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Overview

• Motivation: Why have ESL languages?

• Transaction-Level Modeling

• Levels of abstraction in modeling

• Basic requirements of ESL languages

• ESL languages and environments: trade-offs

• An overview of a sampling of ESL languages

• What’s missing from current ESL languages?

• Conclusions
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Motivation
• Why use transaction-level modeling  and ESL languages?

• Manage growing system complexity

• Move to higher levels of abstraction

• Enable HW/SW co-design

• Speed-up simulation

• Support system-level design and verification

 Increase designer productivity

 Reduce development costs and risk

 Accelerate time-to-market & time-to-money
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Transaction-Level Modeling
• Communication among modules occurs at the

functional level.
• Each transaction is a coherent unit of interaction 
• Data structures and object references are passed  

instead of bit vectors
• Goals of TLM

• Higher level of abstraction
• More comprehensible high-level system models
• Greater simulation speeds

• Advantages of TLM
• Natural way to think about high-level communications 
• Object Independence
• Abstraction Independence
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Transaction-Level Modeling
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Elements of Transaction-Level Modeling
• Transaction-Level Modeling = 

< {objects}, {compositions} >

• Object = {computation object} | {communications object}

• Composition
• Computation objects send and receive abstract data via 

communications objects.

• Advantages of TLM
• Object Independence

• Abstraction Independence

* Definition from Gajski and Cai, UC Irvine
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A. "Specification model"
     "Untimed functioal models"

B. "Component-assembly model"
     "Architecture model"
     "Timed functonal model"

C. "Bus-arbitration model"
     "Transaction model"

D. "Bus-functional model"
     "Communicatin model"
     "Behavior level model"

E. "Cycle-accurate computation
model"

F. "Implementation model"
     "Register transfer model"
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Levels of Abstraction

• Consider models as a function of their time-granularity

* Figure and taxonomy by Gajski and Cai, UC Irvine

A. Specification Model

“‘Untimed’ Functional Models”

B. Component-Assembly Model

“Architecture Model”

“’Timed’ Functional Model”

C. Bus-Arbitration Model

“Transaction Model”

D. Bus-Functional Model

“Communication Model”

“Behavior-Level Model”

E. Cycle-Accurate Computation Model

F. Implementation Model

“Register-Transfer Level (RTL) Model”
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Specification Model

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Component-Assembly Model

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Bus-Arbitration Model

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Bus-Functional Model

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Cycle-Accurate Computation Model

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Implementation Model

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Characteristics of the Different Models

* Figure and taxonomy by Gajski and Cai, UC Irvine
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Transaction-Level Formalisms
• Rigorous definition of elements and operators in a 

transaction-level model

• Precision in modelling aids comprehension of designs

• But only if the notation is easily understood by 
designers

• Key goal is to enable synthesis from ESL level

• There is a fundamental tension between 
representations that are easily understood 
by designers and those that are easily 
“understood” by tools.

• More work in early stages of design
* From Gajski and Cai, UC Irvine
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Model Algebra
• Algebra = < {objects}, {operations} > [ex: a * (b + c)]

• Model = < {objects}, {compositions} >

• Transformation t(model) is a change in objects or 
compositions.

• Refinement of a model is an ordered set of 
transformations, < tm, … , t2, t1 >, such that:

model B = tm( … ( t2( t1( model A ) ) ) … )

• Model algebra = < {models}, {refinements} >

• Methodology is a sequence of models and 
corresponding refinements

* From Gajski and Cai, UC Irvine
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Model Definition
• Model = < {objects}, {composition rules} >
• Objects

• Behaviors (representing tasks | computation | functions)
• Channels (representing communication between behaviors)

• Composition rules
• Sequential, parallel, pipelined, FSM
• Behavior composition creates hierarchy.
• Behavior composition creates execution order.
• Rules define the relationships between behaviors in the context 

of the formalism.

• Relationships between behaviors and channels
• Data transfer in channels
• Interface between behaviors and channels

* From Gajski and Cai, UC Irvine
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Model Transformations 
(Rearrange and Replace)

• Rearrange object composition
• Distribute computation over components.

