
1

EE382V – System-on-Chip Design – Application Mapping SPS-1 University of Texas at Austin

Mapping High-Level Language
Applications to SystemC

Steven P. Smith

Design of Embedded Systems
EE382V
Fall 2009

EE382V – System-on-Chip Design – Application Mapping SPS-2 University of Texas at Austin

Overview
• Many projects begin with a working HLL application.

• Particularly common in multimedia and communications

• Goals
• Maintain conformance with original application

software throughout development
• The HLL implementation serves as the gold model.

• Profiling data and architecture considerations drive
process

• Support incremental mapping of modules
• One accelerator at a time…

• SystemC is well suited for use with C/C++ HLL apps.

2

EE382V – System-on-Chip Design – Application Mapping SPS-3 University of Texas at Austin

Standards-Based Applications
• Predominant in some important domains

• Wireless Communications

• Networking

• Audio, Video

• Standards are often developed using a community-
developed HLL application.
• The application embodies the standard.

• Such reference applications are seldom well
structured or optimized.

• Full conformance to standard is crucial to success.

EE382V – System-on-Chip Design – Application Mapping SPS-4 University of Texas at Austin

Steps in Moving from Reference Code to
an Embedded Implementation

• Algorithm study and analysis
• Setting target performance requirements
• Understanding reference code structure
• Profiling, identification of bottlenecks

• What functions must be accelerated to meet
performance targets?

• Developing a Hardware Abstraction Layer (HAL)
• Modifying code to make it suitable for hardware
• Mapping the application onto the hardware
• Readying the application for production

3

EE382V – System-on-Chip Design – Application Mapping SPS-5 University of Texas at Austin

From Reference Code to
Embedded Implementation

• Conformance maintained at all phases of design

• Reference application used to generate module-
level test vectors

• Hardware/Software co-design a natural by-product

• Hardware abstraction layer (HAL) defines the
interface between application software and any
special-purpose hardware

• Need a development environment supporting
hardware models and application software execution

• SystemC (informal software support)

EE382V – System-on-Chip Design – Application Mapping SPS-6 University of Texas at Austin

SystemC

• Class library extension to C++

• Extended to support verification-specific constructs

• C++ can be intimidating to HW designers trained in
Verilog or VHDL

• Software developers find it easier to integrate their
programs and tools than with other ESL languages.

• Open standard effort through the Open SystemC
Initiative (OSCI)

• Synthesis tools emerging in the marketplace (e.g.,
Forte, Mentor Graphics)

4

EE382V – System-on-Chip Design – Application Mapping SPS-7 University of Texas at Austin

SystemC Architecture

C++ Language Standard

Event-Driven Simulation Engine
Events, Processes

Structure Elements
Modules

Ports
Interfaces
Channels

Data Types
4-value Logic

Bits, Bit Vectors
Arbitrary-Precision Integers

Fixed-Point Types

Primitive Channels
Signals, FIFOs, mutexes, semaphores, etc.

Methodology-
Specific Libraries
Master/Slave, etc.

Layered Libraries
Verification,
TLM, etc.

EE382V – System-on-Chip Design – Application Mapping SPS-8 University of Texas at Austin

Considerations in Selecting Modules for
Realization as Accelerators

• Software profile data can help filter candidate modules.
• HLL function boundaries not always appropriate module

boundaries
• Some code refactoring may be necessary

• Input/output requirements also a factor
• Transfer overhead can swamp advantage of acceleration

• Look for opportunities for module-level parallelism
• Identify synchronization requirements

• Global variables must be eliminated from module
• Map to arguments

• Data transfer alternatives (e.g., DMA, processor-directed)

5

EE382V – System-on-Chip Design – Application Mapping SPS-9 University of Texas at Austin

The Hardware Abstraction Layer (HAL)
• Provides an efficient interface to hardware while

maintaining application code structure.
• From application, HW accelerator looks like a function call

• From HW accelerator, application looks like HW/buffer

• Define functions for each HW/SW interaction,
isolating hardware detail from application software.

