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Product Design and Methodology Flow ChartProduct Design and Methodology Flow Chart
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Design Convergence Iteration ProfileDesign Convergence Iteration Profile

Front End DesignFront End Design ImplementationImplementation

Rapid Exploration Rapid Traversal

# 
O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

# 
O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

Design ConvergesDesign Converges

Reduced convergence time due to minimal data Reduced convergence time due to minimal data 

Convergence time increases due to more design data Convergence time increases due to more design data 

Reduced convergence time due to reduced solution spaceReduced convergence time due to reduced solution space

Convergence time increases due to transition phase   Convergence time increases due to transition phase   

Reduced convergence time due to reduced solution spaceReduced convergence time due to reduced solution space
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Algorithmic DesignAlgorithmic Design

System/Marketing
Requirements

System/Marketing
Requirements

Architectural DesignArchitectural Design

System Bring-up
Prototyping

System Bring-up
Prototyping

Final AssemblyFinal Assembly

HW Design

CaptureCapture

VerificationVerification

ImplementationImplementation

SW Design
CaptureCapture

VerificationVerification

• RTL language centric
• Dysfunctional levels of abstraction
• SW Design Cycle often serial to HW 

Design Cycle
– Lack of unified hardware-

software representation
• Missing executable platform 

models early in cycle
• SW/HW integration is tough
• Simulation speed is critical
• Partitions are defined a priori

– Hard to find incompatibilities 
across HW-SW boundary

• Lack of well-defined design flow
– Time-to-market problems
– Specification revision becomes 

difficult

Courtesy: Coware, Inc. 2005

Issues with HW Centric System Design FlowsIssues with HW Centric System Design Flows
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The ESL Solution: One Reference ModelThe ESL Solution: One Reference Model

One Reference
Model

Algorithm &
Architecture 
Exploration

HW Development
& Verification

SW Development
& Verification

Courtesy: Coware, Inc. 2005
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SOC Design EnvironmentSOC Design Environment
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Cost Models

Copyright  1995-1999 SCRA   Used with Permission
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System Level DesignSystem Level Design

Managing 
Complexity

OrthogonalizingOrthogonalizing
concernsconcerns
acrossacross

multiple levelsmultiple levels
of of 

abstractionabstraction

Behavior 
Vs. 

Architecture

Computation 
Vs. 

Communication
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Complexity ForcesComplexity Forces

Technology churn

Performance Throughput

Capacity

Availability

Fail safe

Fault tolerance

Functionality

Cost Compatibility

Robustness

“The challenge over the next 20 years will not be speed or cost or 
performance; it will be a question of complexity.”
Bill Raduchel, Chief Strategy Officer, Sun Microsystems
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Complexity ModelsComplexity Models

• In general reliability is inversely related to complexity

• Measures of software complexity

– Lines of Code

– McCabe

– Halstead

– Function Points

• Measure of hardware complexity

– Number of transistors

– Number of I/O signals

– Silicon process

Count branches,
calls, inputs,
outputs etc.
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Flow To Implementation

Behavior vs. ArchitectureBehavior vs. Architecture

System
Behavior

System
Architecture

Mapping

Refinement

Behavior
Verification

Behavior on the
Architecture

Models of 
Computation

Performance models: 
Emb. SW,  Comm. and 

Comp. resources

HW/SW Partitioning,
Scheduling & Estimation

Synthesis
& Coding

Performance 
Analysis

and Simulation

UCB EECS-249 Class Notes

Model Checking
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Communication vs. ComputationCommunication vs. Computation

• Separation provides flexibility in modeling and increases IP 
Reuse

ComputationComputationCommunicationCommunication

Bus Model Device Model

Behavior can be described 
algorithmically, without the burden of 
the handshaking and control logic 
associated with bus communication.

Communication can be described in a 
wide range of fashions, from high-level 
messages, to detailed signal level 
handshakes without impacting the 
behavior description.

c = a * b;
get a;
get b;
send c;

Must be synchronized

Courtesy: Coware, Inc. 2005
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Not ModeledNot Modeled
--Point to pointPoint to point

--MemoryMemory--mappedmapped

Multiple Abstraction LevelsMultiple Abstraction Levels

Functional ValidationFunctional Validation

System Partitioning and 
Assembly

-Exploration and analysis

System Partitioning and System Partitioning and 
AssemblyAssembly
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Emb. System Modeling
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RTL Design & Verification
-Block design and unit test
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Two Approaches to System Level DesignTwo Approaches to System Level Design

• Top down - successive 
refinement:

– Referred to as Hardware-
Software Co-design

– Connect the hardware and 
software design teams earlier in 
the design cycle. 

