_time t(200, SC_NS); // variable t of type sc_time
// trigger on an event in a list of events
next_trigger(e1);
next_trigger(e1 | e2 | e3); // any of e1, e2 or e3
// trigger on all events in a list
next_trigger(e1 & e2 & e3); // all of e1, e2 and e3
// trigger after a specific amount of time
next_trigger(200, SC_NS); // trigger 200 ns later
next_trigger(t); // trigger 200 ns later
// trigger on events with timeout
next_trigger(200, SC_NS, e1 | e2 | e3);
next_trigger(t, e1 | e2 | e3);
next_trigger(200, SC_NS, e1 & e2 & e3);
next_trigger(t, e1 & e2 & e3);
// trigger after one delta cycle
next_trigger(0, SC_NS); //after 1 delta cycle
next_trigger(SC_ZERO_TIME); //after 1 delta cycle

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 34 of 48

Restricted material

35

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy – register processes

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

© 2009 XtremeEDA USA Corporation - Version 090820.10

Static Sensitivity

SC_CTOR(fir_sys)
: sc_module(_name)
, m_cfg_filename(“control.txt”)

, …
{
 SC_THREAD(stimulus_thread);
 SC_THREAD(fir_thread);
 sensitive << data_in_fifo.data_written_event();
 SC_METHOD(results_method);
 sensitive << data_out_fifo.data_written_event();
 sensitive << event1;
 dont_initialize();
 read_cfg(); //read coefficients
}//end constructor fir_sys

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 35 of 48

Restricted material

36

© 2009 XtremeEDA USA Corporation - Version 090820.10

SC_MODULE Anatomy - connectivity

SC_MODULE(module_name) {

//port declarations

//channel declarations

//variable declarations

//event declarations

//process declarations

//helper method declarations

//module instantiations

SC_CTOR(module_name)

: //..init list…

{

 //connectivity

 //process registration

}

};

© 2009 XtremeEDA USA Corporation - Version 090820.10

Very top level is not a module – sc_main

• NOTE: main() is used by SystemC itself

• NOTE: some simulators do not use sc_main()

• File name is usually main.cpp

• Typically instantiate a single module inside sc_main() -

top

Module Instantiation

b a c

top

sc_main()

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 36 of 48

Restricted material

37

© 2009 XtremeEDA USA Corporation - Version 090820.10

Module Instantiation Example - 1

SC_MODULE(ex1) {
 sc_port<sc_fifo_in_if<int> > m;
 sc_port<sc_fifo_out_if<int> > n;
…
 SC_CTOR(ex1) {….
 }
};

SC_MODULE(ex2) {
 sc_port<sc_fifo_in_if<int> > x;
 sc_port<sc_fifo_out_if<int> > y;
…
 SC_CTOR(ex2) {…
 }
};

ch1

b
x y m n

ex3

ex1 ex2

a

© 2009 XtremeEDA USA Corporation - Version 090820.10

Module Instantiation Example - 1

SC_MODULE(ex3){
// Ports
sc_port<sc_fifo_in_if<int> > a;

sc_port<sc_fifo_out_if<int> > b;
// Internal channel
sc_fifo<int> ch1;
// Instances of ex1 and ex2
ex1 ex1_instance;

ex2 ex2_instance;
// Module Constructor
SC_CTOR(ex3):
 ex1_instance("ex1_instance"),
 ex2_instance("ex2_instance")
{…
}
…

};
ch1

b
x y m n

ex1 ex2

a

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 37 of 48

Restricted material

38

© 2009 XtremeEDA USA Corporation - Version 090820.10

Module Instantiation Example - 1

SC_MODULE(ex3){

…

ex1 ex1_instance;

ex2 ex2_instance;

// Module Constructor

SC_CTOR(ex3):

 ex1_instance("ex1_instance"),

 ex2_instance("ex2_instance")

{

// Named connection for ex1

ex1_instance.m(a);

ex1_instance.n(ch1);

// Positional connection for ex2 ex2_instance(ch1, b);

…

 }//end SC_CTOR

};//end ex3

ch1
b

x y m n
ex1 ex2

a

© 2009 XtremeEDA USA Corporation - Version 090820.10

Constructor implementation

//Filename: Camera.cpp

#include “Camera.h”