• Provide synchronization primitives required for flow
control, management of parallel activity.

• Enables mixture of hardware and software models
• Selective use of hardware modules supports debug in

emulation environment

• Expanded verification challenge

EE382V – System-on-Chip Design – Application Mapping SPS-10 University of Texas at Austin

Formalizing the HAL Interfaces
• A formal, standardized representation would be helpful.

• Support tool-based interface generation and error-checking

• Ease IP re-use

• Capture constraints

• Bridge the gap between software and hardware constraints

• The Architecture and Analysis and Design Language
(AADL)
• Originally the “Avionics Architecture Description Language”

• Safety-critical and mission-critical applications were initial
focus

• Separates types (interfaces) and implementations
• http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn011.pdf

6

EE382V – System-on-Chip Design – Application Mapping SPS-11 University of Texas at Austin

HAL Application Interface Layer
• Application Layer

• Maps HLL function call to lower layer of HAL
void appFunction1(int * data, int dataSize)
{
#if HAL_ENABLED

int i ;

HAL_checkReadyFunction1(TRUE) ;

for (i=0; i < dataSize ; i++)
{

HAL_enqueueToFunction1(data[i]) ;
}

HAL_startFunction1() ;
#else

// … Existing HLL application function code …

#endif

}

EE382V – System-on-Chip Design – Application Mapping SPS-12 University of Texas at Austin

HAL Hardware Interface Layer
• Hardware Layer

• Interacts with HW for synchronization, data transfers, and
status queries

int HAL_waitReadyFunction1(int waitTillReady)
{

int result ;
do {

result = HAL_ADR_Function1Status() ;
} while (!result && waitTillReady) ;
return result ;

}

7

EE382V – System-on-Chip Design – Application Mapping SPS-13 University of Texas at Austin

HAL Layers
• Hardware Layer with Instrumentation

• Can be used to capture stimuli

int HAL_enqueueToFunction1(int data)
{
#if HAL_GEN_VERILOG

fprintf(pfVStim,”halFunction1InputData = %d ;\n”, data) ;
#endif

halFunction1InputQueue = data ;
}

EE382V – System-on-Chip Design – Application Mapping SPS-14 University of Texas at Austin

Example - MPEG-2 Video Decode
Audio/Video
Demultiplex

Video
Bitstream
Decode

Inverse
Discrete

Cosine Transform

Inverse
Motion

Prediction

Smoothing
Filter

Audio
Decode

+Error
Coefficients

Predicted
Pixels

Transform
Coefficients

Motion
Vectors

Frame
Store

8

EE382V – System-on-Chip Design – Application Mapping SPS-15 University of Texas at Austin

Inverse Discrete Cosine Transform
• Fundamental process in most image compression

algorithms
• JPEG, MJPEG, MPEG

• Image data tends to show correlation in frequency
domain.

• Forward discrete cosine transform (DCT) used during
encoding
• Intra (I) frames: coefficients are frequency-domain pixel values
• Prediction (P) frames: coefficients are prediction errors

• Inverse discrete cosine transform (iDCT) used during
decoding to recover image

• Color components processed separately

EE382V – System-on-Chip Design – Application Mapping SPS-16 University of Texas at Austin

Inverse Discrete Cosine Transform

• Processing iDCTs becomes time critical for video
decoding.

• Consider the case of 1080i HD video

• Pixels per frame: 10881 * 1920 = 2,088,960

• Frame rate: 30 frames per second2

• Required two-dimensional 8x8 iDCTs per second:
(2088960 * 30) / (8 * 8) = 244,800 iDCTs/second
for luminance data alone

• Time budget for each luminance
iDCT: 4.08 uSecs (2.7 uSecs
with chroma data added)

1 Height padded to 1088 to
be multiple of 16.

2 Actually 60 interlaced
fields per second

9

EE382V – System-on-Chip Design – Application Mapping SPS-17 University of Texas at Austin