– Allows hardware and software to 
be developed concurrently 

– Starts with functional 
exploration

– Goes through architectural 
mapping

– The hardware and software parts 
are either manually coded or 
obtained by refinement from 
higher model

– Ends with HW-SW co-
verification and System 
Integration

• Platform based:
– Hierarchical design 

methodology that starts at the 
system level

– Enables rapid creation and 
verification of sophisticated SoC 
designs.

– PBD uses predictable and pre-
verified firm and hard blocks

– PBD reduces overall time-to-
market 

• Shorten verification time

– Provides higher productivity 
through design reuse

– PBD allows derivative designs 
with added functionality

– Allows the user to focus on the 
part that differentiate his design

Courtesy: Coware, Inc. 2005
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TopTop--down Design Flowdown Design Flow

• Software dominates at first
• Critical need – higher performance at un-timed and “Programmers View”

(PV) transaction-level abstractions

• Top-down design 
starts with 
functional 
validation of the 
system spec

• Required if you 
don’t have a 
platform to start 
from

Courtesy: Coware, Inc. 2005

Functional ValidationFunctional Validation
Algorithm Design 

Flow

Algorithm Design Algorithm Design 
FlowFlow

Emb. System ModelingEmb. System ModelingEmb. System Modeling

System Partitioning 
and Assembly

System Partitioning System Partitioning 
and Assemblyand Assembly

Architectural ValidationArchitectural Validation

RTL Design & 
Verification

RTL Design & RTL Design & 
VerificationVerification

System-level 
Verification

SystemSystem--level level 
VerificationVerification

ESW DevelopmentESW DevelopmentESW Development

HW-SW Co-
verification

HWHW--SW CoSW Co--
verificationverification

Hardware RefinementHardware Refinement

RTL VerificationRTL Verification
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IP Design & ModelingIP Design & Modeling

Programmable IPProgrammable IPProgrammable IP

Interconnect IPInterconnect IPInterconnect IP
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PlatformPlatform--based Design Flowbased Design Flow

• Hardware dominates at first
• Critical need – higher performance at transfer-level TLM and cycle-

accurate abstractions

• Platform-based 
design starts 
with architecting 
a processing 
platform for a 
given vertical 
application 
space

• Soft-platforms 
are available 
from various 
EDA vendors

• Often favored by 
semiconductor 
vendors and 
ASSP providers

Functional ValidationFunctional Validation
Algorithm Design 

Flow

Algorithm Design Algorithm Design 
FlowFlow

Emb. System ModelingEmb. System ModelingEmb. System Modeling

System Partitioning 
and Assembly

System Partitioning System Partitioning 
and Assemblyand Assembly

Architectural ValidationArchitectural Validation

RTL Design & 
Verification

RTL Design & RTL Design & 
VerificationVerification

System-level 
Verification

SystemSystem--level level 
VerificationVerification

ESW DevelopmentESW DevelopmentESW Development

HW-SW Co-
verification

HWHW--SW CoSW Co--
verificationverification

Hardware RefinementHardware Refinement

RTL VerificationRTL Verification

Embedded SoftwareEmbedded Software

IP Design & ModelingIP Design & Modeling

Programmable IPProgrammable IPProgrammable IP

Interconnect IPInterconnect IPInterconnect IP

Courtesy: Coware, Inc. 2005
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Taxonomy of Modeling EnvironmentsTaxonomy of Modeling Environments

Functional modelFunctional model
VERIFY VERIFY 

FUNCTIONALITYFUNCTIONALITY

Implementation modelImplementation model
VERIFY VERIFY 

ABSTRACTIONSABSTRACTIONS

Performance modelPerformance model
VERIFY VERIFY 

PERFORMANCEPERFORMANCE

Architecture modelArchitecture model
VERIFY VERIFY 

INTERFACESINTERFACES
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Models of ComputationModels of Computation

• State-oriented models

– Finite-state machine (FSM), Petri nets, 
hierarchical concurrent FSM (HCFSM)

• Process-oriented models

– Kahn process networks (KPN), Datafow, flowchart

• Heterogeneous models

– Control/dataflow graph (CDFG), 
Program state machine (PSM)

• Structure-oriented models

– Block diagram, netlist

• Programming models

– Imperative and declarative

– Synchronous/reactive

• Simulation models

– Discrete event
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Functional Modeling & Verification Functional Modeling & Verification 

• Model Building:

– Capture the relevant aspects of the system formally

– Abstract model for mapping
• No detailed wiring (busses, serial links, etc.)

