
1

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 1

High Level Synthesis

• Data Flow Graphs

• FSM with Data Path

• Allocation

• Scheduling

• Implementation

• Directions in Architectural Synthesis

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 2

High Level Synthesis (HLS)
• Convert a high-level description of a design to a 

RTL netlist
– Input:

• High-level languages (e.g., C)
• Behavioral hardware description languages (e.g., VHDL)
• State diagrams / logic networks

– Tools:
• Parser
• Library of modules

– Constraints:
• Area constraints (e.g., # modules of a certain type)

• Delay constraints (e.g., set of operations should finish in 
clock cycles)

– Output:
• Operation scheduling (time) and binding (resource)
• Control generation and detailed interconnections



2

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 3

High Level Synthesis

CDFG

Parsing

Transformation

Synthesis

Structural
RTL

Behavioral
Description

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 4

Structural Behavioral

Physical

Trans

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan

Layout
Synthesis

Source: D. Gajski, Y.-L. Lin



3

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 5

Structural Behavioral

Physical

Trans.

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan

Logic
Synthesis

Source: D. Gajski, Y.-L. Lin

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 6

Structural Behavioral

Physical

Trans.

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan

High-Level
Synthesis

Source: D. Gajski, Y.-L. Lin



4

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 7

Essential Issues

• Behavioral Specification Languages

• Target Architectures

• Intermediate Representation

• Operation Scheduling

• Allocation/Binding

• Control Generation

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 8

Behavioral Specification Languages

• Add hardware-specific constructs  to 
existing languages
– SystemC

• Popular HDL
– Verilog, VHDL

• Synthesis-oriented HDL
– UDL/I



5

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 9

Target Architectures

• Bus-based

• Multiplexer-based

• Register file

• Pipelined

• RISC, VLIW

• Interface Protocol

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 10

Design Space Exploration

Arch I

Arch II

Arch III

D
ela

y

Area



6

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 11

FSM with Data Path (FSMD)

FSM
Data
Path

FSM
Data
Path

FSM
Data
Path

Communicating FSMDs

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 12

Intermediate Representation (CDFG)

* *
+

Control Flow Graph

Data Flow Graph



7

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 13

Allocation/Binding

Functional UnitsOperations

Storage
Variables
Signals

Bus/Wire/MuxData Transfers

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 14

RF

FU
FU

RF

Variables/Signals

Data Transfer

Operations



8

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 15

Controller Specification Generation

Scheduled
CDFG

Allocated
Datapath

Micro-Operations
for

Every Control Step

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 16

Quality Measures for High-Level 
Synthesis

• Performance

• Area Cost

• Power Consumption

• Testability

• Reusability



9

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 17

Hardware Variations

• Functional Units
– Pipelined, Multi-Cycle, Chained, Multi-Function

• Storage
– Register, RF, Multi-Ported, RAM, ROM, FIFO, 

Distributed

• Interconnect
– Bus, Segmented Bus, Mux, Protocol-Based

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 18

Functional Unit Variations

+
**

*
*

-
+

Step 1

Step 2

Step 3

Step 4

+

+
+



10

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 19

Storage/Interconnect Variations

RF

FU
FU

RF
Segmented
Buses

Distributed
FIFO

Mux

Chaining

Multi-Port

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 20

Architectural Pipelining

FSM
Data
Path



11

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 21

High-Level Synthesis Compilation 
Flow

Lex

Parse
Compilation
front-end

Behavioral
Optimization

Intermediate
form

Arch synth
Logic synth

Lib Binding HLS backend

x = a + b  c + d

+
+



a b c d

+

+ 

a d b c

Source: R. Gupta

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 22

Data flow graph
• Data flow graph (DFG) models data 

dependencies

• Does not require that operations be 
performed in a particular order

• Models operations in a basic block of a 
functional model—no conditionals

• Requires single-assignment form



12

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 23

Data flow graph construction
original code:

x <= a + b;

y <= a * c;

z <= x + d;

x <= y - d;

x <= x + c;

single-assignment form:

x1 <= a + b;

y <= a * c;

z <= x1 + d;

x2 <= y - d;

x3 <= x2 + c;

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 24

Data flow graph construction, cont’d
Data flow forms directed acyclic graph (DAG):



13

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 25

Goals of scheduling and allocation
• Preserve behavior—at end of execution, 

should have received all outputs, be in 
proper state (ignoring exact times of events)