MPEG-2 iDCT Reference Software
#define BLSIZE 8
void dct_two_d(short int **in, short int **coeff)
{

register int j1, i, j,offset;
float b[BLSIZE],c[BLSIZE];
float d[BLSIZE][BLSIZE];

for(i=offset=0;i<8;i++,offset+=8){
for(j=0;j<8;j++)

b[j] = (float) in[i][j];

/* Horizontal transform */
for (j= 0;j<4;j++){

j1 = 7 - j;
c[j] = b[j] + b[j1];
c[j1] = b[j] - b[j1];

}

b[0] = c[0] + c[3];
b[1] = c[1] + c[2];
b[2] = c[1] - c[2];
b[3] = c[0] - c[3];
b[4] = c[4];

EE382V – System-on-Chip Design – Application Mapping SPS-18 University of Texas at Austin

MPEG-2 iDCT Reference Software (2)
b[5] = (c[6] - c[5]) * f0;
b[6] = (c[6] + c[5]) * f0;
b[7] = c[7];
d[i][0] = (b[0] + b[1]) * f4;
d[i][4] = (b[0] - b[1]) * f4;
d[i][2] = b[2] * f6 + b[3] * f2;
d[i][6] = b[3] * f6 - b[2] * f2;
c[4] = b[4] + b[5];
c[7] = b[7] + b[6];
c[5] = b[4] - b[5];
c[6] = b[7] - b[6];
d[i][1] = c[4] * f7 + c[7] * f1;
d[i][5] = c[5] * f3 + c[6] * f5;
d[i][7] = c[7] * f7 - c[4] * f1;
d[i][3] = c[6] * f3 - c[5] * f5;

}

/* Vertical transform */
for (i=0;i<8;i++){

for (j=0;j<4;j++){
j1 = 7 - j;
c[j] = d[j][i] + d[j1][i];
c[j1] = d[j][i] - d[j1][i];
}

10

EE382V – System-on-Chip Design – Application Mapping SPS-19 University of Texas at Austin

MPEG-2 iDCT Reference Software (3)
b[0] = c[0] + c[3];
b[1] = c[1] + c[2];
b[2] = c[1] - c[2];
b[3] = c[0] - c[3];
b[4] = c[4];
b[5] = (c[6] - c[5]) * f0;
b[6] = (c[6] + c[5]) * f0;
b[7] = c[7];

d[0][i] = (b[0] + b[1]) * f4;
d[4][i] = (b[0] - b[1]) * f4;
d[2][i] = b[2] * f6 + b[3] * f2;
d[6][i] = b[3] * f6 - b[2] * f2;

c[4] = b[4] + b[5];
c[7] = b[7] + b[6];
c[5] = b[4] - b[5];
c[6] = b[7] - b[6];
d[1][i] = c[4] * f7 + c[7] * f1;
d[5][i] = c[5] * f3 + c[6] * f5;
d[7][i] = c[7] * f7 - c[4] * f1;
d[3][i] = c[6] * f3 - c[5] * f5;

}

EE382V – System-on-Chip Design – Application Mapping SPS-20 University of Texas at Austin

MPEG-2 iDCT Reference Software (4)
// Do rounding instead of just truncating.
// Decided in 38.MPEG-meeting in Sevilla
// Note: rounding is for accurate reference
// If for speed encoding, you may go without this.
// There is no discernible effect in image quality.
for (i=0;i<8;i++){

for (j=0;j<8;j++){
if(d[i][j] >=0) {

coeff[i][j] = (short int)(d[i][j] +
0.499999999999);

}
else {

coeff[i][j] = (short int)(d[i][j] –
0.499999999999);

}

// clipping range
if(coeff[i][j] < -2048) coeff[i][j] = -2048;
if(coeff[i][j] > 2047) coeff[i][j] = 2047;

}
}

}

11

EE382V – System-on-Chip Design – Application Mapping SPS-21 University of Texas at Austin

Observations on the Reference Code

• Floating point is expensive in hardware

• Highly sequential computation as structured

• Two-dimensional control loop doesn’t take
advantage of observation that the vertical and
horizontal operation sequences are identical

• Opportunity to re-use hardware and/or software
for both directions

• Final rounding operation and clipping pass over data
is time-consuming

• Rounding and clipping pass highly sequential in
general-purpose hardware

EE382V – System-on-Chip Design – Application Mapping SPS-22 University of Texas at Austin

Conversion of Floating Point Arithmetic
Operations to Integer Arithmetic

• Determine dynamic range of floating point calculations,
including all intermediate values
• Analytical approach superior when possible

• Random and directed test vectors with range accumulation
on each variable where direct analysis is not practical

• If range is too large
• Consider pre-scaling data to narrower range.