// Constructor

SC_HAS_PROCESS(Camera);
Camera::Camera(sc_module_name nm)
: sc_module(nm)

, ccd_p(“ccd_p”)

, img_p(“img_p”),

, CH1(“CH1”,1024)

, M1(“M1”)

, M2(“M2”)

{

 // Connectivity

 M1.ccd_p(ccd_p); M1.out(CH1);

 M2.raw(CH1); M2.jpeg(img_p);

 // Process registration

}

//Continue…

jpeg image fifo

camera

ccd_p img_

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 38 of 48

Restricted material

39

© 2009 XtremeEDA USA Corporation - Version 090820.10

sc_main Example

#include <systemc>

#include "top.h"

int sc_main(int argc, char *argv[])

{

 sc_set_time_resolution(1, SC_FS);

 sc_set_default_time_unit(1,SC_PS);

 top TOP("TOP");

 sc_start();

 return 0;

}

© 2009 XtremeEDA USA Corporation - Version 090820.10

Alternate Syntax - 1

SC_MODULE(MODULE_NAME) {

//port declarations

…

…

…

//module instantiations

SC_CTOR(MODULE_NAME)

: ..init list…

{

//simulation directives

}

};

struct MODULE_NAME

 :public sc_module

{

//port declarations…

//module instantiations

SC_HAS_PROCESS(MODULE_NAME);

module_name(

 sc_module_name name,

 //…additional args…

)

 : sc_module(name),

 //…additional init list

{

 //simulation directives

}

};

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 39 of 48

Restricted material

40

© 2009 XtremeEDA USA Corporation - Version 090820.10

Alternate Syntax - 2

struct ex3: sc_module {

 // Ports

 sc_port<sc_fifo_in_if<int> > a;

 sc_port<sc_fifo_out_if<int> > b;

 // Internal channel

 sc_fifo<int> ch1;

 // Instances of ex1 and ex2

 ex1 ex1_instance;

 ex2 ex2_instance;

 // Module Constructor

 SC_CTOR(ex3):

 ex1_instance("ex1_instance"),

 ex2_instance("ex2_instance")

 { // Named connection

 ex1_instance.m(a);

 ex1_instance.n(ch1);

 // Positional connection

 ex2_instance(ch1, b);//Bad

 }//end constructor

};//end ex3

struct ex3: sc_module {

// Ports

sc_port<sc_fifo_in_if<int> > a;

sc_port<sc_fifo_out_if<int> > b;

// Internal channel

sc_fifo<int> ch1;

// Instances of ex1 and ex2

ex1* ex1_ptr;

ex2* ex2_ptr;

// Module Constructor

SC_CTOR(ex3):….

{ ex1_ptr=new ex1(“ex1_inst”);

 ex2_ptr=new ex2(“ex2_inst”);

 // Named connection

 ex1_ptr->m(a);

 ex1_ptr->n(ch1);

 // Positional connection

 (*ex2_ptr)(ch1, b); //Bad

}//end constructor

};//end ex3

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC Language Architecture

C++ Language Standard

Core Language
Modules

Ports

Processes
Interfaces

Channels
Events & Time

Event-driven simulation

Primitive Channels

Signal, Mutex, Semaphore, FIFO, etc.

Layered Libraries
Verification Library, etc.

Data Types
4-valued Logic type

4-valued Logic Vectors

Bits and Bit Vectors
Arbitrary Precision Integers

Fixed-point types
C++ user-defined types

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 40 of 48

Restricted material

41

© 2009 XtremeEDA USA Corporation - Version 090820.10

Important to use right data types in right place for
simulation performance
– Use native C++ types as much as possible
– Use sc_int<W> or sc_uint<W>

• Up to 64 bits wide

• Two value logic
• Boolean and arithmetic operations on integers

– Use sc_logic, sc_lv<W>
• tri-state ports ('0', '1', 'X', 'Z' or "01XZxz")
• Convert to appropriate type for computation

– Use sc_bigint<W> or sc_biguint<W>
• More than 64 bits wide

– Use sc_fixed<>, sc_fix() or sc_ufixed<>, sc_ufix()
• Fixed-point arithmetic

• Convert to sc_uint if many boolean operations

SystemC Data Types

Fastest

Slowest

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC Language Architecture

C++ Language Standard

Core Language
Modules

Ports

Processes
Interfaces

Channels
Events & Time

Event-driven simulation

Layered Libraries
Verification Library, etc.