• Black-box components (ASICs, micro-controllers, DSPs, 
memories, etc.)

• Model Checking:

– Use algorithms (i.e., tools) for model analysis,  rather than for 
model execution (simulation)   

• Formal Hardware Verification

– Formalism:  finite state machines

– Algorithm:   exhaustive state-space exploration

UCB EECS-249 Class Notes
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Modeling GuidelinesModeling Guidelines

• A model should capture exactly the aspects required by the 
system, and no more.  

– There is not one model/algorithm/tool that fits all.

• Being formal is a prerequisite for algorithmic analysis.

– Formality means having a mathematical definition for the 
properties of interest.

• Being compositional is a prerequisite for scalability.

– Compositionality is the ability of breaking a task about A||B 
into two subtasks about A and B, respectively.

UCB EECS-249 Class Notes
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Algorithmic Modeling: SPW/MATLAB Algorithmic Modeling: SPW/MATLAB 
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Courtesy: Coware, Inc. 2005
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Transaction Level Modeling Transaction Level Modeling 

The transaction level is a higher level of abstraction for 
communication

For SoC, communication is dominated by the bus

Communication 
channel

TargetInitiator

TLM

API

TLM

API

Courtesy: Coware, Inc. 2005

read(addr)
write(addr, data)

read(addr)
write(addr, data)
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Transaction Level Modeling Transaction Level Modeling -- OverviewOverview

• RTL bus: redundant complexity 
results in slow simulation

– Each device interface must 
implement the bus protocol

– Each device on the bus has a 
pin-accurate interface

• TLM bus: less code, fewer pins 
and events, yield faster 
simulation

– Protocol is modeled as a 
single bus model instead of 
in each device

– Each device communicates 
via transaction level APIBUS

MEM CPU

Periph

TLM API TLM API

TLM API
HREQ

HADDR

HGRANT

HWDATA

HRESP

HREADY

ReqTrf
Grant

Trf

AddrTrf

WriteDataTrf

EotTrf

Transaction

BUS

MEM CPU

Periph Req

Grnt
Sel

Data
Addr

Clk

Courtesy: Coware, Inc. 2005

Pin/Cycle 
Accurate

Transactions 
(Function Calls)
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TLM TLM -- DetailsDetails

• Detailed signal handshaking is reduced to series of generic 
events called “transfers”. 

• Blocks are interconnected via a Bus Model, and communicate 
through an API. The Bus Model handles all the timing, and 
events on the bus can be used to trigger action in the 
peripherals.

sendAddress()

Initiator

Bus 
Model

Bus Model keeps 
track of timing.

Address Data

Initiator and Target use 
an API to communicate 
via transfers.

Target

sendData()

Event timing can 
trigger actions. 

addressEvent() dataEvent()

Courtesy: Coware, Inc. 2005
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Goals For Standardization Of TLM LevelsGoals For Standardization Of TLM Levels

• Scope is to define a range of modeling abstraction levels for 
hardware and software SoC design

– A high abstraction level enabling fast SoC models for ESW 
programmers and capturing system function

– A level enabling a range of timing accuracies for SoC 
architects, that retains high performance

– A level that allows full cycle-accuracy for SoC verification 
and HW-SW co-verification, with performance still much 
higher than RTL

• Levels should be defined to minimize the number of different 
models required

– Minimize the number of models to provide and maintain for IP 
vendors (especially processors and memory models)

• Levels should be defined to minimize the amount of remodeling 
for the user

– Enable a refinement process from one level to the next
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SystemC/TLM 2.0 Coding StylesSystemC/TLM 2.0 Coding Styles

• Loosely-timed

– Sufficient timing detail to boot OS and 
simulate multi-core systems

– Each transaction has 2 timing points: 
begin and end

• Approximately-timed

– Cycle-approximate or cycle-count-
accurate 

– Sufficient for architectural exploration

– Each transaction has at least
4 timing points

END_REQ

BEGIN_RESP

END_RESP

BEGIN_REQ

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

Initiator Target

BEGIN

END

Initiator Target
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Interconnect
Initiator/
Target

Initiator and TargetInitiator and Target

TargetInitiator
Forward path

Backward path

Forward path

Backward path

Command

Address

Data

Byte enables

Response status

Extensions

• Pointer to transaction object is passed from module to 
module using forward and backward paths

