
1

EE382 – System-on-Chip Design - ESL Languages SPS-1 University of Texas at Austin

Transaction-Level Modeling and
Electronic System-Level Languages

Steven P. Smith

SoC Design
EE382V
Fall 2009

EE382 – System-on-Chip Design - ESL Languages SPS-2 University of Texas at Austin

Overview

• Motivation: Why have ESL languages?

• Transaction-Level Modeling

• Levels of abstraction in modeling

• Basic requirements of ESL languages

• ESL languages and environments: trade-offs

• An overview of a sampling of ESL languages

• What’s missing from current ESL languages?

• Conclusions

2

EE382 – System-on-Chip Design - ESL Languages SPS-3 University of Texas at Austin

Motivation
• Why use transaction-level modeling and ESL languages?

• Manage growing system complexity

• Move to higher levels of abstraction

• Enable HW/SW co-design

• Speed-up simulation

• Support system-level design and verification

 Increase designer productivity

 Reduce development costs and risk

 Accelerate time-to-market & time-to-money

EE382 – System-on-Chip Design - ESL Languages SPS-4 University of Texas at Austin

Transaction-Level Modeling
• Communication among modules occurs at the

functional level.
• Each transaction is a coherent unit of interaction
• Data structures and object references are passed

instead of bit vectors
• Goals of TLM

• Higher level of abstraction
• More comprehensible high-level system models
• Greater simulation speeds

• Advantages of TLM
• Natural way to think about high-level communications
• Object Independence
• Abstraction Independence

3

EE382 – System-on-Chip Design - ESL Languages SPS-5 University of Texas at Austin

Transaction-Level Modeling

Memory
Management

Unit

System
Memory

request burst read, size = cache line bytes

return cache line

Memory
Management

Unit

System
Memory &

Bus
Controllerdrive address, read request control signals

drive acknowledge of burst read request

drive first data word onto bus

assert bus master request

grant bus

drive last data word onto bus

…

release bus

Transaction-
Level

Example
Sequence

RTL
Example

Sequence

EE382 – System-on-Chip Design - ESL Languages SPS-6 University of Texas at Austin

Elements of Transaction-Level Modeling
• Transaction-Level Modeling =

< {objects}, {compositions} >

• Object = {computation object} | {communications object}

• Composition
• Computation objects send and receive abstract data via

communications objects.

• Advantages of TLM
• Object Independence

• Abstraction Independence

* Definition from Gajski and Cai, UC Irvine

4

EE382 – System-on-Chip Design - ESL Languages SPS-7 University of Texas at Austin

A. "Specification model"
 "Untimed functioal models"

B. "Component-assembly model"
 "Architecture model"
 "Timed functonal model"

C. "Bus-arbitration model"
 "Transaction model"

D. "Bus-functional model"
 "Communicatin model"
 "Behavior level model"

E. "Cycle-accurate computation
model"

F. "Implementation model"
 "Register transfer model"

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

Levels of Abstraction

• Consider models as a function of their time-granularity

* Figure and taxonomy by Gajski and Cai, UC Irvine

A. Specification Model

“‘Untimed’ Functional Models”

B. Component-Assembly Model

“Architecture Model”

“’Timed’ Functional Model”

C. Bus-Arbitration Model

“Transaction Model”

D. Bus-Functional Model

“Communication Model”

“Behavior-Level Model”

E. Cycle-Accurate Computation Model

F. Implementation Model

“Register-Transfer Level (RTL) Model”

EE382 – System-on-Chip Design - ESL Languages SPS-8 University of Texas at Austin

Specification Model

* Figure and taxonomy by Gajski and Cai, UC Irvine

Objects:

Computation:

Behaviors

Communication:

Variables

Composition:

Hierarchy

Execution Order

Sequential

Parallel

Pipelined

States

Synchronization:

Notify/Wait

v2 = v1 + b*b; v3= v1- b*b;

v1

v1 = a*a;

v2

v4 = v2 + v3;
c = sequ(v4);

B1

B2

v3

B3

B4

B2B3

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

5

EE382 – System-on-Chip Design - ESL Languages SPS-9 University of Texas at Austin

Component-Assembly Model

* Figure and taxonomy by Gajski and Cai, UC Irvine

Objects:

