EE 382V - SoC

System Level Design Methodology

Andreas Gerstlauer
Mark McDermott
Steven Smith

Fall 2009

EE 382V Class Notes Foil # 1

The University of Texas at Austin

Agenda

* Design Convergence
» System Level Design
* Modeling

» Verification

e Summary

EE 382V Class Notes Foil #2

The University of Texas at Austin

Product Design and Methodology Flow Chart

Product
Validation
Loop

Design
Convergence and
Verification
Loop

EE 382V Class Notes

Model?

I Start)

Map, Model &
Simulate in
SPW or Matlab or C

Mapping to
Platform or
Components
Complete?

Freeze
Architecture

Analyze results

Functionality
Met?

No

System
BOM Costs
Met?

Power
Req. Met?

No

Schedule
Req. Met?

No

Platform
Req. Met?

Design Convergence lteration Profile

Front End Design Implementatio

Reduced convergence time due to minimal data

Optimization Solutions

Convergence time increases due to more design data

Reduced convergence time due to reduced solution space

Convergence time increases due to transition phase

f_)%

time due to reduced solution space

9

~

Design Converges

A

Rapid Exploration Rapid Traversal

EE 382V Class Notes

Foil #4

The University of Texas at Austin

Issues with HW Centric System Design Flows

. System/Marketing i
* RTL language centric Requirements

« Dysfunctional levels of abstraction

* SW Design Cycle often serial to HW
Design Cycle

— Lack of unified hardware-
software representation

* Missing executable platform HW Design
models early in cycle

* SW/HW integration is tough

Algorithmic Design

Architectural Design

Capture I

e Simulation speed is critical Verification

. . L SW Design
* Partitions are defined a priori o 1
— Hard to find incompatibilities Implementation Capture
across HW-SW boundary
« Lack of well-defined design flow

Verification

— Time-to-market problems

— Specification revision becomes System Bring-up
difficult Prototyping
Courtesy: Coware, Inc. 2005 Final Assembly
EE 382V Class Notes Foil #5 The University of Texas at Austin

The ESL Solution: One Reference Model

Algorithm &
Architecture
Exploration

One Reference
Model

SW Development
& Verification

Courtesy: Coware, Inc. 2005
EE 382V Class Notes Foil #6 The University of Texas at Austin

SOC Design Environment

Primarily
Virtual

Primarily

PROTOTYPING ENVIRONMENT Physi
ysical

& L

Design Partitioning o 4 e TesT
HW & SW S
CODESIGN COBING
Copyright © 1995-1999 SCRA Used with Permission
EE 382V Class Notes Foil #7 The University of Texas at Austin

Agenda

» System Level Design

EE 382V Class Notes Foil #8 The University of Texas at Austin

System Level Design

Managing
Complexity

Orthogonalizing

concerns

Behavior across Computation
\/s. multiple levels Vs.

Architecture of Communication
abstraction

EE 382V Class Notes Foil #9 The University of Texas at Austin

Complexity Forces

Functionality

Cost Compatibility
Capacity Fail safe
Availability Fault tolerance
Performance f \ Throughput
Technology churn Robustness

“The challenge over the next 20 years will not be speed or cost or
performance; it will be a question of complexity.”

Bill Raduchel, Chief Strategy Officer, Sun Microsystems

EE 382V Class Notes Foil # 10 The University of Texas at Austin

Complexity Models
* In general reliability is inversely related to complexity

e Measures of software complexity

— Lines of Code Count branches,
— McCabe calls, inputs,
— Halstead outputs etc.

