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Embedded Systems

 Signal processing systems
 radar, sonar, real-time video, set-top boxes, DVD players, medical equipment, 

residential gateways

 Mission critical systems
 avionics, space-craft control, nuclear plant control

 Distributed control
 network routers & switches, mass transit systems, elevators in large buildings

 “Small” systems
 cellular phones, pagers, home appliances, toys, smart cards, MP3 players, 

PDAs, digital cameras and camcorders, sensors, smart badges
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Typical Characteristics of 
Embedded Systems

 Part of a larger system
 not a “computer with keyboard, display, etc.”

 HW & SW do application-specific function – not G.P.
 application is known a priori
 but definition and development concurrent

 Some degree of re-programmability is essential 
 flexibility in upgrading, bug fixing, product differentiation, product 

customization
 Interact (sense, manipulate, communicate) with the external world
 Never terminate (ideally)
 Operation is time constrained: latency, throughput
 Other constraints: power, size, weight, heat, reliability etc.
 Increasingly high-performance (DSP) & networked
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“Traditional” Software Embedded 
Systems = CPU + RTOS
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Modern Embedded Systems?

 Embedded systems employ a combination of
 application-specific h/w (boards, ASICs, FPGAs etc.)

 performance, low power

 s/w on prog. processors: DSPs, controllers etc.
 flexibility, complexity

 mechanical transducers and actuators

Application 
Specific Gates

Processor 
Cores

Analog 
I/O

Memory
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Accelerating Systems

 Use additional computational unit(s) dedicated to some 
functions
 Hardwired logic.

 Extra CPU.

 Hardware/Software Co-design: joint design of hardware 
and software architectures.
 performance analysis

 scheduling and allocation
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Accelerated System Architecture

CPU

accelerator

memory

I/O

request

data
result
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Accelerator vs. Co-Processor

 A co-processor executes instructions.
 Instructions are dispatched by the CPU.

 An accelerator appears as a device on the bus.
 The accelerator is controlled via registers.
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Accelerator Implementations

 Application-specific integrated circuit.

 Field-programmable gate array (FPGA).

 Standard component.
 Example: graphics processor.

 SoCs enable multiple accelerators, CPUs, peripherals, and 
some memory to be placed within a single chip.
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System Design Tasks

 Design a heterogeneous multiprocessor architecture that 
satisfies the design requirements.
 Processing element (PE): CPU, accelerator, etc.

 Program the system.

Margarida Jacome - UT Austin 12

Why Accelerators?

 Better cost/performance.
 Custom logic may be able to perform operation faster or at lower

power than a CPU of equivalent cost.

 CPU cost is a non-linear function of performance.

cost

performance
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Why Accelerators? cont’d.

 Better real-time performance.
 Put time-critical functions on less-loaded processing elements.

 Rate Monotonic Scheduling (RMS) utilization is ‘limited’---extra 
CPU cycles must be reserved to meet deadlines. (see next section)

cost

performance

deadline
deadline w.
RMS overhead
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Why Accelerators? cont’d.

 Good for processing I/O in real-time.

 May consume less energy.

 May be better at streaming data.

 May not be able to do all the work on even the largest 
single CPU…
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Real Time Scheduling

 Scheduling Policies
 RMS – Rate Monotonic Scheduling:

 Task Priority = Rate = 1/Period

RMS is the optimal preemptive fixed-priority scheduling policy.

 EDF – Earliest Deadline First:
 Task Priority = Current Absolute Deadline

 EDF is the optimal preemptive dynamic-priority scheduling policy.
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Real Time Scheduling Assumptions

 Scheduling Assumptions
 Single Processor

 All Tasks are Periodic

 Zero Context-Switch Time

 Worst-Case Task Execution Times are Known

 No Data Dependencies Among Tasks.

 RMS and EDF have both been extended to relax these 
assumptions.
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Metrics

 How do we evaluate a scheduling policy:
 Ability to satisfy all deadlines.

 CPU utilization---percentage of time devoted to useful work.

 Scheduling overhead---time required to make scheduling decision.
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Rate Monotonic Scheduling

 RMS (Liu and Layland): widely-used, analyzable 
scheduling policy.

 Analysis is known as Rate Monotonic Analysis (RMA).
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RMA model

 All process run on single CPU.

 Zero context switch time.

 No data dependencies between processes.

 Process execution time is constant.

 Deadline is at end of period.

 Highest-priority ready process runs.
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Process Parameters

 Ti is execution time of process i; i is period of process i.

period i

Pi

computation time Ti
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Rate-Monotonic Analysis

 Response time: time required to finish a process/task.