Computation:

Processors

Memories

IP

Communications:

Variable Channels

Composition:

Hierarchy

Execution Order

Sequential

Parallel

Pipelined

States

Synchronization:

Notify/Wait

v3

v3= v1- b*b;

B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

cv2

c
v

12

cv11

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

EE382 – System-on-Chip Design - ESL Languages SPS-10 University of Texas at Austin

Bus-Arbitration Model

* Figure and taxonomy by Gajski and Cai, UC Irvine

Objects:

Computation:

Processors

Memories

IP, arbiters

Communications:

Abstract Bus Channels

Composition:

Hierarchy

Execution Order

Sequential

Parallel

Pipelined

States

Synchronization:

Notify/Wait

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

v3

v3= v1- b*b;

B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

cv12

cv11

cv2

PE4
(Arbiter)

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

6

EE382 – System-on-Chip Design - ESL Languages SPS-11 University of Texas at Austin

Bus-Functional Model

* Figure and taxonomy by Gajski and Cai, UC Irvine

Objects:

Computation:

Processors

Memories

IP, arbiters

Communications:

Protocol Bus Channels

Composition:

Hierarchy

Execution Order

Sequential

Parallel

Pipelined

States

Synchronization:

Notify/Wait

v2 = v1 + b*b;

B2

PE2

v1 = a*a;

B1

PE1

v3

v3= v1- b*b;

B3

v4 = v2 + v3;
c = sequ(v4);

B4

PE3

PE4
(Arbiter)

3

1 2

1: mast er i nt er f ace
2: sl ave i nt er f ace
3: ar bi t or i nt er f ace

ready

ack

address[15:0]

data[31:0]

IP
ro

to
co

lS
la

v
e

ready

ack

address[15:0]

data[31:0]

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

EE382 – System-on-Chip Design - ESL Languages SPS-12 University of Texas at Austin

Cycle-Accurate Computation Model

* Figure and taxonomy by Gajski and Cai, UC Irvine

Objects:

Computation:

Processors

Memories

IP, arbiters

Wrappers

Communications:

Abstract Bus Channels

Composition:

Hierarchy

Execution Order

Sequential

Parallel

Pipelined

States

Synchronization:

Notify/Wait

PE3

cv12

cv11

cv2

3

1 2

1. Master interface
2. Slave interface
3. Arbiter interface
4. Wrapper

S0

S1

S2

S3

S4

PE4

S0

S1

S2

S3

4

4

PE2

PE1

MOV r1, 10
MUL r1, r1, r1

....

...
MLA r1, r2, r2, r1

....

4

4

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

7

EE382 – System-on-Chip Design - ESL Languages SPS-13 University of Texas at Austin

Implementation Model

* Figure and taxonomy by Gajski and Cai, UC Irvine

Objects:

Computation:

Processors

Memories

IP, arbiters

Wrappers

Communications:

Buses/Wires

Composition:

Hierarchy

Execution Order

Sequential

Parallel

Pipelined

States

Synchronization:

Notify/Wait

PE2PE1

PE3PE4

S0

S1

S2

S3

S4

MOV r1, 10
MUL r1, r1, r1

....

...
MLA r1, r2, r2, r1

....

S0

S1

S2

S3

MCNTR
MADDR
MDATA

interrupt

interrupt

interrupt

req req

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed E

Cycle-
timed

EE382 – System-on-Chip Design - ESL Languages SPS-14 University of Texas at Austin

Characteristics of the Different Models

* Figure and taxonomy by Gajski and Cai, UC Irvine

Models Communication
time

Computation
time

Communication
scheme

PE interface

Specification
model

no no variable (no PE)

Component-
assembly model

no approximate variable channel abstract

Bus-arbitration
model

approximate approximate abstract bus
channel

abstract

Bus-functional
model

time/cycle
accurate

approximate protocol bus
channel

abstract

Cycle-accurate
computation

model

approximate cycle-accurate abstract bus
channel

pin-accurate

Implementation
model

cycle-accurate cycle-accurate bus (wire) pin-accurate

8

EE382 – System-on-Chip Design - ESL Languages SPS-15 University of Texas at Austin

Transaction-Level Formalisms
• Rigorous definition of elements and operators in a

transaction-level model

• Precision in modelling aids comprehension of designs

• But only if the notation is easily understood by
designers

• Key goal is to enable synthesis from ESL level

• There is a fundamental tension between
representations that are easily understood
by designers and those that are easily
“understood” by tools.

