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Embedded Systems

Signal processing systems

® radar, sonar, real-time video, set-top boxes, DVD players, medical equipment,
residential gateways

Mission critical systems

® avionics, space-craft control, nuclear plant control

Distributed control

® network routers & switches, mass transit systems, elevators in large buildings

“Small” systems

® cellular phones, pagers, home appliances, toys, smart cards, MP3 players,
PDAs, digital cameras and camcorders, sensors, smart badges
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Typical Characteristics of
Embedded Systems

Part of a larger system
® not a “computer with keyboard, display, etc.”
HW & SW do application-specific function — not G.P.
® application is known a priori
® but definition and development concurrent
Some degree of re-programmability is essential
® flexibility in upgrading, bug fixing, product differentiation, product
customization
Interact (Sense, manipulate, communicate) with the external world
Never terminate (ideally)
Operation is time constrained: latency, throughput
Other constraints: power, size, weight, heat, reliability etc.
Increasingly high-performance (DSP) & networked
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“Traditional” Software Embedded
Systems = CPU + RTOS
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B Embedded systems employ a combination of

® application-specific h/w (boards, ASICs, FPGAs etc.)
# performance, low power

® s/w on prog. processors: DSPs, ucontrollers etc.
# flexibility, complexity

® mechanical transducers and actuators
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Accelerating Systems

M Use additional computational unit(s) dedicated to some
functions
® Hardwired logic.
® Extra CPU.
B Hardware/Software Co-design: joint design of hardware
and software architectures.
@ performance analysis
@ scheduling and allocation
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Accelerated System Architecture ‘
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Accelerator vs. Co-Processor

HA CO-processor executes instructions.
® Instructions are dispatched by the CPU.

B An accelerator appears as a device on the bus.
® The accelerator is controlled via registers.
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Accelerator Implementations

W Application-specific integrated circuit.
B Field-programmable gate array (FPGA).

M Standard component.
® Example: graphics processor.

M SoCs enable multiple accelerators, CPUs, peripherals, and

some memory to be placed within a single chip.
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System Design Tasks

B Design a heterogeneous multiprocessor architecture that
satisfies the design requirements.
® Processing element (PE): CPU, accelerator, etc.

B Program the system.
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Why Accelerators?

B Better cost/performance.

@ Custom logic may be able to perform operation faster or at lower
power than a CPU of equivalent cost.

@ CPU cost is a non-linear function of performance.

cost

performance
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Why Accelerators? cont’d.

M Better real-time performance.
® Put time-critical functions on less-loaded processing elements.

® Rate Monotonic Scheduling (RMS) utilization is ‘limited’---extra
CPU cycles must be reserved to meet deadlines. (see next section)

cost .
deadline w.

deadline RMS overhead

performance
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Why Accelerators? cont’d.

B Good for processing 1/O in real-time.
B May consume less energy.
B May be better at streaming data.

B May not be able to do all the work on even the largest
single CPU...
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Real Time Scheduling

M Scheduling Policies
@ RMS - Rate Monotonic Scheduling:
# Task Priority = Rate = 1/Period
% RMS is the optimal preemptive fixed-priority scheduling policy.
® EDF - Earliest Deadline First:
s Task Priority = Current Absolute Deadline
# EDF is the optimal preemptive dynamic-priority scheduling policy.
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Real Time Scheduling Assumptions

M Scheduling Assumptions
® Single Processor
® All Tasks are Periodic
® Zero Context-Switch Time
® \Worst-Case Task Execution Times are Known
® No Data Dependencies Among Tasks.

B RMS and EDF have both been extended to relax these
assumptions.
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Metrics

B How do we evaluate a scheduling policy:
@ Ability to satisfy all deadlines.
@ CPU utilization---percentage of time devoted to useful work.
@® Scheduling overhead---time required to make scheduling decision.
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Rate Monotonic Scheduling

B RMS (Liu and Layland): widely-used, analyzable
scheduling policy.