Function Points

* Measure of hardware complexity
— Number of transistors
— Number of I/O signals
— Silicon process

EE 382V Class Notes Foil # 11 The University of Texas at Austin

Behavior vs. Architecture

Performance models:
Emb. SW, Comm. and
Comp. resources

Models of
Computation

System System
Behavior Architecture

CEEET i
A

HW/SW Partitioning,
Scheduling & Estimation

Mapping

Performance
Analysis
and Simulation

Refinement

Synthesis Flow To Imol tati
& Coding AR ==l elg UCB EECS-249 Class Notes

EE 382V Class Notes Foil # 12 The University of Texas at Austin

Communication vs. Computation

« Separation provides flexibility in modeling and increases IP

Reuse

Bus Model

Device Model

geta;
get b;

L

Fommunication

send c;

Computation
Must be synchronized

Communication can be described in a
wide range of fashions, from high-level
messages, to detailed signal level
handshakes without impacting the
behavior description.

EE 382V Class Notes

Behavior can be described
algorithmically, without the burden of
the handshaking and control logic
associated with bus communication.

Courtesy: Coware, Inc. 2005

Foil # 13 The University of Texas at Austin

Multiple Abstraction Levels

Functional Validation Processor Interconnect Peripheral
Emb. System Modeling Host Not Modeled
-Executable spec. capture -Point to point
-Functional testing
-Memory-mapped
_ o Instruction Loosely Timed
Architectural Validation Accurate TLM Untimed

System Partitioning and
Assembly
-Exploration and analysis

Hardware Refinement

RTL Design & Verification
-Block design and unit test
-Validation in the system

RTL Verification

System-level Verification
-Complete design at RTL

-System-level testbench

Courtesy:

EE 382V Class Notes

eycle
Accurate

Appreximately
NimedsniEV

Nmed
Bus=Functional

Cycle-Accurate RTL

(DUT) | (nest)

M "

(Transfer Level)

Increasing Scope for Relative Optimization

Increasing Simulation Performance

RTL RTL
Coware, Inc. 2005

Foil # 14 The University of Texas at Austin

Two Approaches to System Level Design

« Top down - successive ¢ Platform based:
refinement: — Hierarchical design

— Referred to as Hardware- methodology that starts at the
Software Co-design system level

— Connect the hardware and — Enables rapid creation and
software design teams earlier in verification of sophisticated SoC
the design cycle. designs.

— Allows hardware and software to — PBD uses predictable and pre-
be developed concurrently verified firm and hard blocks

— Starts with functional — PBD reduces overall time-to-
exploration market

— Goes through architectural » Shorten verification time
mapping — Provides higher productivity

— The hardware and software parts through design reuse
are either manually coded or — PBD allows derivative designs
obtained by refinement from with added functionality
higher model — Allows the user to focus on the

— Ends with HW-SW co- part that differentiate his design
verification and System
Integration

Courtesy: Coware, Inc. 2005

EE 382V Class Notes Foil # 15 The University of Texas at Austin

Top-down Design Flow

i
Algorithm Design
=[0)%

IP Design & Modeling Top-down design
Programmable IP. starts with
functional
validation of the
system spec

System Partitioning

and Assembly * Required if you
don’t have a
platform to start
Embedded Software Hardware Refinement from

ESW Development RTL Design| &
Verification

HW-SW Co- RTL Verification

verification System-level
Verification

¢ Software dominates at first

e Critical need — higher performance at un-timed and “Programmers View”

(PV) transaction-level abstractions
Courtesy: Coware, Inc. 2005

EE 382V Class Notes Foil # 16 The University of Texas at Austin

Platform-based Design Flow

Incti i IP Design & Modeling R
Algorithm Design Platform-based

s Programmable IP. design starts
with architecting
a processing
platform for a

System Partitioning given vertical
and Assembly/ application
space
o -
Embedded Software Hardware Refinement Soft pla_ltforms
: are available
ESW Development RTL Design & f .
Verification rom various
EDA vendors
« Often favored by
HW-SW. Co- RTL Verification semiconductor
verification System-level vendors and
fciiicaton ASSP providers

