
1

The University of Texas at AustinEE 382V Class Notes Foil # 1

EE 382V EE 382V -- SoCSoC

System Level Design MethodologySystem Level Design Methodology

Andreas Gerstlauer
Mark McDermott

Steven Smith

Fall 2009

The University of Texas at AustinEE 382V Class Notes Foil # 2

AgendaAgenda

• Design Convergence

• System Level Design

• Modeling

• Verification

• Summary

2

The University of Texas at AustinEE 382V Class Notes Foil # 3

Product Design and Methodology Flow ChartProduct Design and Methodology Flow Chart

MRD

PRD

Map, Model &
Simulate in

SPW or Matlab or C
or C++

Mapping to
Platform or

Components
Complete?

Start

Modify
Model?

Analyze results

Metrics
Met?

Freeze
Architecture

MRD
Met?

Done

Analyze results

Functionality
Met?

System
BOM Costs

Met?

Power
Req. Met?

Schedule
Req. Met?

Platform
Req. Met?

Return

No

No

No

No

No

No

No

No

Yes
Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Design
Convergence and

Verification
Loop

Product
Validation

Loop

The University of Texas at AustinEE 382V Class Notes Foil # 4

Design Convergence Iteration ProfileDesign Convergence Iteration Profile

Front End DesignFront End Design ImplementationImplementation

Rapid Exploration Rapid Traversal

O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

Design ConvergesDesign Converges

Reduced convergence time due to minimal data Reduced convergence time due to minimal data

Convergence time increases due to more design data Convergence time increases due to more design data

Reduced convergence time due to reduced solution spaceReduced convergence time due to reduced solution space

Convergence time increases due to transition phase Convergence time increases due to transition phase

Reduced convergence time due to reduced solution spaceReduced convergence time due to reduced solution space

3

The University of Texas at AustinEE 382V Class Notes Foil # 5

Algorithmic DesignAlgorithmic Design

System/Marketing
Requirements

System/Marketing
Requirements

Architectural DesignArchitectural Design

System Bring-up
Prototyping

System Bring-up
Prototyping

Final AssemblyFinal Assembly

HW Design

CaptureCapture

VerificationVerification

ImplementationImplementation

SW Design
CaptureCapture

VerificationVerification

• RTL language centric
• Dysfunctional levels of abstraction
• SW Design Cycle often serial to HW

Design Cycle
– Lack of unified hardware-

software representation
• Missing executable platform

models early in cycle
• SW/HW integration is tough
• Simulation speed is critical
• Partitions are defined a priori

– Hard to find incompatibilities
across HW-SW boundary

• Lack of well-defined design flow
– Time-to-market problems
– Specification revision becomes

difficult

Courtesy: Coware, Inc. 2005

Issues with HW Centric System Design FlowsIssues with HW Centric System Design Flows

The University of Texas at AustinEE 382V Class Notes Foil # 6

The ESL Solution: One Reference ModelThe ESL Solution: One Reference Model

One Reference
Model

Algorithm &
Architecture
Exploration

HW Development
& Verification

SW Development
& Verification

Courtesy: Coware, Inc. 2005

4

The University of Texas at AustinEE 382V Class Notes Foil # 7

SOC Design EnvironmentSOC Design Environment

HW/SW
Partitioning

Function
Design

System
Def.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODING

INTEG.
& TEST

PROTOTYPING ENVIRONMENT
Primarily
Virtual

Primarily
Physical

HW & SW
CODESIGN

Cost Models

Copyright 1995-1999 SCRA Used with Permission

The University of Texas at AustinEE 382V Class Notes Foil # 8

AgendaAgenda

• Design Convergence

• System Level Design

• Modeling

• Verification

• Summary

5

The University of Texas at AustinEE 382V Class Notes Foil # 9

System Level DesignSystem Level Design

Managing
Complexity

OrthogonalizingOrthogonalizing
concernsconcerns
acrossacross

multiple levelsmultiple levels
of of

abstractionabstraction

Behavior
Vs.

Architecture

Computation
Vs.