• More work in early stages of design
* From Gajski and Cai, UC Irvine

EE382 – System-on-Chip Design - ESL Languages SPS-16 University of Texas at Austin

Model Algebra
• Algebra = < {objects}, {operations} > [ex: a * (b + c)]

• Model = < {objects}, {compositions} >

• Transformation t(model) is a change in objects or
compositions.

• Refinement of a model is an ordered set of
transformations, < tm, … , t2, t1 >, such that:

model B = tm(… (t2(t1(model A))) …)

• Model algebra = < {models}, {refinements} >

• Methodology is a sequence of models and
corresponding refinements

* From Gajski and Cai, UC Irvine

9

EE382 – System-on-Chip Design - ESL Languages SPS-17 University of Texas at Austin

Model Definition
• Model = < {objects}, {composition rules} >
• Objects

• Behaviors (representing tasks | computation | functions)
• Channels (representing communication between behaviors)

• Composition rules
• Sequential, parallel, pipelined, FSM
• Behavior composition creates hierarchy.
• Behavior composition creates execution order.
• Rules define the relationships between behaviors in the context

of the formalism.

• Relationships between behaviors and channels
• Data transfer in channels
• Interface between behaviors and channels

* From Gajski and Cai, UC Irvine

EE382 – System-on-Chip Design - ESL Languages SPS-18 University of Texas at Austin

Model Transformations
(Rearrange and Replace)

• Rearrange object composition
• Distribute computation over components.

• Replace objects
• Import library components
• Develop more detailed behaviors

• Add or remove synchronization
• Parallel -> sequential
• Sequential -> parallel

• Decompose abstract data structures
• Map data transactions to a specific

bus structure

• …
* From Gajski and Cai, UC Irvine

a*(b+c) = a*b + a*c

Distributivity of multiplication
over addition

B2 B3

B1 B1

B2
B3=

Distribution of behaviors (tasks)
over components

analogous to……

PE1 PE2

10

EE382 – System-on-Chip Design - ESL Languages SPS-19 University of Texas at Austin

Model Refinement
• Definition

• A refinement of a model is an ordered set of
transformations, < tm, … , t2, t1 >, such that:

model B = tm(… (t2(t1(model A))) …)
• Derives a more detailed model from one more abstract

• Specific sequence of steps for each model refinement
• Not all sequences are relevant

• Equivalence verification
• Each transformation maintains functional equivalence
• The refinement is thus “correct by construction.”
• Not always (typically?) possible

• Refinement-based system-level methodology
• Methodology is a sequence of models and refinements

* From Gajski and Cai, UC Irvine

EE382 – System-on-Chip Design - ESL Languages SPS-20 University of Texas at Austin

Verification by Equivalent Transformations
Transformations can be made to preserve equivalence

• Same partial order of tasks
• Same inputs and outputs for each

task (unknown value handling aside)
• Same partial order of data transactions
• Same (or covered) functionality in the

replacements

• Refined models “equivalent” to
the input model
• Still need to verify first model using traditional

(i.e., simulation) techniques
• Still need to verify equivalence of replacements
• In practice, this is not always possible.

* From Gajski and Cai, UC Irvine

Refinement
Tool

t1
t2
…
tm

Model A

Model B

Designer
Decisions

Library of
objects

11

EE382 – System-on-Chip Design - ESL Languages SPS-21 University of Texas at Austin

Synthesis
• Set of models
• Set of design tasks

• Profile
• Design-space exploration
• Select components / connections
• Map behaviors / channels
• Schedule behaviors/channels
• …

• Each design decision results in a model transformation.
• Detailing is a sequence of design decisions.
• Refinement is a sequence of transformations
• Synthesis is detailing and refinement.
• The challenge, of course, is to define the “right”

sequence of design decisions and transformations.
* From Gajski and Cai, UC Irvine

EE382 – System-on-Chip Design - ESL Languages SPS-22 University of Texas at Austin