• Must determine if error introduced is acceptable

• Re-scale the results at end of computation

• Restructure/reorder arithmetic operations to reduce dynamic
range for intermediate calculations.

12

EE382V – System-on-Chip Design – Application Mapping SPS-23 University of Texas at Austin

Modifying the iDCT Code for Hardware

• Integer-only computation needed

• Mapping the reference code directly into an integer
representation

• Dynamic range of data within 32-bit integer
capacity

• Only barely

• Can the algorithm be modified to reduce the
dynamic range required?

• Can 16-bit intermediate values suffice?

• What loss of accuracy will occur?

EE382V – System-on-Chip Design – Application Mapping SPS-24 University of Texas at Austin

MPEG-2 Integer iDCT Software
#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */
#define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) */

/* row (horizontal) IDCT
* 7 pi 1
* dst[k] = sum c[l] * src[l] * cos(-- * (k + -) * l)
* l=0 8 2
* where: c[0] = 128
* c[1..7] = 128*sqrt(2)
*/

static void idctrow(short *blk)
{
int x0, x1, x2, x3, x4, x5, x6, x7, x8;

if (!((x1 = blk[4]<<11) | (x2 = blk[6]) | (x3 = blk[2]) |
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))

{
blk[0]=blk[1]=blk[2]=blk[3]=blk[4]=blk[5]=blk[6]=blk[7]=blk[0]<<3;
return;

}

13

EE382V – System-on-Chip Design – Application Mapping SPS-25 University of Texas at Austin

x0 = (blk[0]<<11) + 128; /* for proper rounding in the fourth stage */

/* first stage */
x8 = W7*(x4+x5);
x4 = x8 + (W1-W7)*x4;
x5 = x8 - (W1+W7)*x5;
x8 = W3*(x6+x7);
x6 = x8 - (W3-W5)*x6;
x7 = x8 - (W3+W5)*x7;

/* second stage */
x8 = x0 + x1;
x0 -= x1;
x1 = W6*(x3+x2);
x2 = x1 - (W2+W6)*x2;
x3 = x1 + (W2-W6)*x3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;

MPEG-2 Integer iDCT Software (2)

EE382V – System-on-Chip Design – Application Mapping SPS-26 University of Texas at Austin

/* third stage */
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181*(x4-x5)+128)>>8;

/* fourth stage */
blk[0] = (x7+x1)>>8;
blk[1] = (x3+x2)>>8;
blk[2] = (x0+x4)>>8;
blk[3] = (x8+x6)>>8;
blk[4] = (x8-x6)>>8;
blk[5] = (x0-x4)>>8;
blk[6] = (x3-x2)>>8;
blk[7] = (x7-x1)>>8;

}

MPEG-2 Integer iDCT Software (3)

14

EE382V – System-on-Chip Design – Application Mapping SPS-27 University of Texas at Austin

/* column (vertical) IDCT
* 7 pi 1
* dst[8*k] = sum c[l] * src[8*l] * cos(-- * (k + -) * l)
* l=0 8 2
*
* where: c[0] = 1/1024
* c[1..7] = (1/1024)*sqrt(2)
*/

static void idctcol(short *blk)
{
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
/* shortcut */
if (!((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]) | (x3 = blk[8*2]) |

(x4 = blk[8*1]) | (x5 = blk[8*7]) | (x6 = blk[8*5]) |
(x7 = blk[8*3])))