Communication

The University of Texas at AustinEE 382V Class Notes Foil # 10

Complexity ForcesComplexity Forces

Technology churn

Performance Throughput

Capacity

Availability

Fail safe

Fault tolerance

Functionality

Cost Compatibility

Robustness

“The challenge over the next 20 years will not be speed or cost or
performance; it will be a question of complexity.”
Bill Raduchel, Chief Strategy Officer, Sun Microsystems

6

The University of Texas at AustinEE 382V Class Notes Foil # 11

Complexity ModelsComplexity Models

• In general reliability is inversely related to complexity

• Measures of software complexity

– Lines of Code

– McCabe

– Halstead

– Function Points

• Measure of hardware complexity

– Number of transistors

– Number of I/O signals

– Silicon process

Count branches,
calls, inputs,
outputs etc.

The University of Texas at AustinEE 382V Class Notes Foil # 12

Flow To Implementation

Behavior vs. ArchitectureBehavior vs. Architecture

System
Behavior

System
Architecture

Mapping

Refinement

Behavior
Verification

Behavior on the
Architecture

Models of
Computation

Performance models:
Emb. SW, Comm. and

Comp. resources

HW/SW Partitioning,
Scheduling & Estimation

Synthesis
& Coding

Performance
Analysis

and Simulation

UCB EECS-249 Class Notes

Model Checking

7

The University of Texas at AustinEE 382V Class Notes Foil # 13

Communication vs. ComputationCommunication vs. Computation

• Separation provides flexibility in modeling and increases IP
Reuse

ComputationComputationCommunicationCommunication

Bus Model Device Model

Behavior can be described
algorithmically, without the burden of
the handshaking and control logic
associated with bus communication.

Communication can be described in a
wide range of fashions, from high-level
messages, to detailed signal level
handshakes without impacting the
behavior description.

c = a * b;
get a;
get b;
send c;

Must be synchronized

Courtesy: Coware, Inc. 2005

The University of Texas at AustinEE 382V Class Notes Foil # 14

Not ModeledNot Modeled
--Point to pointPoint to point

--MemoryMemory--mappedmapped

Multiple Abstraction LevelsMultiple Abstraction Levels

Functional ValidationFunctional Validation

System Partitioning and
Assembly

-Exploration and analysis

System Partitioning and System Partitioning and
AssemblyAssembly

--Exploration and analysisExploration and analysis

Emb. System Modeling
-Executable spec. capture

-Functional testing

Emb. System ModelingEmb. System Modeling
--Executable spec. captureExecutable spec. capture

--Functional testingFunctional testing

RTL Design & Verification
-Block design and unit test
-Validation in the system

RTL Design & VerificationRTL Design & Verification
--Block design and unit testBlock design and unit test
--Validation in the systemValidation in the system

System-level Verification
-Complete design at RTL
-System-level testbench

SystemSystem--level Verificationlevel Verification
--Complete design at RTLComplete design at RTL
--SystemSystem--level testbenchlevel testbench

Architectural ValidationArchitectural Validation

Hardware RefinementHardware Refinement

RTL VerificationRTL Verification

RTLRTL RTLRTL

TimedTimed
BusBus--FunctionalFunctional

UntimedUntimed

ApproximatelyApproximately
Timed TLMTimed TLM

CycleCycle--AccurateAccurate
TLMTLM

(Transfer Level)(Transfer Level)

RTLRTL

InstructionInstruction
AccurateAccurate

CycleCycle
AccurateAccurate

Processor Interconnect Peripheral

HostHost

Loosely TimedLoosely Timed
TLMTLM

RTLRTL
(DUT)(DUT)

TFTF
(rest)(rest)

In
cr

ea
si

ng
 S

co
pe

 f
or

 R
el

at
iv

e
O

pt
im

iz
at

io
n

In
cr

ea
si

ng
 S

co
pe

 f
or

 R
el

at
iv

e
O

pt
im

iz
at

io
n

In
cr

ea
si

ng
 S

im
ul

at
io

n
Pe

rf
or

m
an

ce
In

cr
ea

si
ng

 S
im

ul
at

io
n

Pe
rf

or
m

an
ce

Courtesy: Coware, Inc. 2005

8

The University of Texas at AustinEE 382V Class Notes Foil # 15

Two Approaches to System Level DesignTwo Approaches to System Level Design

• Top down - successive
refinement:

– Referred to as Hardware-
Software Co-design

– Connect the hardware and
software design teams earlier in
the design cycle.