• Transactions are of type generic payload

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
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Blocking and NonBlocking and Non--Blocking TransportsBlocking Transports

• Blocking transport interface

– Typically used with loosely-timed coding style

– tlm_blocking_transport_if
void b_transport(TRANS&, sc_time&);

• Non-blocking transport interface

– Typically used with approximately-timed coding style 

– Includes transaction phases

– tlm_fw_nonblocking_transport_if
tlm_sync_enum nb_transport_fw(TRANS&, PHASE&, sc_time&);

– tlm_bw_nonblocking_transport_if
tlm_sync_enum nb_transport_bw(TRANS&, PHASE&, sc_time&);

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
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Blocking TransportBlocking Transport

TargetInitiator

wait(30ns);

Simulation time 0ns

b_transport(t, 0ns);

b_transport(t, 0ns);call

return

Simulation time 30ns

b_transport(t, 0ns);

b_transport(t, 0ns);call

return

Simulation time 0ns

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
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Transaction Phases (Transaction Phases (tlm_sync_enumtlm_sync_enum))

• TLM_ACCEPTED
– Transaction, phase and timing arguments unmodified (ignored) on 

return
– Target may respond later (depending on protocol)

• TLM_UPDATED
– Transaction, phase and timing arguments updated (used) on 

return
– Target has advanced the protocol state machine to the next state

• TLM_COMPLETED
– Transaction, phase and timing arguments updated (used) on 

return
– Target has advanced the protocol state machine straight to the 

final phase

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
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NonNon--Blocking TransportBlocking Transport

TargetInitiator

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_REQ 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_REQ 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_RESP 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_RESP 0ns);

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
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Design Verification MethodsDesign Verification Methods

• Simulation based methods
– Specify input test vector, output test vector pair

– Run simulation and compare output against expected output

• Formal Methods
– Check equivalence of design models or parts of models

– Check specified properties on models

• Semi-formal Methods
– Specify inputs and outputs as symbolic expressions

– Check simulation output against expected expression
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SimulationSimulation

• RTL model is 
imported directly into 
system simulation model

• Blocks may be required 
to interface the RTL model 
with the system simulation 
model

• Benefits - Only one testbench.  
Reduce number and size of files containing stimulus/expected 
results and number of testbenches

• Better testing is possible

System-Level Simulation

Design 
under Test 

(DUT)

System 
Model 

Stimulus
(Image)

System 
Model 

Monitor

RTL

VHDL /  Verilog  from HDS 
or external sources
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Equivalence CheckingEquivalence Checking

• LEC uses boolean algebra to check for logic equivalence

1 = 1’ ?
2 = 2’ ?

in
pu

ts

ou
tp

ut
s1

2
in

pu
ts

ou
tp

ut
s1’

2’

Equivalence 
result

p

q

x

y

a

b

r

s

x

y
a

b
ty

b

pr

qr

ps pt

qs qt

xx

yx

xy
xy

yy

yy

aa

bb

bb

× =

• SEC uses FSMs to check for sequential equivalence
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Model Checking Model Checking 

• Model M satisfies property P? [Clarke, Emerson ’81]

• Inputs
– State transition system representation of M

– Temporal property P as formula of state properties

• Output
– True (property holds)

– False + counter-example (property does not hold)

True /
False + counter-example

Model
Checker

P = P2 always leads to P4
s1

s4 s3

s2P1

P3P4

P2

M
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Desirable Design MethodologyDesirable Design Methodology

• Design should be based on the use of one or more formal 
models to describe the behavior of the system at a high level of
abstraction

– such behavior should be captured on an unbiased way, that 
is, before a decision on its decomposition into hardware and 
software components is taken

• The final implementation of the system should be generated as 
much as possible using automatic synthesis from this high level 
of abstraction

– to ensure implementations that are “correct by construction”

• Validation (through simulation or verification) should be done as 
much as possible at the higher levels of abstraction
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Flow SummaryFlow Summary

Design Export
… after initial platform 
configuration through 
design refinement and 

communication 
synthesis

Functional 
IP

C/C++
SDL
SPW

Simulink

Synthesis / Place & Route etc.

Implementation Level Verification

Software
Assembly

Hardware
Assembly

Communication
Refinement, Integration & 

Synthesis

Performance Analysis and 
Platform Configuration

System Integration

Platform 
Function

Platform 
Architecture

Embedded System Requirements

Platform 
Configuration

… at the
un-clocked, timing-

aware
system level

Architecture 
IP

CPU/DSP
RTOS

Bus, Memory
HW
SW