B Analysis is known as Rate Monotonic Analysis (RMA).
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RMA model

B All process run on single CPU.

B Zero context switch time.

B No data dependencies between processes.
B Process execution time is constant.

M Deadline is at end of period.

B Highest-priority ready process runs.
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Process Parameters

B T, is execution time of process i; t; is period of process i.

period T;

computation time T;
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Rate-Monotonic Analysis

B Response time: time required to finish a process/task.

B Critical instant: scheduling state that gives worst response
time.

@ Critical instant occurs when all higher-priority processes are ready
to execute.
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Critical Instant

interfering processes
- ™~
I

L
L

(|
|
critical I
instant - 1 ,worst case period for P4...
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RMS priorities

B Optimal (fixed) priority assignment:
@ shortest-period process gets highest priority;
% priority based preemption can be used...
® priority inversely proportional to period;
® break ties arbitrarily.

B No fixed-priority scheme does better.

@ RMS provides the highest worst case CPU utilization while
ensuring that all processes meet their deadlines
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RMS: example 1

Process Execution Time Period
Py 1 4
P, 2 6 Static priority: P1 >> P2 >> P3
P5 3 12
Py - unrolled schedule
P, — (least common multiple of
process periods)
P, mx -
T I N B \ [
0 2 4 8 10 12
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P2 period
P2
S O R P1 period,

5 10 time
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RMS CPU utilization

M Utilization for n processes is

.ZiTi/Ti

B As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%.

® Yet, is not uncommon to find total utilizations around .90 or more
(.69 is worst case behavior of algorithm)

@ Achievable utilization is strongly dependent upon the relative
values of the periods of the tasks comprising the task set...
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RMS: example 3

Process Execution Time Period
P, 1 4
Py 6 8

Is this task set schedulable?? If yes, give the CPU utilization.
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RMS CPU utilization, cont’d. ‘

B RMS cannot asymptotically guarantee use of 100% of
CPU, even with zero context switch overhead.
® Must keep idle cycles available to handle worst-case scenario.

B However, RMS guarantees all processes will always meet
their deadlines.

e P2 period ,
SR e e P1 period,
0 5 10 time

RMS implementation

B Efficient implementation:
@ scan processes;
@ choose highest-priority active process.
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Earliest-deadline-first scheduling

B EDF: dynamic priority scheduling scheme.
B Process closest to its deadline has highest priority.
B Requires recalculating processes at every timer interrupt.
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EDF example

P1

P2
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EDF example
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EDF example
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EDF example
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EDF example
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EDF example
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EDF analysis

B EDF can use 100% of CPU for worst case
B But EDF may miss deadlines.

Margarida Jacome - UT Austin 40




EDF implementation

M On each timer interrupt:
® compute time to deadline;
® choose process closest to deadline.

B Generally considered too expensive to use in practice,
unless the task count is small
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Priority Inversion

B Priority Inversion: low-priority process keeps high-priority
process from running.
B Improper use of system resources can cause scheduling
problems:
@ Low-priority process grabs 1/0O device.

® High-priority device needs /O device, but can’t get it until low-
priority process is done.

B Can cause deadlock.
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Solving priority inversion

B Give priorities to system resources.
M Have process inherit the priority of a resource that it

requests.
® L ow-priority process inherits priority of device if higher.
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Context-switching time

B Non-zero context switch time can push limits of a tight
schedule.

B Hard to calculate effects---depends on order of context
switches.

M In practice, OS context switch overhead is small.
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What about interrupts?

B Interrupts take time away P1
from processes.
B Other event processing may 0S
be masked during interrupt
service routine (ISR) -
B Perform minimum work 0S
possible in the interrupt
handler. P3
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Device processing structure

B Interrupt service routine (ISR) performs minimal 1/0.
® Get register values, put register values.

B Interrupt service process/thread performs most of device
function.