– Allows hardware and software to
be developed concurrently

– Starts with functional
exploration

– Goes through architectural
mapping

– The hardware and software parts
are either manually coded or
obtained by refinement from
higher model

– Ends with HW-SW co-
verification and System
Integration

• Platform based:
– Hierarchical design

methodology that starts at the
system level

– Enables rapid creation and
verification of sophisticated SoC
designs.

– PBD uses predictable and pre-
verified firm and hard blocks

– PBD reduces overall time-to-
market

• Shorten verification time

– Provides higher productivity
through design reuse

– PBD allows derivative designs
with added functionality

– Allows the user to focus on the
part that differentiate his design

Courtesy: Coware, Inc. 2005

The University of Texas at AustinEE 382V Class Notes Foil # 16

TopTop--down Design Flowdown Design Flow

• Software dominates at first
• Critical need – higher performance at un-timed and “Programmers View”

(PV) transaction-level abstractions

• Top-down design
starts with
functional
validation of the
system spec

• Required if you
don’t have a
platform to start
from

Courtesy: Coware, Inc. 2005

Functional ValidationFunctional Validation
Algorithm Design

Flow

Algorithm Design Algorithm Design
FlowFlow

Emb. System ModelingEmb. System ModelingEmb. System Modeling

System Partitioning
and Assembly

System Partitioning System Partitioning
and Assemblyand Assembly

Architectural ValidationArchitectural Validation

RTL Design &
Verification

RTL Design & RTL Design &
VerificationVerification

System-level
Verification

SystemSystem--level level
VerificationVerification

ESW DevelopmentESW DevelopmentESW Development

HW-SW Co-
verification

HWHW--SW CoSW Co--
verificationverification

Hardware RefinementHardware Refinement

RTL VerificationRTL Verification

Embedded SoftwareEmbedded Software

IP Design & ModelingIP Design & Modeling

Programmable IPProgrammable IPProgrammable IP

Interconnect IPInterconnect IPInterconnect IP

9

The University of Texas at AustinEE 382V Class Notes Foil # 17

PlatformPlatform--based Design Flowbased Design Flow

• Hardware dominates at first
• Critical need – higher performance at transfer-level TLM and cycle-

accurate abstractions

• Platform-based
design starts
with architecting
a processing
platform for a
given vertical
application
space

• Soft-platforms
are available
from various
EDA vendors

• Often favored by
semiconductor
vendors and
ASSP providers

Functional ValidationFunctional Validation
Algorithm Design

Flow

Algorithm Design Algorithm Design
FlowFlow

Emb. System ModelingEmb. System ModelingEmb. System Modeling

System Partitioning
and Assembly

System Partitioning System Partitioning
and Assemblyand Assembly

Architectural ValidationArchitectural Validation

RTL Design &
Verification

RTL Design & RTL Design &
VerificationVerification

System-level
Verification

SystemSystem--level level
VerificationVerification

ESW DevelopmentESW DevelopmentESW Development

HW-SW Co-
verification

HWHW--SW CoSW Co--
verificationverification

Hardware RefinementHardware Refinement

RTL VerificationRTL Verification

Embedded SoftwareEmbedded Software

IP Design & ModelingIP Design & Modeling

Programmable IPProgrammable IPProgrammable IP

Interconnect IPInterconnect IPInterconnect IP

Courtesy: Coware, Inc. 2005

The University of Texas at AustinEE 382V Class Notes Foil # 18

AgendaAgenda

• Design Convergence

• System Level Design

• Modeling

– Models of Computation

– Models of Communication

• Verification

• Summary

10

The University of Texas at AustinEE 382V Class Notes Foil # 19

Taxonomy of Modeling EnvironmentsTaxonomy of Modeling Environments

Functional modelFunctional model
VERIFY VERIFY

FUNCTIONALITYFUNCTIONALITY

Implementation modelImplementation model
VERIFY VERIFY

ABSTRACTIONSABSTRACTIONS

Performance modelPerformance model
VERIFY VERIFY

PERFORMANCEPERFORMANCE

Architecture modelArchitecture model
VERIFY VERIFY

INTERFACESINTERFACES

The University of Texas at AustinEE 382V Class Notes Foil # 20

Models of ComputationModels of Computation

• State-oriented models

– Finite-state machine (FSM), Petri nets,
hierarchical concurrent FSM (HCFSM)