* Hardware dominates at first

» Critical need — higher performance at transfer-level TLM and cycle-

accurate abstractions
Courtesy: Coware, Inc. 2005

EE 382V Class Notes Foil # 17 The University of Texas at Austin

Agenda

* Modeling
— Models of Computation
— Models of Communication

EE 382V Class Notes Foil # 18 The University of Texas at Austin

Taxonomy of Modeling Environments

Elnctionalfmodel Architectire’mode
VERIEY VERIFY

EUNCITIONAILITY INIIERIEA

Performance model
VERIFY
PERFORMANCE

Implementation model
VERIFY
ABSTRACTIONS

EE 382V Class Notes The University of Texas at Austin

Models of Computation

e State-oriented models

— Finite-state machine (FSM), Petri nets,
hierarchical concurrent FSM (HCFSM)

» Process-oriented models
— Kahn process networks (KPN), Datafow, flowchart
» Heterogeneous models

— Control/dataflow graph (CDFG),
Program state machine (PSM)

e Structure-oriented models
— Block diagram, netlist
e Programming models
— Imperative and declarative
— Synchronous/reactive
* Simulation models
— Discrete event

EE 382V Class Notes Foil # 20 The University of Texas at Austin

10

Functional Modeling & Verification

* Model Building:
— Capture the relevant aspects of the system formally
— Abstract model for mapping
* No detailed wiring (busses, serial links, etc.)

¢ Black-box components (ASICs, micro-controllers, DSPs,
memories, etc.)

* Model Checking:

— Use algorithms (i.e., tools) for model analysis, rather than for
model execution (simulation)

e Formal Hardware Verification
— Formalism: finite state machines
— Algorithm: exhaustive state-space exploration
UCB EECS-249 Class Notes

EE 382V Class Notes Foil # 21 The University of Texas at Austin

Modeling Guidelines

A model should capture exactly the aspects required by the
system, and no more.

— There is not one model/algorithm/tool that fits all.

* Being formal is a prerequisite for algorithmic analysis.

— Formality means having a mathematical definition for the
properties of interest.

* Being compositional is a prerequisite for scalability.

— Compositionality is the ability of breaking a task about A||B
into two subtasks about A and B, respectively.

UCB EECS-249 Class Notes

EE 382V Class Notes Foil # 22 The University of Texas at Austin

11

Algorithmic Modeling: SPW/MATLAB

Floating Does the Graphical Executable
Point algorithm Algorithmic Models
Algorithm work?
[Type independent
modeling
Does the

a\',?grrLth Graphical Executable

certain bit Fixed Point
data width? Algorithmic Models

Fixed
Point
Algorithm

Does the
algorithm work Graphical Executable
after Fixed Point
pipelining? Algorithmic Models

=
[&]
o
7}
o
=
(%2}
)
-
=
=
2
42
(%2}
=
S
(&)

RTL H/W
Architecture

Clocked

HW / SW Implementationd
Test Bench Environment

Courtesy: Coware, Inc. 2005

EE 382V Class Notes Foil # 23 The University of Texas at Austin

Agenda

* Modeling

— Models of Communication

EE 382V Class Notes Foil # 24 The University of Texas at Austin

12

Transaction Level Modeling

Initiator Communication Target
channel
TLM J read(addr) read(addr) TLM
§ write(addr, data) write(addr, data)
API API

The transaction level is a higher level of abstraction for
communication

For SoC, communication is dominated by the bus

Courtesy: Coware, Inc. 2005

EE 382V Class Notes Foil # 25 The University of Texas at Austin

Transaction Level Modeling - Overview

¢ RTL bus: redundant complexity
results in slow simulation
— Each device interface must
implement the bus protocol
— Each device on the bus has a
pin-accurate interface

TLM bus: less code, fewer pins
and events, yield faster
simulation
— Protocol is modeled as a
single bus model instead of
in each device

TLM AP - TLMAPI Transactions — Each device communicates
= (Bancuonicalls) via transaction level API
TLM API :
Transaction ™
_ransaenon et w
Pe P . N . N HADDR
N .E|=‘=|§ —
»Iriteoat AT
'::::;: Courtesy: Coware, Inc. 2005
e
EE 382V Class Notes Foil # 26 The University of Texas at Austin

13

TLM - Details

» Detailed signal handshaking is reduced to series of generic
events called “transfers”.