Margarida Jacome - UT Austin 46




Evaluating performance

B May want to test
® context switch time assumptions on real platform
® scheduling policy
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Processes and caches

B Processes can cause additional caching problems.

@ Even if individual processes are well-behaved, processes may
interfere with each other.

B Worst-case execution time with bad cache behavior is
usually much worse than execution time with good cache
behavior.
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Fixing scheduling problems

B What if your set of processes is unschedulable?
® Change deadlines in requirements.
® Reduce execution times of processes.
® Get a faster CPU
® Get an Accelerator
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Accelerated system design

M First, determine that the system really needs to be
accelerated.
® How much faster is the accelerator on the core function?
® How much data transfer overhead?

M Design the accelerator itself.
B Design CPU interface to accelerator.
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Performance analysis

M Critical parameter is speedup: how much faster is the
system with the accelerator?
B Must take into account:
® Accelerator execution time.
@ Data transfer time.
@ Synchronization with the master CPU.
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Accelerator execution time

B Total accelerator execution time:

L taccel = tin + tx + tout

Data input Data output
Accelerated
computation
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Data input/output times

M Bus transactions include:
@ flushing register/cache values to main memory;
@ time required for CPU to set up transaction;
@ overhead of data transfers by bus packets, handshaking, etc.
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Accelerator speedup

B Assume loop is executed n times.

B Compare accelerated system to non-accelerated system:
® Saved Time = n(tepy - toeer)

L4 = n[tCPU - (tin + tx + tout)]

T

Execution time of equivalent
function on CPU

M Speed-Up = Original Ex. Time / Accelerated Ex.Time
u Speed‘Up = tCPU / taccel
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Single- vs. multi-threaded

B One critical factor is available parallelism:
@ single-threaded/blocking: CPU waits for accelerator;

@ multithreaded/non-blocking: CPU continues to execute along with
accelerator.

B To multithread, CPU must have useful work to do.
@ But software must also support multithreading.
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Total execution time

B Single-threaded: B Multi-threaded:
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Execution time analysis

B Single-threaded: B Multi-threaded:
® Count execution time of all @® Find longest path through
component processes. execution.
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Sources of parallelism

B Overlap 1/0 and accelerator computation.

® Perform operations in batches, read in second batch of data while
computing on first batch.

B Find other work to do on the CPU.

® May reschedule operations to move work after accelerator
initiation.
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Accelerated systems

B Several off-the-shelf boards are available for acceleration
in PCs:
® FPGA-based core;
® PC bus interface.
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Accelerator/CPU interface

B Accelerator registers provide control registers for CPU.
M Data registers can be used for small data objects.

B Accelerator may include special-purpose read/write logic
(DMA hardware)
® Especially valuable for large data transfers.
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Caching problems

B Main memory provides the primary data transfer
mechanism to the accelerator.
M Programs must ensure that caching does not invalidate
main memory data.
® CPU reads location S.
® Accelerator writes location S. BAD

® CPU writes location S. (program will not see the value
of S stored in the cache)

The bus interface may provide mechanisms for accelerators to tell
the CPU of required cache changes...
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Synchronization

W As with cache, main memory writes to shared memory
may cause invalidation:
® CPU reads S.
® Accelerator writes S.
® CPU write S.

Many CPU buses implement test-and-set atomic operations that
the accelerator can use to implement a semaphore. This can serve
as a highly efficient means of synchronizing inter-process
Communications (IPC).
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Partitioning/Decomposition

B Divide functional specification into units.
@ Map units onto PEs.
@ Units may become processes.

W Determine proper level of parallelism:

1() 2()

f3(f1().120) vs. N/

3()
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“Typical” Decomposition Methodology

B Divide Control-Data Flow Graph (CDFG) into pieces,
shuffle functions between pieces.