• Process-oriented models

– Kahn process networks (KPN), Datafow, flowchart

• Heterogeneous models

– Control/dataflow graph (CDFG),
Program state machine (PSM)

• Structure-oriented models

– Block diagram, netlist

• Programming models

– Imperative and declarative

– Synchronous/reactive

• Simulation models

– Discrete event

11

The University of Texas at AustinEE 382V Class Notes Foil # 21

Functional Modeling & Verification Functional Modeling & Verification

• Model Building:

– Capture the relevant aspects of the system formally

– Abstract model for mapping
• No detailed wiring (busses, serial links, etc.)

• Black-box components (ASICs, micro-controllers, DSPs,
memories, etc.)

• Model Checking:

– Use algorithms (i.e., tools) for model analysis, rather than for
model execution (simulation)

• Formal Hardware Verification

– Formalism: finite state machines

– Algorithm: exhaustive state-space exploration

UCB EECS-249 Class Notes

The University of Texas at AustinEE 382V Class Notes Foil # 22

Modeling GuidelinesModeling Guidelines

• A model should capture exactly the aspects required by the
system, and no more.

– There is not one model/algorithm/tool that fits all.

• Being formal is a prerequisite for algorithmic analysis.

– Formality means having a mathematical definition for the
properties of interest.

• Being compositional is a prerequisite for scalability.

– Compositionality is the ability of breaking a task about A||B
into two subtasks about A and B, respectively.

UCB EECS-249 Class Notes

12

The University of Texas at AustinEE 382V Class Notes Foil # 23

Algorithmic Modeling: SPW/MATLAB Algorithmic Modeling: SPW/MATLAB

C
lo

ck
ed

HW / SW Implementations
Test Bench Environment

HDL Export

C
on

si
st

en
t T

es
t B

en
ch

RTL H/W
Architecture

Design

Does the
algorithm work

after
pipelining?

Graphical Executable
Fixed Point

Algorithmic Models

M
PE

G
Vi

de
o

De
co

de
r

MPEG
Audio Decoder

Graphics
Engine

uC

Software
Tasks

SOC

U
nt

im
ed

Fixed
Point

Algorithm

<16,4,t>

<15,5,t>

<12,2,t>

<13,4,t>

Does the
algorithm
work at

certain bit
data width?

Graphical Executable
Fixed Point

Algorithmic Models

Type independent
modeling

Floating
Point

Algorithm

Does the
algorithm

work?

Graphical Executable
Algorithmic Models

Courtesy: Coware, Inc. 2005

The University of Texas at AustinEE 382V Class Notes Foil # 24

AgendaAgenda

• Design Convergence

• System Level Design

• Modeling

– Models of Computation

– Models of Communication

• Verification

• Summary

13

The University of Texas at AustinEE 382V Class Notes Foil # 25

Transaction Level Modeling Transaction Level Modeling

The transaction level is a higher level of abstraction for
communication

For SoC, communication is dominated by the bus

Communication
channel

TargetInitiator

TLM

API

TLM

API

Courtesy: Coware, Inc. 2005

read(addr)
write(addr, data)

read(addr)
write(addr, data)

The University of Texas at AustinEE 382V Class Notes Foil # 26

Transaction Level Modeling Transaction Level Modeling -- OverviewOverview

• RTL bus: redundant complexity
results in slow simulation

– Each device interface must
implement the bus protocol

– Each device on the bus has a
pin-accurate interface

• TLM bus: less code, fewer pins
and events, yield faster
simulation

– Protocol is modeled as a
single bus model instead of
in each device

– Each device communicates
via transaction level APIBUS

MEM CPU

Periph

TLM API TLM API

TLM API
HREQ

HADDR

HGRANT

HWDATA

HRESP

HREADY

ReqTrf
Grant

Trf

AddrTrf

WriteDataTrf

EotTrf

Transaction

BUS

MEM CPU

Periph Req

Grnt
Sel

Data
Addr

Clk

Courtesy: Coware, Inc. 2005

Pin/Cycle
Accurate

Transactions
(Function Calls)

14

The University of Texas at AustinEE 382V Class Notes Foil # 27

TLM TLM -- DetailsDetails

• Detailed signal handshaking is reduced to series of generic
events called “transfers”.