Data Types
4-valued Logic type

4-valued Logic Vectors

Bits and Bit Vectors
Arbitrary Precision Integers

Fixed-point types
C++ user-defined types

Primitive Channels
Signal, Mutex, Semaphore, FIFO, etc.

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 41 of 48

Restricted material

42

© 2009 XtremeEDA USA Corporation - Version 090820.10

• Primitive channels

– No visible structure

– No processes

– Cannot directly access other primitive channels

– Types provided in 2.0 – See LRM for details

• sc_signal

• sc_signal_rv

• sc_fifo

• sc_mutex

• sc_semaphore

• sc_buffer

• Hierarchical channels

– Are modules

• May contain processes, other modules etc

– May directly access other hierarchical channels

Channel types

© 2009 XtremeEDA USA Corporation - Version 090820.10

• System Design Context

– General Methodology

– Refinement

– Benefits

• SystemC Overview

• Anatomy of an SC_MODULE

• SystemC Simulation Kernel

• An Example

• Some Homework

Topics

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 42 of 48

Restricted material

43

© 2009 XtremeEDA USA Corporation - Version 090820.10

SystemC Simulation Kernel

85

sc_start()

sc_main(
)

Elaborate

Initialize

Advance
Time

Cleanup

Evaluate

Scheduled

E1@0

E2@t1

E3@t1

E4@t2

Runnable Waiting Running

P1

P2

P3

P4 P5

P6

done

Due to
Update
Events

notify()
immediatenotify(0)

or wait(0)

notify(t)
wait(t)

Update

© 2009 XtremeEDA USA Corporation - Version 090820.10

• System Design Context

– General Methodology

– Refinement

– Benefits

• SystemC Overview

• Anatomy of an SC_MODULE

• SystemC Simulation Kernel

• An Example

• Some Homework

Topics

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 43 of 48

Restricted material

44

© 2009 XtremeEDA USA Corporation - Version 090820.10

Example – Block Diagram

stimulus_thread results_method

orig_in_fifo data_out_fifo

data_in_fifo

fir_sys

fir_thread

© 2009 XtremeEDA USA Corporation - Version 090820.10

Example – SC_MODULE

#ifndef FIR_SYS_H
#define FIR_SYS_H
//BEGIN fir_sys.h

#include <systemc>
SC_MODULE(fir_sys) {
 //Port Declarations - NONE
 SC_CTOR(fir_sys);
 //Channel Declarations

 sc_fifo<double> orig_in_fifo;
 sc_fifo<double> data_in_fifo;
 sc_fifo<double> data_out_fifo;
 //Processes
 void stimulus_thread(void);
 void fir_thread(void);
 void results_method(void);

//Helper Processes
 void read_cfg(void);
 //Event Declarations - NONE

private:
 //Data Declarations
 const unsigned STIM_PTS;
 const unsigned IMP_PT;
 double* m_pipe;
 double* m_coeff;
 unsigned m_taps;
 unsigned m_tap;
 unsigned m_results_cnt;
};//end fir_sys module

#endif

code from fir_sys.h

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 44 of 48

Restricted material

45

© 2009 XtremeEDA USA Corporation - Version 090820.10

Example - Constructor

//Constructor
SC_HAS_PROCESS(fir_sys);
fir_sys::fir_sys(sc_module_name nm) :sc_module(nm)
,STIM_PTS(20), IMP_PT(10)
,m_taps(0), m_tap(0)
,m_results_cnt(0)
,orig_in_fifo(32)
,data_in_fifo(32)

,data_out_fifo(32)
{
 SC_THREAD(stimulus_thread);
 SC_THREAD(fir_thread);
 SC_METHOD(results_method);
 dont_initialize();
 sensitive <<
 data_out_fifo.data_written_event();
}//end fir_sys

code from fir_sys.cpp

© 2009 XtremeEDA USA Corporation - Version 090820.10

Example – stimulus_thread

void fir_sys::stimulus_thread(void) {
 //stimulus_thread – create impulse function
 //STIM_PTS - number of stimulus points