M Hierarchically decompose CDFG to identify possible
partitions.
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Decomposition example ‘

Block 2

77777777777777777777777777777
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Scheduling and allocation

B Must:
® schedule operations in time;
® allocate computations to processing elements.
B Scheduling and allocation interact, but separating them
helps.
® Alternatively allocate, then schedule.
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Example: scheduling and
allocation

dl d2

M1 M2

Task graph Hardware platform
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Example process execution times

no

P1
P2
P3 | -

oo ulZ
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Example communication model ‘

B Assume communication within PE is free.
B Cost of communication from P1 to P3 is d1 =2; cost of P2

to P3 communication is d2 = 4.

4
dl d2
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First design

B Allocate P2 -> M1; P1, P3 -> M2.

v h Time = 15

"
network

5 10 15 20
Margarida Jacome - UT Austin tl me
Second design
B Allocate P1 -> M1; P2, P3 -> M2:
M1 h Tme=12
v
network
I I I I
5 10 15 20
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System integration and
debugging

B Try to debug the CPU/accelerator interface separately from
the accelerator core.

B Build scaffolding to test the accelerator (Hardware
Abstraction Layer is a good place for this functionality,
under compile switches)

B Hardware/software co-simulation can be useful.
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Complexity and Heterogeneity ‘

controller
control panel processes
| 7 et
Real-time Ul
ASIC ucontroller oS |
processes
[processes;
|
|
DSP Programmable Programmable el
Assembl Assembl
Code osP oSk Cod
ode
L | | |
Dual-ported
e CODEC

B Heterogeneity within H/W & S/W parts as well

® S/W: control oriented, DSP oriented

® H/W: ASICs, COTS ICs
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Handling Heterogeneity

A

i software
compiler synthe5|s

partitioning

system-level modeling mosimulation symbolic
) . discrete
imperative FSM dataflow event
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detail modeling and simulation
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Industrial Structure Shift
(from Sony)
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120 1 ) Market Structure Shift B8l SOC Erahas come.
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Many Implementation Choices

B Microprocessors Speed Power Cost
B Domain-specific processors 1 1
® DSP

® Network processors
® Microcontrollers

B ASIPs
B Reconfigurable SoC
B FPGA
B Gatearray
m ASIC
A 4 A 4
High Low
Volume
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Hardware vs. Software Modules

B Hardware = functionality implemented via a custom architecture (e.g.
datapath + FSM)

B Software = functionality implemented in software on a programmable
processor

B Key differences:

® Multiplexing
# software modules multiplexed with others on a processor
- e.g. using an OS
% hardware modules are typically mapped individually on dedicated hardware
® Concurrency
% processors usually have one “thread of control”
# dedicated hardware often has concurrent datapaths
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Multiplexing Software Modules

A B A m B A B
[
v
v Resume A
Resume B
v \ /
Call B —
v
vV / ResumeA
Resume B
v
2 Return
v v v v
SUBROUTINES COROUTINES PROCESSES
Hierarchical Symmetric Symmetric
Sequential Sequential Concurrent
Modularity

Complexity




Many Types of Programmable

Processors
Past/Now Now / Future
& Microprocessor & Network Processor
¢ Microcontroller & Sensor Processor
¢DSP ¢ Cryptoprocessor
¢ Graphics ¢ Game Processor
Processor ¢ Wearable Processor

& Mobile Processor
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Application-Specific Instruction
Processors (ASIPSs)

Processors with instruction-sets tailored to
specific applications or application domains
instruction-set generation as part of synthesis
e.g. Tensilica
Pluses:
customization yields lower area, power etc.
Minuses:

higher h/w & s/w development overhead
design, compilers, debuggers
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Reconfigurable SoC

To external memary

[ClockSynthesizer | ( memory 1€ ETa

Interface Unit
Power Control
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H/W-S/W Architecture

B A significant part of the problem is deciding which parts
should be in s/w on programmable processors, and which in
specialized h/w

N Today:

® Ad hoc approaches based on earlier experience with similar products,
& on manual design

® H/W-S/W partitioning decided at the beginning, and then designs
proceed separately
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Embedded System Design

B CAD tools take care of HW fairly well (at least in relative terms)
® Although a productivity gap emerging
B But, SW is a different story...