• Blocks are interconnected via a Bus Model, and communicate
through an API. The Bus Model handles all the timing, and
events on the bus can be used to trigger action in the
peripherals.

sendAddress()

Initiator

Bus
Model

Bus Model keeps
track of timing.

Address Data

Initiator and Target use
an API to communicate
via transfers.

Target

sendData()

Event timing can
trigger actions.

addressEvent() dataEvent()

Courtesy: Coware, Inc. 2005

The University of Texas at AustinEE 382V Class Notes Foil # 28

Goals For Standardization Of TLM LevelsGoals For Standardization Of TLM Levels

• Scope is to define a range of modeling abstraction levels for
hardware and software SoC design

– A high abstraction level enabling fast SoC models for ESW
programmers and capturing system function

– A level enabling a range of timing accuracies for SoC
architects, that retains high performance

– A level that allows full cycle-accuracy for SoC verification
and HW-SW co-verification, with performance still much
higher than RTL

• Levels should be defined to minimize the number of different
models required

– Minimize the number of models to provide and maintain for IP
vendors (especially processors and memory models)

• Levels should be defined to minimize the amount of remodeling
for the user

– Enable a refinement process from one level to the next

15

The University of Texas at AustinEE 382V Class Notes Foil # 29

SystemC/TLM 2.0 Coding StylesSystemC/TLM 2.0 Coding Styles

• Loosely-timed

– Sufficient timing detail to boot OS and
simulate multi-core systems

– Each transaction has 2 timing points:
begin and end

• Approximately-timed

– Cycle-approximate or cycle-count-
accurate

– Sufficient for architectural exploration

– Each transaction has at least
4 timing points

END_REQ

BEGIN_RESP

END_RESP

BEGIN_REQ

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

Initiator Target

BEGIN

END

Initiator Target

The University of Texas at AustinEE 382V Class Notes Foil # 30

Interconnect
Initiator/
Target

Initiator and TargetInitiator and Target

TargetInitiator
Forward path

Backward path

Forward path

Backward path

Command

Address

Data

Byte enables

Response status

Extensions

• Pointer to transaction object is passed from module to
module using forward and backward paths

• Transactions are of type generic payload

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

16

The University of Texas at AustinEE 382V Class Notes Foil # 31

Blocking and NonBlocking and Non--Blocking TransportsBlocking Transports

• Blocking transport interface

– Typically used with loosely-timed coding style

– tlm_blocking_transport_if
void b_transport(TRANS&, sc_time&);

• Non-blocking transport interface

– Typically used with approximately-timed coding style

– Includes transaction phases

– tlm_fw_nonblocking_transport_if
tlm_sync_enum nb_transport_fw(TRANS&, PHASE&, sc_time&);

– tlm_bw_nonblocking_transport_if
tlm_sync_enum nb_transport_bw(TRANS&, PHASE&, sc_time&);

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

The University of Texas at AustinEE 382V Class Notes Foil # 32

Blocking TransportBlocking Transport

TargetInitiator

wait(30ns);

Simulation time 0ns

b_transport(t, 0ns);

b_transport(t, 0ns);call

return

Simulation time 30ns

b_transport(t, 0ns);

b_transport(t, 0ns);call

return

Simulation time 0ns

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

17

The University of Texas at AustinEE 382V Class Notes Foil # 33

Transaction Phases (Transaction Phases (tlm_sync_enumtlm_sync_enum))

• TLM_ACCEPTED
– Transaction, phase and timing arguments unmodified (ignored) on

return
– Target may respond later (depending on protocol)

• TLM_UPDATED
– Transaction, phase and timing arguments updated (used) on

return
– Target has advanced the protocol state machine to the next state

• TLM_COMPLETED
– Transaction, phase and timing arguments updated (used) on

return
– Target has advanced the protocol state machine straight to the

final phase

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

The University of Texas at AustinEE 382V Class Notes Foil # 34

NonNon--Blocking TransportBlocking Transport

TargetInitiator

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_REQ 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_REQ 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_RESP 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_RESP 0ns);