* From Gajski and Cai, UC Irvine

Design Domains

2

Model A

Simulation

Model B

Refinement

Estimation

Synthesis VerificationDesign
decisions

Synthesis
domain

Exploration
domain

Refinement
domain

Modeling
domain

Validation
domain

2
Component at t r i but e

l i br ar y
Est i mat i on

l i br ar y 2I P
l i br ar y

Test

DFT

12

EE382 – System-on-Chip Design - ESL Languages SPS-23 University of Texas at Austin

* From Gajski and Cai, UC Irvine

Transaction-Level Modeling Conclusions
• In TLM, computation and communication objects are

connected through abstract data types.
• TLM enables modeling each component independently at

differing levels of abstraction.
• A major challenge is to define, obtain, or develop the

necessary and sufficient set of models for the design flow.
• Another major challenge is to define the model algebra

and its corresponding methodology to make the design
flow as efficient as possible (e.g., synthesis).

• In practice, assembling the system model is no small feat
either, especially when models come from different
sources (e.g., third-party IP, embedded processor vendor,
etc.).

• The potential payoff is truly enormous.

EE382 – System-on-Chip Design - ESL Languages SPS-24 University of Texas at Austin

Basic Requirements of ESL Languages
• Support for Transaction-Level Modeling

• Objects can be modeled independently.
• Objects can be modeled at different levels of

abstraction.

• Object Independence
• Black-box objects
• Third-party objects (IP)

• Abstraction Independence
• Assists in verification of the sequence of refinements
• Flexibility in development methodologies.

• Support all models of computation
• Enable high-speed simulation

13

EE382 – System-on-Chip Design - ESL Languages SPS-25 University of Texas at Austin

ESL Language and Environment
Design Trade-Offs

• Object-oriented?
• A natural way to think of system behavior

• Easy to build component and data abstractions

• General-purpose language extensions?
• Easier to support third-party tool, test-bench and model

interfaces, although doing so may require significant
expertise and effort

• Generally more open and flexible

• Precise representation of software modules?

EE382 – System-on-Chip Design - ESL Languages SPS-26 University of Texas at Austin

More ESL Language and Environment
Design Trade-Offs

• “Platform-based” environment?
• System-level model “stitching” may be greatly simplified

through the use of a single model library…
• …until that library doesn’t have what you need, and you are

forced to import or develop models or tools.
• Well defined third-party tool and model interfaces?

• Resorting to “pure” C or C++ features is often an unsatisfying
and complex recourse when problems are encountered.

- System model assembly quickly becomes an extremely
challenging task.

• Black-box models often embody their own simulation
semantics
• May require a “simulator of simulators.”

14

EE382 – System-on-Chip Design - ESL Languages SPS-27 University of Texas at Austin

ESL Languages: SpecC
• Extension of ANSI-C

• Every C program is a SpecC progam

• SpecC type extensions for HW (minimal by design):

- Boolean

- Bit vectors

- Events

• Basic structure consists of behaviors, channels,
interfaces, variables, and ports

• Focus on automated transformations and synthesis

- Arguably somewhat “hardware-centric”

• Not widely adopted by industry or EDA community

EE382 – System-on-Chip Design - ESL Languages SPS-28 University of Texas at Austin

ESL Languages: System Verilog

• Standards-based successor to Superlog, a language
combining Verilog and C previously developed by
Co-Design Automation (now part of Synopsys)
• Extends Verilog 2001 (IEEE-1364-2001) with complete

interface to C

• Verilog inside “comfort zone” of today’s hardware
designers (where SystemC clearly is not)

• Bluespec has released an ESL Synthesis tool based on
“Bluespec System Verilog.”

• Higher than RTL

• But still obviously (and intentionally) close to the
hardware structure and not purely its behavior

15

EE382 – System-on-Chip Design - ESL Languages SPS-29 University of Texas at Austin

ESL Languages: SystemC

• Class library extension to C++

• Recently extended to support verification-specific
constructs

• C++ can be intimidating to HW designers trained in
Verilog or VHDL

• Software developers find it easier to integrate their
programs and tools than with other ESL languages.