• Replace objects
• Import library components
• Develop more detailed behaviors

• Add or remove synchronization
• Parallel -> sequential
• Sequential -> parallel

• Decompose abstract data structures
• Map data transactions to a specific 

bus structure

• …
* From Gajski and Cai, UC Irvine

a*(b+c) = a*b + a*c

Distributivity of multiplication 
over addition

B2 B3

B1 B1

B2
B3=

Distribution of behaviors (tasks)
over components

analogous to……

PE1 PE2
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Model Refinement
• Definition

• A refinement of a model is an ordered set of 
transformations, < tm, … , t2, t1 >, such that:

model B = tm( … ( t2( t1( model A ) ) ) … )
• Derives a more detailed model from one more abstract

• Specific sequence of steps for each model refinement
• Not all sequences are relevant

• Equivalence verification
• Each transformation maintains functional equivalence
• The refinement is thus “correct by construction.”
• Not always (typically?) possible

• Refinement-based system-level methodology
• Methodology is a sequence of models and refinements

* From Gajski and Cai, UC Irvine
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Verification by Equivalent Transformations
Transformations can be made to preserve equivalence

• Same partial order of tasks
• Same inputs and outputs for each 

task (unknown value handling aside)
• Same partial order of data transactions
• Same (or covered) functionality in the 

replacements

• Refined models “equivalent” to 
the input model
• Still need to verify first model using traditional 

(i.e., simulation) techniques
• Still need to verify equivalence of replacements
• In practice, this is not always possible.

* From Gajski and Cai, UC Irvine

Refinement
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Designer
Decisions

Library of
objects
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Synthesis
• Set of models
• Set of design tasks

• Profile
• Design-space exploration
• Select components / connections
• Map behaviors / channels
• Schedule behaviors/channels
• …

• Each design decision results in a model transformation.
• Detailing is a sequence of design decisions.
• Refinement is a sequence of transformations
• Synthesis is detailing and refinement.
• The challenge, of course, is to define the “right”

sequence of design decisions and transformations.
* From Gajski and Cai, UC Irvine
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* From Gajski and Cai, UC Irvine
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* From Gajski and Cai, UC Irvine

Transaction-Level Modeling Conclusions
• In TLM, computation and communication objects are 

connected through abstract data types.
• TLM enables modeling each component independently at 

differing levels of abstraction.
• A major challenge is to define, obtain, or develop the 

necessary and sufficient set of models for the design flow.
• Another major challenge is to define the model algebra 

and its corresponding methodology to make the design 
flow as efficient as possible (e.g., synthesis).

• In practice, assembling the system model is no small feat 
either, especially when models come from different 
sources (e.g., third-party IP, embedded processor vendor, 
etc.).

• The potential payoff is truly enormous.
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Basic Requirements of ESL Languages
• Support for Transaction-Level Modeling

• Objects can be modeled independently.
• Objects can be modeled at different levels of 

abstraction.

• Object Independence
• Black-box objects
• Third-party objects (IP)

• Abstraction Independence
• Assists in verification of the sequence of refinements
• Flexibility in development methodologies.

• Support all models of computation
• Enable high-speed simulation
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ESL Language and Environment 
Design Trade-Offs

• Object-oriented?
• A natural way to think of system behavior

• Easy to build component and data abstractions

• General-purpose language extensions? 
• Easier to support third-party tool, test-bench and model 

interfaces, although doing so may require significant 
expertise and effort

• Generally more open and flexible

• Precise representation of software modules?
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More ESL Language and Environment 
Design Trade-Offs

• “Platform-based” environment?
• System-level model “stitching” may be greatly simplified 

through the use of a single model library…
• …until that library doesn’t have what you need, and you are 

forced to import or develop models or tools.
• Well defined third-party tool and model interfaces? 

• Resorting to “pure” C or C++ features is often an unsatisfying 
and complex recourse when problems are encountered.

- System model assembly quickly becomes an extremely
challenging task.

• Black-box models often embody their own simulation 
semantics
• May require a “simulator of simulators.”
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ESL Languages: SpecC
• Extension of ANSI-C

• Every C program is a SpecC progam

• SpecC type extensions for HW (minimal by design):

- Boolean

- Bit vectors

- Events

• Basic structure consists of behaviors, channels, 
interfaces, variables, and ports

• Focus on automated transformations and synthesis

- Arguably somewhat “hardware-centric”

• Not widely adopted by industry or EDA community
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ESL Languages: System Verilog

• Standards-based successor to Superlog, a language 
combining Verilog and C previously developed by 
Co-Design Automation (now part of Synopsys)
• Extends Verilog 2001 (IEEE-1364-2001) with complete 

interface to C

• Verilog inside “comfort zone” of today’s hardware 
designers (where SystemC clearly is not)

• Bluespec has released an ESL Synthesis tool based on 
“Bluespec System Verilog.”