Source: Christian Haubelt, Univ. of Erlangen-Nuremberg

18

The University of Texas at AustinEE 382V Class Notes Foil # 35

UT

IA ISS
TLM Bus

Speed vs. AccuracySpeed vs. Accuracy

Log A C C U R A C Y

Lo
g

 S
 P

 E
 E

 D

SystemC
Executable TLM

100Kcps

1MIPS

10MIPS

10Kcps

100cps

1Kcps

Cycle
Accurate

-TLM

Pin-accurate
w/RTL

RTL

Host-based

Re-use for
Early Software
Development

Re-use for
System-level

Hardware
Verification

ESL
Architectural

Design LT
3 Mcps

CA
150 kps

PAM+RTL
15 kps

The University of Texas at AustinEE 382V Class Notes Foil # 36

AgendaAgenda

• Design Convergence

• System Level Design

• Modeling

• Verification

– Simulation

– Formal methods

• Summary

19

The University of Texas at AustinEE 382V Class Notes Foil # 37

Design Verification MethodsDesign Verification Methods

• Simulation based methods
– Specify input test vector, output test vector pair

– Run simulation and compare output against expected output

• Formal Methods
– Check equivalence of design models or parts of models

– Check specified properties on models

• Semi-formal Methods
– Specify inputs and outputs as symbolic expressions

– Check simulation output against expected expression

The University of Texas at AustinEE 382V Class Notes Foil # 38

SimulationSimulation

• RTL model is
imported directly into
system simulation model

• Blocks may be required
to interface the RTL model
with the system simulation
model

• Benefits - Only one testbench.
Reduce number and size of files containing stimulus/expected
results and number of testbenches

• Better testing is possible

System-Level Simulation

Design
under Test

(DUT)

System
Model

Stimulus
(Image)

System
Model

Monitor

RTL

VHDL / Verilog from HDS
or external sources

20

The University of Texas at AustinEE 382V Class Notes Foil # 39

Equivalence CheckingEquivalence Checking

• LEC uses boolean algebra to check for logic equivalence

1 = 1’ ?
2 = 2’ ?

in
pu

ts

ou
tp

ut
s1

2
in

pu
ts

ou
tp

ut
s1’

2’

Equivalence
result

p

q

x

y

a

b

r

s

x

y
a

b
ty

b

pr

qr

ps pt

qs qt

xx

yx

xy
xy

yy

yy

aa

bb

bb

× =

• SEC uses FSMs to check for sequential equivalence

The University of Texas at AustinEE 382V Class Notes Foil # 40

Model Checking Model Checking

• Model M satisfies property P? [Clarke, Emerson ’81]

• Inputs
– State transition system representation of M

– Temporal property P as formula of state properties

• Output
– True (property holds)

– False + counter-example (property does not hold)

True /
False + counter-example

Model
Checker

P = P2 always leads to P4
s1

s4 s3

s2P1

P3P4

P2

M

21

The University of Texas at AustinEE 382V Class Notes Foil # 41

AgendaAgenda

• Design Convergence

• System Level Design

• Modeling

• Verification

• Summary

The University of Texas at AustinEE 382V Class Notes Foil # 42

Desirable Design MethodologyDesirable Design Methodology

• Design should be based on the use of one or more formal
models to describe the behavior of the system at a high level of
abstraction

– such behavior should be captured on an unbiased way, that
is, before a decision on its decomposition into hardware and
software components is taken

• The final implementation of the system should be generated as
much as possible using automatic synthesis from this high level
of abstraction

– to ensure implementations that are “correct by construction”

• Validation (through simulation or verification) should be done as
much as possible at the higher levels of abstraction

22

The University of Texas at AustinEE 382V Class Notes Foil # 43

Flow SummaryFlow Summary

Design Export
… after initial platform
configuration through
design refinement and

communication
synthesis

Functional
IP

C/C++
SDL
SPW

Simulink

Synthesis / Place & Route etc.

Implementation Level Verification

Software
Assembly

Hardware
Assembly

Communication
Refinement, Integration &

Synthesis

Performance Analysis and
Platform Configuration

System Integration

Platform
Function

Platform
Architecture

Embedded System Requirements

Platform
Configuration

… at the
un-clocked, timing-

aware
system level

Architecture
IP

CPU/DSP
RTOS

Bus, Memory
HW
SW