 //IMP_PT - location of impulse function
 for (int t=0;t<STIM_PTS;t++) {
 double data = 0.0;
 if (t==IMP_PT) data = 1.0; //impulse
 orig_in_fifo.write(data);
 data_in_fifo.write(data);
 }//endfor
}//end fir_sys::stimulus_thread()

code from fir_sys.cpp

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 45 of 48

Restricted material

46

© 2009 XtremeEDA USA Corporation - Version 090820.10

Example – fir_thread

void fir_sys::fir_thread(void) {
 double data = 0; //used to hold intermediate data point
 double result = 0; //contains next filtered data point
 unsigned coeff = 0; //used to index coeffiecients
 for(;;) {
 coeff = m_tap; //used to index coeffiecients
 //read next piece of data
 data = data_in_fifo.read();
 m_pipe[m_tap++] = data;
 if (m_tap == m_taps) m_tap = 0; //wrap data buffer
 result = 0; //contains next filtered data point
 for (unsigned tap=0;tap!=m_taps;tap++,coeff++) {
 if (coeff == m_taps) coeff = 0; //wrap coeff.
 result += m_coeff[coeff] * m_pipe[tap];
 }//endfor
 data_out_fifo.write(result);
 }//endforever
}//end fir_sys::fir_thread()

code from fir_sys.cpp

© 2009 XtremeEDA USA Corporation - Version 090820.10

Example – results_method

void fir_sys::results_method(void) {
 //results_method - Print results with orig data.
 // Method was used as a coding

 // guideline illustration.
 while(data_out_fifo.num_available() > 0) {
 m_results_cnt++;
 cout << "DATA: "
 << "[" << setw(2) << m_results_cnt << "]"
 << "= " << setw(9) << fixed
 << setprecision(5) << orig_in_fifo.read()
 << " " << setw(9) << fixed
 << setprecision(5) << data_out_fifo.read()
 << endl;
 }//endwhile
 next_trigger();
}//end fir_sys::results_method()

code from fir_sys.cpp

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 46 of 48

Restricted material

47

© 2009 XtremeEDA USA Corporation - Version 090820.10

• System Design Context

– General Methodology

– Refinement

– Benefits

• SystemC Overview

• Anatomy of an SC_MODULE

• SystemC Simulation Kernel

• An Example

• Some Homework

Topics

© 2009 XtremeEDA USA Corporation - Version 090820.10

1. Get Hello running (next slide)

2. Create a for-loop in the process to output the "Hello" message 10
times in bursts with a random delay between messages evenly
distributed from 50 to 90 ns

3. Create two sub-modules, Generate & Monitor connected by an
sc_signal<string> channel. You will need an output port and an
input port on each. Instantiate them inside Hello. Move the loop
into the Generate module, but have it write to the output port.
Have the Monitor display values that show up on the input port.

Homework

n

Hello top1

Generate gen1 Monitor mon1

sc_signal

 <string>

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 47 of 48

Restricted material

48

© 2009 XtremeEDA USA Corporation - Version 090820.10

Hello

#ifndef Hello_h
#define Hello_h
#include <systemc>
SC_MODULE(Hello) {
 SC_CTOR(Hello);
 void end_of_elaboration(void);
 void main_thread(void);
 ~Hello(void);
};

#endif

#include "Hello.h"
#include <iostream>
using namespace std;
void Hello::Hello(sc_module_name nm)
{

 cout << "Constructing "
 << name() << endl;
 SC_HAS_PROCESS(Hello);
 SC_THREAD(main_thread);
}

void Hello::end_of_elaboration(void)
{

 cout << "End of elaboration" << endl;
}

void Hello::main_thread(void)
{

 cout << "Hello World!" << endl;
}
Hello::~Hello(void)
{

 cout << "Destroy " << name() << endl;
}

#include "Hello.h"
#include <iostream>
using namespace std;
int sc_main(void)
{

 Hello top_i("top_i");

 cout << "Starting" << endl;
 sc_start();
 cout << "Exiting" << endl;
}

Hello.h

main.h

Hello.cpp

Restricted for use by registered
University of Texas students only.

System Modeling and SystemC
A Rapid Introduction by David Black

Copyright (C) 2009 by XtremeEDA Corporation.
All rights reserved.

Page 48 of 48

Restricted material