 Critical instant: scheduling state that gives worst response 
time.
 Critical instant occurs when all higher-priority processes are ready 

to execute.
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Critical Instant

P4

P3

P2

P1

critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

worst case period for P4…
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RMS priorities

 Optimal (fixed) priority assignment:
 shortest-period process gets highest priority;

 priority based preemption can be used…

 priority inversely proportional to period;

 break ties arbitrarily.

 No fixed-priority scheme does better.
 RMS provides the highest worst case CPU utilization while 

ensuring that all processes meet their deadlines
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RMS: example 1

Process Execution Time Period
iTiPi

41P1

62P2

123P3

0 2 4 6 8 10 12

P3

P2

P1

(least common multiple of 
process periods)

unrolled schedule

Static priority: P1 >> P2 >> P3
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RMS: example 2

time0 5 10

P2 period

P1 period

P1

P2

P1 P1
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RMS CPU utilization

 Utilization for n processes is

 i Ti / i

 As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%.
 Yet, is not uncommon to find total utilizations around .90 or more 

(.69 is worst case behavior of algorithm)

 Achievable utilization is strongly dependent upon the relative 
values of the periods of the tasks comprising the task set…
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RMS: example 3

Process Execution Time Period
iTiPi

41P1

86P2

Is this task set schedulable?? If yes, give the CPU utilization.
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RMS CPU utilization, cont’d.

 RMS cannot asymptotically guarantee use of 100% of 
CPU, even with zero context switch overhead.
 Must keep idle cycles available to handle worst-case scenario.

 However, RMS guarantees all processes will always meet 
their deadlines.

time0 5 10

P2 period

P1 period

P1

P2

P1 P1

P2
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RMS implementation

 Efficient implementation:
 scan processes;

 choose highest-priority active process.
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Earliest-deadline-first scheduling

 EDF: dynamic priority scheduling scheme.

 Process closest to its deadline has highest priority.

 Requires recalculating processes at every timer interrupt.
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EDF example

P2

P1

t
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EDF example

P2

P1

t
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EDF example

P2

P1

t
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EDF example

P2

P1

t
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EDF example

P2

P1

t
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EDF example

P2

P1

t

No process is
ready…
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EDF example

P2

P1

t
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EDF example

P2

P1
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EDF analysis

 EDF can use 100% of CPU for worst case

 But EDF may miss deadlines.
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EDF implementation

 On each timer interrupt:
 compute time to deadline;

 choose process closest to deadline.

 Generally considered too expensive to use in practice, 
unless the task count is small
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Priority Inversion

 Priority Inversion: low-priority process keeps high-priority 
process from running.

 Improper use of system resources can cause scheduling 
problems:
 Low-priority process grabs I/O device.

 High-priority device needs I/O device, but can’t get it until low-
priority process is done.

 Can cause deadlock.
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Solving priority inversion

 Give priorities to system resources.

 Have process inherit the priority of a resource that it 
requests.
 Low-priority process inherits priority of device if higher.
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Context-switching time

 Non-zero context switch time can push limits of a tight 
schedule.

 Hard to calculate effects---depends on order of context 
switches.

 In practice, OS context switch overhead is small.
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What about interrupts?

 Interrupts take time away 
from processes.

 Other event processing may 
be masked during interrupt 
service routine (ISR)

 Perform minimum work 
possible in the interrupt 
handler.

P1

OS

P2

OS

intr

P3
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Device processing structure

 Interrupt service routine (ISR) performs minimal I/O.
 Get register values, put register values.

 Interrupt service process/thread performs most of device 
function.
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Evaluating performance

 May want to test
 context switch time assumptions on real platform

 scheduling policy
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Processes and caches

 Processes can cause additional caching problems.
 Even if individual processes are well-behaved, processes may 

interfere with each other.

 Worst-case execution time with bad cache behavior is 
usually much worse than execution time with good cache 
behavior.
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Fixing scheduling problems

 What if your set of processes is unschedulable?
 Change deadlines in requirements.

 Reduce execution times of processes.

 Get a faster CPU

 Get an Accelerator
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Accelerated system design

 First, determine that the system really needs to be 
accelerated.
 How much faster is the accelerator on the core function?

 How much data transfer overhead?

 Design the accelerator itself.

 Design CPU interface to accelerator.
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Performance analysis

 Critical parameter is speedup: how much faster is the 
system with the accelerator?

 Must take into account:
 Accelerator execution time.

 Data transfer time.