{
blk[8*0]=blk[8*1]=blk[8*2]=blk[8*3]=

blk[8*4]=blk[8*5]=blk[8*6]=blk[8*7]=
gVideoData->iclp[(blk[8*0]+32)>>6];

return;
}

x0 = (blk[8*0]<<8) + 8192;

MPEG-2 Integer iDCT Software (4)

EE382V – System-on-Chip Design – Application Mapping SPS-28 University of Texas at Austin

/* first stage */
x8 = W7*(x4+x5) + 4;
x4 = (x8+(W1-W7)*x4)>>3;
x5 = (x8-(W1+W7)*x5)>>3;
x8 = W3*(x6+x7) + 4;
x6 = (x8-(W3-W5)*x6)>>3;
x7 = (x8-(W3+W5)*x7)>>3;

/* second stage */
x8 = x0 + x1;
x0 -= x1;
x1 = W6*(x3+x2) + 4;
x2 = (x1-(W2+W6)*x2)>>3;
x3 = (x1+(W2-W6)*x3)>>3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;

MPEG-2 Integer iDCT Software (5)

15

EE382V – System-on-Chip Design – Application Mapping SPS-29 University of Texas at Austin

/* third stage */
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181*(x4+x5)+128)>>8;
x4 = (181*(x4-x5)+128)>>8;

/* fourth stage */
blk[8*0] = gVideoData->iclp[(x7+x1)>>14];
blk[8*1] = gVideoData->iclp[(x3+x2)>>14];
blk[8*2] = gVideoData->iclp[(x0+x4)>>14];
blk[8*3] = gVideoData->iclp[(x8+x6)>>14];
blk[8*4] = gVideoData->iclp[(x8-x6)>>14];
blk[8*5] = gVideoData->iclp[(x0-x4)>>14];
blk[8*6] = gVideoData->iclp[(x3-x2)>>14];
blk[8*7] = gVideoData->iclp[(x7-x1)>>14];

}

MPEG-2 Integer iDCT Software (6)

EE382V – System-on-Chip Design – Application Mapping SPS-30 University of Texas at Austin

/* two dimensional inverse discrete cosine transform */
void Fast_IDCT(short **inblock, short** outblock)
{
short *block = *inblock;

int i;

for (i=0; i<8; i++)
idctrow(block+8*i);

for (i=0; i<8; i++)
idctcol(block+i);

}

MPEG-2 Integer iDCT Software (7)

16

EE382V – System-on-Chip Design – Application Mapping SPS-31 University of Texas at Austin

Comments on the Integer iDCT Variant

• Only slight loss of accuracy (>40 dB pSNR for iDCT)

• Anything > ~30 dB pSNR is usually deemed okay
for video

• Use of 16-bit integers allows efficient mapping to
MMX instructions for faster execution on a general-
purpose machine.

• Shifts are efficiently implemented in hardware.

• Opportunity for early cut-off in software

• Note similarity of horizontal and vertical processing

EE382V – System-on-Chip Design – Application Mapping SPS-32 University of Texas at Austin

Options for Accelerating the iDCT

• Simplest: use existing MMX instructions on PC

• Highest performance: map into 256-input, 256-
output maximally parallel logic

• Fast, but very large

• No flexibility

Maximally
Parallel

0

255

0

255

… …

17

EE382V – System-on-Chip Design – Application Mapping SPS-33 University of Texas at Austin

Options for Accelerating the iDCT

• High performance: translate the simple C to Verilog,
synthesize one-dimensional vector iDCT, replicate
the module 8 times for each dimension

• Simpler than maximally parallel concept

• Still no flexibility

0
0 …
7

1
0

7

7
0

7

…

0
0 …
7

1
0

7

7
0

7

…

Row Col

EE382V – System-on-Chip Design – Application Mapping SPS-34 University of Texas at Austin

Options for Accelerating the iDCT

• High performance but smaller: reuse one-
dimensional slices for row and column

• “Transpose memory” serves as buffer

• Still no flexibility

0
0 …
7

1
0

7

7
0

7

…TM

18

EE382V – System-on-Chip Design – Application Mapping SPS-35 University of Texas at Austin