» Blocks are interconnected via a Bus Model, and communicate
through an API. The Bus Model handles all the timing, and
events on the bus can be used to trigger action in the

peripherals.
Bus Event timing can
- trigger actions.
Initiator addressEvent() Model dataEvent() Target 9
4p —(om)|
> < »| sendData()

sendAddress() [« <

Initiator and Target use
£ MOd?l |_<eeps an API to communicate
track of timing. ‘

via transfers.

X X
EE 382V Class Notes Foil # 27 The University of Texas at Austin

Courtesy: Coware, Inc. 2005

Goals For Standardization Of TLM Levels

e Scopeis to define arange of modeling abstraction levels for
hardware and software SoC design
— A high abstraction level enabling fast SoC models for ESW
programmers and capturing system function
— A level enabling a range of timing accuracies for SoC
architects, that retains high performance
— A level that allows full cycle-accuracy for SoC verification
and HW-SW co-verification, with performance still much
higher than RTL
* Levels should be defined to minimize the number of different
models required
— Minimize the number of models to provide and maintain for IP
vendors (especially processors and memory models)
» Levels should be defined to minimize the amount of remodeling
for the user

— Enable arefinement process from one level to the next
EE 382V Class Notes Foil # 28 The University of Texas at Austin

14

SystemC/TLM 2.0 Coding Styles

* Loosely-timed BEGIN
— Sufficient timing detail to boot OS and
simulate multi-core systems END
— Each transaction has 2 timing points:
begin and end Initiator Target

* Approximately-timed

BEGIN_REQ
— Cycle-approximate or cycle-count-
accurate END_REQ
— Sufficient for architectural exploration
— Each transaction has at least BEGIN_RESP
4 timing points END_RESP
Initiator Target

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

EE 382V Class Notes Foil # 29 The University of Texas at Austin

Initiator and Target

» Pointer to transaction object is passed from module to
module using forward and backward paths

» Transactions are of type generic payload

Forward path Interconnect Forward path

Initiator P B Initiator/ P
Target

Backward path Backward path
1
1
1

¥

Command

Address

Data 1

Byte enables TTTTTTTTTTTTThTTTmTTTTTmTmTTT T

Response status

Extensions

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

EE 382V Class Notes Foil # 30 The University of Texas at Austin

15

Blocking and Non-Blocking Transports

* Blocking transport interface
— Typically used with loosely-timed coding style

— tlm_blocking_transport_if
void b_transport(TRANS&, sc_time&);

* Non-blocking transport interface
— Typically used with approximately-timed coding style
— Includes transaction phases

— tim_fw_nonblocking_transport_if
tim_sync_enum nb_transport_fw(TRANS&, PHASE&, sc_time&);

— tIm_bw_nonblocking_transport_if

tim_sync_enum nb_transport_bw(TRANS&, PHASE&, sc_time&);

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

EE 382V Class Notes Foil # 31 The University of Texas at Austin

Blocking Transport

Simulation time Ons

call b_transport(t, 0Ons);

b_transport(t, Ons); return

Simulation@

call b_transport(t, 0Ons);

@@ wait(30ns);

b_transport(t, Ons); return

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

EE 382V Class Notes Foil # 32 The University of Texas at Austin

16

Transaction Phases (tlm_sync_enum)

* TLM_ACCEPTED

— Transaction, phase and timing arguments unmodified (ignored) on
return

— Target may respond later (depending on protocol)

« TLM_UPDATED

— Transaction, phase and timing arguments updated (used) on
return

— Target has advanced the protocol state machine to the next state

e TLM_COMPLETED
— Transaction, phase and timing arguments updated (used) on

return
— Target has advanced the protocol state machine straight to the
final phase
Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
EE 382V Class Notes Foil # 33 The University of Texas at Austin