 Synchronization with the master CPU.
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Accelerator execution time

 Total accelerator execution time:
 taccel = tin + tx + tout

Data input

Accelerated
computation

Data output
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Data input/output times

 Bus transactions include:
 flushing register/cache values to main memory;

 time required for CPU to set up transaction;

 overhead of data transfers by bus packets, handshaking, etc.
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Accelerator speedup

 Assume loop is executed n times.

 Compare accelerated system to non-accelerated system:
 Saved Time = n(tCPU - taccel)

 = n[tCPU - (tin + tx + tout)]

 Speed-Up = Original Ex. Time / Accelerated Ex.Time

 Speed-Up = tCPU / taccel

Execution time of equivalent 
function on CPU
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Single- vs. multi-threaded

 One critical factor is available parallelism:
 single-threaded/blocking: CPU waits for accelerator;

 multithreaded/non-blocking: CPU continues to execute along with 
accelerator.

 To multithread, CPU must have useful work to do.
 But software must also support multithreading.
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Total execution time

 Single-threaded:  Multi-threaded:

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4
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Execution time analysis

 Single-threaded:
 Count execution time of all 

component processes.

 Multi-threaded:
 Find longest path through 

execution.
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Sources of parallelism

 Overlap I/O and accelerator computation.
 Perform operations in batches, read in second batch of data while 

computing on first batch.

 Find other work to do on the CPU.
 May reschedule operations to move work after accelerator 

initiation.
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Accelerated systems

 Several off-the-shelf boards are available for acceleration 
in PCs:
 FPGA-based core;

 PC bus interface.
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Accelerator/CPU interface

 Accelerator registers provide control registers for CPU.

 Data registers can be used for small data objects.

 Accelerator may include special-purpose read/write logic 
(DMA hardware)
 Especially valuable for large data transfers.
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Caching problems

 Main memory provides the primary data transfer 
mechanism to the accelerator.

 Programs must ensure that caching does not invalidate 
main memory data.
 CPU reads location S.

 Accelerator writes location S.

 CPU writes location S.

BAD
(program will not see the value
of S stored in the cache)

The bus interface may provide mechanisms for accelerators to tell
the CPU of required cache changes…
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Synchronization

 As with cache, main memory writes to shared memory 
may cause invalidation:
 CPU reads S.

 Accelerator writes S.

 CPU write S.

Many CPU buses implement test-and-set atomic operations that 
the accelerator can use to implement a semaphore.  This can serve 
as a highly efficient means of synchronizing inter-process 
Communications (IPC).
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Partitioning/Decomposition

 Divide functional specification into units.
 Map units onto PEs.

 Units may become processes.

 Determine proper level of parallelism:

f3(f1(),f2())

f1() f2()

f3()

vs.
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“Typical” Decomposition Methodology

 Divide Control-Data Flow Graph (CDFG) into pieces, 
shuffle functions between pieces.

 Hierarchically decompose CDFG to identify possible 
partitions.
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Decomposition example

Block 1

Block 2

Block 3

cond 1

cond 2

P1

P2

P3
P4

P5
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Scheduling and allocation

 Must:
 schedule operations in time;

 allocate computations to processing elements.

 Scheduling and allocation interact, but separating them 
helps.
 Alternatively allocate, then schedule.
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Example: scheduling and 
allocation

P1 P2

P3

d1 d2

Task graph Hardware platform

M1 M2
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Example process execution times

P1

P2

P3

M1 M2
5

5

--

5

6

5
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Example communication model

 Assume communication within PE is free.

 Cost of communication from P1 to P3 is d1 =2; cost of P2 
to P3 communication is d2 = 4.

P1 P2

P3

d1 d22 4
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First design

 Allocate P2 -> M1; P1, P3 -> M2.

time

M1

M2

network

5 10 15 20

P1

P2

d2

P3

Time = 15
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Second design

 Allocate P1 -> M1; P2, P3 -> M2:

M1

M2

network

5 10 15 20

P1

P2

d1

P3

Time = 12
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System integration and 
debugging

 Try to debug the CPU/accelerator interface separately from 
the accelerator core.

 Build scaffolding to test the accelerator (Hardware 
Abstraction Layer is a good place for this functionality, 
under compile switches)

 Hardware/software co-simulation can be useful.