Options for Accelerating the iDCT

• High performance with increased flexibility:
microcode engine with SIMD

• “Transpose memory” serves as buffer

• Works on 8x8 (or smaller) blocks for iDCT, DCT,
forward and inverse integer transform (H.264)

TM

ALU

…
ALU

ALU

Reg
File

Ctrl uCode
Store

EE382V – System-on-Chip Design – Application Mapping SPS-36 University of Texas at Austin

Integer iDCT for Microcode Engine
static void idct_x2(int i0, int i1, int i2, int i3, /* input values */

int i4, int i5, int i6, int i7,
int j0, int j1, int j2, int j3,
int j4, int j5, int j6, int j7,
char isRow, /* non-zero if row */
int * o0, int * o1, int * o2, int * o3, /* outputs */
int * o4, int * o5, int * o6, int * o7,
int * p0, int * p1, int * p2, int * p3,
int * p4, int * p5, int * p6, int * p7)

{
int r0, r1, r2, r3, r4, r5, r6, r7 ;
/* 1 */
r0 = i1 * C7 ;
/* 2 */
r1 = i7 * C1 ;
/* 3 */
r2 = i5 * C3 ;
/* 4 */
r3 = i3 * C5 ;
r0 = (r0 - r1) >> (isRow ? 0 : 8) ; /* e */
/* 5 */
r1 = i7 * C7 ;

19

EE382V – System-on-Chip Design – Application Mapping SPS-37 University of Texas at Austin

/* 6 */
r3 = i1 * C1 ;
r2 = (r2 - r3) >> (isRow ? 0 : 8) ; /* f */
/* 7 */
r7 = i3 * C3 ;
/* 8 */
r3 = i5 * C5 ;
r1 = (r1 + r3) >> (isRow ? 0 : 8) ; /* h */
/* 9 */
r4 = i6 * C6 ;
r0 = r0 + r2 ; /* b[4] */
r2 = (r0 - r2) >> 3 ; /* b1[5] */
/* 10 */
r5 = i2 * C2 ;
r3 = (r7 + r3) >> (isRow ? 0 : 8) ; /* g */
/* 11 */
r7 = i6 * C2 ;
r1 = (r1 - r3) >> 3 ; /* b1[6] */
r3 = r1 + r3 ; /* b[7] */
/* 12 */
r6 = i2 * C6 ;
r4 = (r4 + r5) >> (isRow ? 0 : 8) ; /* b1[3] */
r1 = r1 - r2 ;

Integer iDCT for Microcode Engine (2)

EE382V – System-on-Chip Design – Application Mapping SPS-38 University of Texas at Austin

Integer iDCT for Microcode Engine (3)
/* 13 */
r6 = (r6 - r7) >> (isRow ? 0 : 8) ; /* b1[2] */
r7 = i0 + i4 ;
/* 14 */
r7 = (r7 * C4) >> (isRow ? 0 : 8) ; /* b1[0] */
r2 = r1 + r2 ;
r5 = i0 - i4 ;
/* 15 */
r5 = (r5 * C4) >> (isRow ? 0 : 8) ; /* b1[1] */
r7 = r7 + r4 ; /* b[0] */
r4 = r7 - r4 ; /* b[3] */
/* 16 */
r1 = (r1 * C0) >> 8 ; /* b[5] */
r5 = r5 + r6 ; /* b[1] */
r6 = r5 - r6 ; /* b[2] */
/* 17 */
r2 = (r2 * C0) >> 8 ; /* b[6] */

20

EE382V – System-on-Chip Design – Application Mapping SPS-39 University of Texas at Austin

Integer iDCT for Microcode Engine (4)
/* 18 */
r0 = j1 * C7 ;
a0 = (r4 + r0) ;
o3 = (int) (a0 + (isRow ? 0 : / d[3] */

((a0 > 0) ? 1023 : 1024))) >> (isRow ? 3 : 11);
if (!isRow)
{

if (*o3 > 255)
*o3 = 255 ;

else if (*o3 < -255)
*o3 = -255 ;