• Higher than RTL

• But still obviously (and intentionally) close to the 
hardware structure and not purely its behavior
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ESL Languages: SystemC

• Class library extension to C++

• Recently extended to support verification-specific 
constructs

• C++ can be intimidating to HW designers trained in 
Verilog or VHDL

• Software developers find it easier to integrate their 
programs and tools than with other ESL languages.

• Open standard effort through the Open SystemC 
Initiative (OSCI)

• Synthesis tools emerging in the marketplace
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SystemC Advantages

• SystemC is well-matched to the development of 
application-specific SoC’s that start from a working 
base of application software.

• Media processors typify this class of SoC.

• Develop from the application code down to the 
hardware.

- Comparatively simple (depending on code 
structure) to partition and map software 
modules to hardware elements during design-
space exploration

- Verification at each step of the refinement 
process uses the original (typically regression) 
test-bench.
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AADL:  Architecture Analysis and 
Design Language

• Adopted as standard by SAE 
• Originally developed specifically for mission-critical avionics

• Part of RTCA* DO-254 and DO-178B standards for mission-
critical hardware and software, respectively

• Supports rigorous definition of both software and 
hardware models and their interfaces
• Enables automated generation of software builds

• Notation limited to module interfaces

• Distinguished from hardware-centric ESLs

• Software modules not merely an afterthought 

* Radio Technical Commission 
for Aeronautics
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Today’s ESL Languages: 
What’s Missing?

(A Few Brief Editorial Comments)

• In practice, an electronic systems-level design 
effort encompasses, minimally:
• Hardware elements, including general-purpose 

processors, other third-party IP, custom processors, 
hardware accelerators, memories, analog interfaces, 
etc.

• Software elements, including microcode, hardware 
abstraction layer (HAL) interface code, operating 
systems (typically an RTOS), application code, etc.

• Hardware test benches and related tools, scripts, etc.

• Software test benches and related tools, scripts, etc.
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Today’s ESL Languages: 
What’s Missing?

• Elements of practical ESL design efforts, continued:
• Debugging tools for HW and SW
• Compilers, assemblers, linkers, etc.
• Sensors of various types, and models for them

• Current ESL languages tend to give short shrift to 
everything but the hardware elements.
• Third-party hardware IP issues are often overlooked as 

well
• “Growing up the abstraction ladder from RTL”

• Total development effort and cost for software often 
substantially exceeds that required for hardware.
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Today’s ESL Languages: 
What’s Missing?

• In effect, current ESL language development has been 
driven simply by the laudable but narrow goal of 
improving the productivity of hardware designers.
• The inescapable conflict between Moore’s Law and Brook’s 

Law (The Mythical Man-Month)

• Improved hardware design productivity is an important 
goal, to be sure, but…

• … targeting a reduction in the overall system development 
cost, time, risk, etc., is ultimately the only meaningful goal.

- At the end of the day, SoC’s are still, unavoidably, a business 
venture, and success depends upon all elements of the 
development process (among a great many factors).
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Today’s ESL Languages: 
What’s Missing?

• In practice, constructing and maintaining system 
models can take many months of effort.
• The presence of heterogeneous multiprocessor SoC’s, 

often with their own software development tools and 
debuggers, further exacerbates the problem.

- Coordinating the execution of all the tools and models is 
non-trivial, to put it mildly.

- For example, how do you get two different debuggers to 
cooperate during multiprocessor debugging?

• Third-party IP models may encapsulate their own 
simulation semantics.

- Thereby requiring a simulator to coordinate the 
simulators…

- Merging cycle-based models with event-driven, etc.
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Conclusions
• Transaction-Level Modeling is key to exploiting ESL 

languages and design methodologies.
• Electronic System-Level languages enable the use of 

higher levels of abstraction in hardware modeling.
• Improved hardware design productivity 
• HW/SW co-design
• Transformation and refinement of models through synthesis 

is emerging.

• Developing operational ESL models of systems 
remains a very challenging task.
• We’re now only looking at the tip of the iceberg.

• ESL design methodologies must address the entire 
design flow, not just the hardware.