Margarida Jacome - UT Austin 74

Outline

 Introduction

 When to  Use Accelerators
 Real Time Scheduling

 Accelerated System Design
 Architecture Selection 

 Partitioning and Scheduling

 Key Recent Trends



Margarida Jacome - UT Austin 75

Complexity and Heterogeneity

 Heterogeneity within H/W & S/W parts as well
 S/W: control oriented, DSP oriented
 H/W: ASICs, COTS ICs

controller

control panel

Real-time
OS

controller
processes

UI
processes

ASIC

Programmable
DSP

Programmable
DSP

DSP
Assembly

Code

DSP
Assembly

Code

Dual-ported
RAM

CODEC
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Handling Heterogeneity

From Lee (Berkeley)
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Industrial Structure Shift
(from Sony)
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Many Implementation Choices

 Microprocessors
 Domain-specific processors

 DSP
 Network processors
 Microcontrollers

 ASIPs
 Reconfigurable SoC
 FPGA
 Gatearray
 ASIC

Speed Power Cost

High        Low
Volume
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Hardware vs. Software Modules

 Hardware = functionality implemented via a custom architecture (e.g. 
datapath + FSM)

 Software = functionality implemented in software on a programmable 
processor

 Key differences:
 Multiplexing

 software modules multiplexed with others on a processor
 e.g. using an OS

 hardware modules are typically mapped individually on dedicated hardware

 Concurrency
 processors usually have one “thread of control”
 dedicated hardware often has concurrent datapaths
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Multiplexing Software Modules

Call B

Return

Resume B

Resume B

Resume A

Resume A

A                B A                B A                B

SUBROUTINES                                  COROUTINES         PROCESSES
Hierarchical                                       Symmetric Symmetric
Sequential                                         Sequential                                        Concurrent

Modularity
Complexity
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Many Types of Programmable 
Processors

 Past/Now
Microprocessor

Microcontroller

DSP

Graphics 
Processor

 Now / Future
Network Processor

Sensor Processor

Cryptoprocessor 

Game Processor

Wearable Processor

Mobile Processor

Margarida Jacome - UT Austin 82

Application-Specific Instruction
Processors (ASIPs)

 Processors with instruction-sets tailored to 
specific applications or application domains

 instruction-set generation as part of synthesis

e.g. Tensilica

 Pluses:
customization yields lower area, power etc. 

 Minuses:
higher h/w & s/w development overhead

– design, compilers, debuggers 
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Reconfigurable SoC

Triscend’s A7 CSoC

Other Examples

Atmel’s FPSLIC
(AVR + FPGA)

Altera’s Nios
(configurable 

RISC on a PLD)
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H/W-S/W Architecture

 A significant part of the problem is deciding which parts 
should be in s/w on programmable processors, and which in 
specialized h/w

 Today:
 Ad hoc approaches based on earlier experience with similar products, 

& on manual design

 H/W-S/W partitioning decided at the beginning, and then designs 
proceed separately
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Embedded System Design

 CAD tools take care of HW fairly well (at least in relative terms)
 Although a productivity gap emerging

 But, SW is a different story…
 HLLs such as C help, but can’t cope with complexity and performance 

constraints

Holy Grail for Tools People: H/W-like synthesis & verification from a behavior 
description of the whole system at a high level of abstraction using formal 

computation models
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Productivity Gap in Hardware 
Design

Source: sematech97

A growing gap between design complexity and design productivity
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Situation Worse in S/W
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Embedded System Design from a 
Design Technology Perspective

 Intertwined subtasks
 Specification/modeling

 H/W & S/W partitioning

 Scheduling & resource allocations

 H/W & S/W implementation

 Verification & debugging

 Crucial is the co-design and joint 
optimization of hardware and 
software

Processor

Analog I/O

Memory

ASIC

DSP
Code
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Embedded System Design Flow

 Modeling

 the system to be designed, and  experimenting with 
algorithms involved;

 Refining (or “partitioning”)

 the function to be implemented into smaller, interacting 
pieces;

 HW-SW partitioning: Allocating 

 elements in the refined model to either  (1) HW units, or (2) 
SW running on custom hardware or a suitable 
programmable processor.

 Scheduling

 the times at which the functions are executed. This is 
important when several modules in the partition share a 
single hardware unit.

 Mapping (Implementing)

 a functional description into (1) software that runs on a 
processor or (2) a collection of custom, semi-custom, or 
commodity HW.

Processor 

Analog I/O

Memory

ASIC

Environ
-ment

DSP 
Code
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On-going Paradigm Shift in
Embedded System Design

 Change in business model due to 
SoCs
 Currently many IC companies have 

a chance to sell devices for a single 
board

 In future, a single vendor will 
create a System-on-Chip

 But, how will it have knowledge of 
all the domains?

 Component-based design
 Components encapsulate the 

intellectual property
 Platforms

 Integrated HW/SW/IP
 Application focus
 Rapid low-cost customization
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IP-based Design

[Vincentelli]
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Map from Behavior to 
Architecture

[Vincentelli]