• Open standard effort through the Open SystemC
Initiative (OSCI)

• Synthesis tools emerging in the marketplace

EE382 – System-on-Chip Design - ESL Languages SPS-30 University of Texas at Austin

SystemC Advantages

• SystemC is well-matched to the development of
application-specific SoC’s that start from a working
base of application software.

• Media processors typify this class of SoC.

• Develop from the application code down to the
hardware.

- Comparatively simple (depending on code
structure) to partition and map software
modules to hardware elements during design-
space exploration

- Verification at each step of the refinement
process uses the original (typically regression)
test-bench.

16

EE382 – System-on-Chip Design - ESL Languages SPS-31 University of Texas at Austin

AADL: Architecture Analysis and
Design Language

• Adopted as standard by SAE
• Originally developed specifically for mission-critical avionics

• Part of RTCA* DO-254 and DO-178B standards for mission-
critical hardware and software, respectively

• Supports rigorous definition of both software and
hardware models and their interfaces
• Enables automated generation of software builds

• Notation limited to module interfaces

• Distinguished from hardware-centric ESLs

• Software modules not merely an afterthought

* Radio Technical Commission
for Aeronautics

EE382 – System-on-Chip Design - ESL Languages SPS-32 University of Texas at Austin

Today’s ESL Languages:
What’s Missing?

(A Few Brief Editorial Comments)

• In practice, an electronic systems-level design
effort encompasses, minimally:
• Hardware elements, including general-purpose

processors, other third-party IP, custom processors,
hardware accelerators, memories, analog interfaces,
etc.

• Software elements, including microcode, hardware
abstraction layer (HAL) interface code, operating
systems (typically an RTOS), application code, etc.

• Hardware test benches and related tools, scripts, etc.

• Software test benches and related tools, scripts, etc.

17

EE382 – System-on-Chip Design - ESL Languages SPS-33 University of Texas at Austin

Today’s ESL Languages:
What’s Missing?

• Elements of practical ESL design efforts, continued:
• Debugging tools for HW and SW
• Compilers, assemblers, linkers, etc.
• Sensors of various types, and models for them

• Current ESL languages tend to give short shrift to
everything but the hardware elements.
• Third-party hardware IP issues are often overlooked as

well
• “Growing up the abstraction ladder from RTL”

• Total development effort and cost for software often
substantially exceeds that required for hardware.

EE382 – System-on-Chip Design - ESL Languages SPS-34 University of Texas at Austin

Today’s ESL Languages:
What’s Missing?

• In effect, current ESL language development has been
driven simply by the laudable but narrow goal of
improving the productivity of hardware designers.
• The inescapable conflict between Moore’s Law and Brook’s

Law (The Mythical Man-Month)

• Improved hardware design productivity is an important
goal, to be sure, but…

• … targeting a reduction in the overall system development
cost, time, risk, etc., is ultimately the only meaningful goal.

- At the end of the day, SoC’s are still, unavoidably, a business
venture, and success depends upon all elements of the
development process (among a great many factors).

18

EE382 – System-on-Chip Design - ESL Languages SPS-35 University of Texas at Austin

Today’s ESL Languages:
What’s Missing?

• In practice, constructing and maintaining system
models can take many months of effort.
• The presence of heterogeneous multiprocessor SoC’s,

often with their own software development tools and
debuggers, further exacerbates the problem.

- Coordinating the execution of all the tools and models is
non-trivial, to put it mildly.

- For example, how do you get two different debuggers to
cooperate during multiprocessor debugging?

• Third-party IP models may encapsulate their own
simulation semantics.

- Thereby requiring a simulator to coordinate the
simulators…

- Merging cycle-based models with event-driven, etc.

EE382 – System-on-Chip Design - ESL Languages SPS-36 University of Texas at Austin

Conclusions
• Transaction-Level Modeling is key to exploiting ESL

languages and design methodologies.
• Electronic System-Level languages enable the use of

higher levels of abstraction in hardware modeling.
• Improved hardware design productivity
• HW/SW co-design
• Transformation and refinement of models through synthesis

is emerging.

• Developing operational ESL models of systems
remains a very challenging task.
• We’re now only looking at the tip of the iceberg.

• ESL design methodologies must address the entire
design flow, not just the hardware.