Non-Blocking Transport

Initiator

nb_transport(-, BEGIN_REQ Ons);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_REQ Ons);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_RESP 0Ons);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_RESP 0Ons);

nb_transport(TLM_ACCEPTED, -, -);
Source: Christian Haubelt, Univ. of Erlangen-Nuremberg
EE 382V Class Notes Foil # 34 The University of Texas at Austin

17

Speed vs. Accuracy

ESL
Mosidrses Archlte_ctu ral
10MIPS Design LT
SystemC 3 Mcps
Executable TLM
Re-use for
1MIPS
Early Software
Development Cycle
a Accurate CA
W 100Kcps 150 kps
L
o
[%2])
10Kcps Re-use for PAM+RTL
e level 15 k
S System-leve ps
Hardware
1Kcps Verification
100cps
Log ACCURACY _
EE 382V Class Notes Foil # 35 The University of Texas at Austin

Agenda

* Verification
— Simulation
— Formal methods

EE 382V Class Notes Foil # 36 The University of Texas at Austin

18

Design Verification Methods

* Simulation based methods
— Specify input test vector, output test vector pair
— Run simulation and compare output against expected output

* Formal Methods
— Check equivalence of design models or parts of models
— Check specified properties on models

* Semi-formal Methods
— Specify inputs and outputs as symbolic expressions
— Check simulation output against expected expression

EE 382V Class Notes Foil # 37 The University of Texas at Austin

Simulation

System-Level Simulation

* RTL model is System Design System
. . - Model under Test Model
ImpOI’ted dll’eCt|y Into Stimulus (DUT) Monitor
system simulation model (Image)

» Blocks may be required

to interface the RTL model nl.ﬂ

with the system simulation
model VHDL / Verilog from HDS
or external sources

« Benefits - Only one testbench.
Reduce number and size of files containing stimulus/expected
results and number of testbenches

 Better testing is possible

EE 382V Class Notes Foil # 38 The University of Texas at Austin

19

Equivalence Checking

e LEC uses boolean algebrato check for logic equivalence

% Equivalence
% result

* SEC uses FSMs to check for sequential equivalence
X

YIviy

TIviy

« X A XX ol @ Xy
%} Xy = aa
ygp b @ @ o
y YY bb
EE 382V Class Notes Foil # 39 The University of Texas at Austin

Model Checking

¢ Model M satisfies property P? [Clarke, Emerson '81]
e Inputs

— State transition system representation of M

— Temporal property P as formula of state properties
¢ Output

— True (property holds)

— False + counter-example (property does not hold)

P1 %D_ pp P =P2always leads to P4

@ @ Model True /

Checker False + counter-example

EE 382V Class Notes Foil # 40 The University of Texas at Austin

20

Agenda

e Summary

EE 382V Class Notes Foil # 41 The University of Texas at Austin

Desirable Design Methodology

Design should be based on the use of one or more formal
models to describe the behavior of the system at a high level of
abstraction

— such behavior should be captured on an unbiased way, that
is, before a decision on its decomposition into hardware and
software components is taken

The final implementation of the system should be generated as
much as possible using automatic synthesis from this high level
of abstraction

— to ensure implementations that are “correct by construction”

Validation (through simulation or verification) should be done as
much as possible at the higher levels of abstraction

EE 382V Class Notes Foil # 42 The University of Texas at Austin

21

Flow Summary

Embedded System Requirements |

— E—

FuncltFi‘onaI W ArPIatform e Pl atfo rrn.
= e Configuration
C/C++ CPU/DSP ...atthe
= W RTOS un-clocked, timing-
SPW Bus, Memory aware
Simulink — J— 'gvV\‘// system level

Performance Analysis and
Platform Cc

_E—

~ Communication Design Export

Reflnemgnt, Lnte_gratlon & ... after initial platform

nthesis configuration through

—_— —_— design refinement and
Hardware Software GRITTUAIEEER

Assembly Assembly SYNthesIS
A

Implementation Level Verification

—S——_

Synthesis / Place & Route etc.]

EE 382V Class Notes Foil # 43 The University of Texas at Austin