}
a1 = (r4 - r0) ;
o4 = (int) (a1 + (isRow ? 0 : / d[4] */

((a1 > 0) ? 1023 : 1024))) >> (isRow ? 3 : 11);
if (!isRow)
{

if (*o4 > 255)
*o4 = 255 ;

else if (*o4 < -255)
*o4 = -255 ;

}

…

EE382V – System-on-Chip Design – Application Mapping SPS-40 University of Texas at Austin

Mapping the Hardware Functions
to SystemC Models

• HAL separates application software from SystemC
“collars” (application-layer HAL) on functions to be
implemented in hardware

• Initially, SystemC model is nothing more than
functional HLL code with ports.

• Follow-on with successive refinements to model
reflecting hardware structural decomposition.

• Useful for simulation-based debugging of microcode
engines

• Alternatively, refine model to synthesizable form

• All models verified against reference software

21

EE382V – System-on-Chip Design – Application Mapping SPS-41 University of Texas at Austin

SystemC HAL Interface for Integer iDCT

#include "systemc.h“
SC_MODULE(idct) // declare iDCT sc_module
{
sc_in_clk ck ;
sc_in<sc_bv<32>> indata ; // input signal ports
sc_in<sc_bv<8>> addr ;
sc_in<sc_bit> wr, sel, go ;
sc_out<sc_bv<32>> outdata ;

unsigned int tm[BLSIZE][BLSIZE] ; // transpose memory

// Interface to the bus
if (sel)
{

if (wr)
{
tm[addr>>4][addr&0xF] = indata ;

}
else if (!go)
{
outdata = tm[addr>>4][addr&0xF] ;

}

EE382V – System-on-Chip Design – Application Mapping SPS-42 University of Texas at Austin

SystemC HAL Interface for Integer iDCT (2)
else
{
int i ;
for (i=0; i < 8 ; i++)
{

// Call behavioral function for rows
idct_x2(tm[i][0], tm[i][1], tm[i][2], tm[i][3],

tm[i][4], tm[i][5], tm[i][6], tm[i][7],
1,
&tm[0][i], &tm[1][i], &tm[2][i], &tm[3][i],
&tm[4][i], &tm[5][i], &tm[6][i], &tm[7][i]) ;

}

for (i=0; i < 8 ; i++)
{

// Call behavioral function for columns
idct_x2(tm[0][i], tm[1][i], tm[2][i], tm[3][i],

tm[4][i], tm[5][i], tm[6][i], tm[7][i],
0,
&tm[i][0], &tm[i][1], &tm[i][2], &tm[i][3],
&tm[i][4], &tm[i][5], &tm[i][6], &tm[i][7]) ;

}
}

}

22

EE382V – System-on-Chip Design – Application Mapping SPS-43 University of Texas at Austin

Things to Consider

• Application profiling with SystemC models presents
a challenge.

• “Back out” profile data and overhead for
hardware models

• Determine cycle counts of the hardware models

• Build spreadsheet to compute adjusted profile
results with clock cycle as parameter

• An instrumented HAL can be useful in assessing
system performance.

• Track bus activity, memory reference patterns,
bandwidth requirements.

EE382V – System-on-Chip Design – Application Mapping SPS-44 University of Texas at Austin

Conclusions
• For target applications based on reference software,

or for any project that begins with “gold” application
software, SystemC can provide a smooth path from
software to embedded system.

• Select candidate models based on profile data or
by known performance requirements (e.g., frame
rates for video decode)

• Convert floating point operations to integer to
reduce HW complexity and processing time

• Consider interface issues
• Polling or interrupt for control events

• DMA or processor-directed transfers

23

EE382V – System-on-Chip Design – Application Mapping SPS-45 University of Texas at Austin

Conclusions (continued)
• Map functions to hardware by first “collaring” them

with port interfaces around the pure behavior.

• Increase detail and accuracy of SystemC model as
design progresses.

• Use reference application as test bench throughout.

• Use HAL to hide hardware detail from application
and to instrument the model.

• Maintain a working model that matches the gold model
throughout the entire design.