® HLLs such as C help, but can’t cope with complexity and performance
constraints

Holy Grail for Tools People: H/W-like synthesis & verification from a behavior
description of the whole system at a high level of abstraction using formal
computation models
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Productivity Gap in Hardware
Design

Potential Design Complexity and Designer Productivity
10,000,000 100,000,000

1,000,000 || —"oole Tr/Chip L] 10,000,000
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e
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Source: sematech97

A growing gap between design complexity and design productivity
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Situation Worse in S/W

DoD Embedded System Costs

45
Software
40 - /
S 351 _—
O
> 30 -
& 251 /
S 207 /
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- 10 - _— / Hardware
5 -//_—/A
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Embedded System Design from a
Design Technology Perspective
L -
; < 2@: [ | Intertw!r?ed.subtasks_
2 =< ® Specification/modeling
® H/W & S/W partitioning
;@: ® Scheduling & resource allocations
® H/W & S/W implementation
Analog I/O ® Verification & debugging
Processor Memory

B Crucial is the co-design and joint
optimization of hardware and
7 software

DSP . ]
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Embedded System Design Flow ‘

Modeling

& the system to be designed, and experimenting with
algorithms involved,;

Refining (or “partitioning™)
& the function to be implemented into smaller, interacting

=]
| pieces;
HW-SW partitioning: Allocating

& elements in the refined model to either (1) HW units, or (2)

SW running on custom hardware or a suitable
I l i @ programmable processor.
Processor .
Scheduling
& the times at which the functions are executed. This is
important when several modules in the partition share a
single hardware unit.
,=é==\ Mapping (Implementing)

& afunctional description into (1) software that runs on a
—— @ processor or (2) a collection of custom, semi-custom, or

-~

H

DSP .
Codeg commodity HW.

On-going Paradigm Shift in
Embedded System Design

Virtual Component Based Design B Change in business model due to
- Minimize Design Time SoCs
90% - Maximize IP Reuse 0% ® Currently many IC companies have
New i . Optimize System Level Reused a chance to sell devices for a single
Design Cell Based Design N b d

- Minimize Area Design oar B .

-Maximize Performance ® In future, a single vendor will

- Optimize Gate Level create a System-on-Chip

® But, how will it have knowledge of
all the domains?
1991 1996 2001

B Component-based design

® Components encapsulate the
intellectual property

H Platforms
® Integrated HW/SW/IP
® Application focus
® Rapid low-cost customization

“Real”
Component

“Virtual”
Component

Deep
Sub-Micron

System System
on Board on Silicon
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IP-based Design

Which Bus? PI?
AMBA?

Which DSP
Processor? C507
Can DSP be done on
Microcontroller?

Dedicated Bus for
DSP?

Can | Buy > External ‘ - — DsP
aWPEG2 | ] IO ~ Processor Which
Processor? 8 Microcontroller?
Which One? MPEG  |-t——3m D ARM? HC11?
O
2
Peripheral [E—— S—  Control
= Processor
Audio -~ 3 |__| System How fast will my
Decode L RAM User Interface

Software run? How
Much can | fit on my
Microcontroller?

Do | need a dedicated Audio Decoder?
Can decode be done on Microcontroller?

. [Vincentelli]
Map from Behavior to
Architecture
Transport Decode Implemented
as Software Task Running
on Microcontroller
“xternal <

o [E€»

————]
MPEG [T
-

Peripheral [“@——3»= Z— Control
Processor

Audio System
Decode RAM

Dsr
Processor

Video

g Front i} Cuatpat §

Processor Bus

Audio Decode Behavior
Implemented on
Dedicated Hardware

[Vincentelli]