• Utilize hardware efficiently

• Obtain acceptable performance

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 26

Data flow to data path-controller
One feasible schedule for last DFG:



14

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 27

Binding values to registers

registers fall on
clock cycle
boundaries

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 28

Choosing function units

muxes allow
function units
to be shared
for several
operations



15

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 29

Building the sequencer

Sequencer requires three states,
even with no conditionals

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 30

Behavioral Optimization
• Techniques used in software compilation

– Expression tree height reduction
– Constant and variable propagation
– Common sub-expression elimination
– Dead-code elimination
– Operator strength reduction 

• Typical Hardware transformations
– Conditional expansion

• If (c) then x=A else x=B
 compute A and B in parallel, x=(C)?A:B

– Loop expansion
• Instead of three iterations of a loop, replicate the loop 

body three times

A
B x

c

Source: R. Gupta



16

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 31

Architectural Synthesis
• Deals with “computational” behavioral descriptions

– Behavior as sequencing graph
(called dependency graph, or data flow graph DFG)

– Hardware resources as library elements
• Pipelined or non-pipelined
• Resource performance in terms of execution delay 

– Constraints on operation timing
– Constraints on hardware resource availability
– Storage as registers, data transfer using wires 

• Objective
– Generate a synchronous, single-phase clock circuit
– Might have multiple feasible solutions (explore tradeoff)
– Satisfy constraints, minimize objective:

• Maximize performance subject to area constraint
• Minimize area subject to performance constraints

Source: R. Gupta

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 32

Synthesis in Temporal Domain
• Scheduling and binding can be done in 

different order or together
– Schedule is a mapping of operations to time 

slots (cycles)
– Scheduled sequencing graph is a labeled graph

+

NOP



  + <
-

-
NOP

1

2
3

4

+

NOP











+

<
-

-

NOP

1

2
3

4

Source: R. Gupta



17

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 33

Operation Types
• For each operation, define its type.
• For each resource, define a resource type,

and a delay (in terms of # cycles)
• T is a relation that maps an operation to a 

resource type that can implement it
– T : V  {1, 2, ..., nres}.

• More general case:
– A resource type may implement more than one 

operation type (e.g., ALU)

• Resource binding:
– Map each operation to a resource with the same type
– Might have multiple options

Source: R. Gupta

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 34

Schedule in Spatial Domain

• Resource sharing
– More than one 

operation bound to 
same resource

– Operations have to 
be serialized

– Can be 
represented using 
hyperedges 
(define vertex 
partition)

+

NOP



  + <

-

-

NOP

1

2
3

4

Source: R. Gupta



18

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 35

Scheduling and Binding

 Resource dominated

 Control dominated

• Resource constraints:
– Number of resource instances of each type

{ak : k=1, 2, ..., nres}.
• Scheduling:

– Labeled vertices (v3)=1.
• Binding:

– Hyperedges (or vertex partitions) (v2)=adder1.
• Cost:

– Number of resources  area
– Registers, steering logic (Muxes, busses), wiring, 

control unit
• Delay:

– Start time of the “sink” node
– Might be affected by steering logic and schedule 

(control logic) – resource-dominated vs. ctrl-dominated

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 36

Architectural Optimization
• Optimization in view of design space flexibility
• A multi-criteria optimization problem:

– Determine schedule  and binding .
– Under area , latency  and cycle time  objectives

• Find non-dominated points in solution space
• Solution space tradeoff curves:

– Non-linear, discontinuous
– Area / latency / cycle time (more?)

• Evaluate (estimate) cost functions
• Unconstrained optimization problems for resource 

dominated circuits:
– Min area: solve for minimal binding
– Min latency: solve for minimum  scheduling



19

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 37

Scheduling and Binding

• Cost  and  determined by both  and .
– Also affected by floorplan and detailed routing

•  affected by :
– Resources cannot be shared among concurrent ops

•  affected by :
– Resources cannot be shared among concurrent ops

– When register and steering logic delays added to 
execution delays, might violate cycle time.

• Order?
– Apply either one (scheduling, binding) first

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 38

How Is the Datapath Implemented?

• Assuming the following schedule and 
binding

• Wires between
modules?

• Input selection?
• How does binding/

scheduling affect
congestion?

• How does binding/
scheduling affect
steering logic?

+











+

<

-

-

1

2

3

4



20

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 39

Co-Processor Synthesis

• Bruce and Taylor, Chip Design, 2005

• Accelerators for speeding up software 
execution

• Exploit parallelism in the software

• Synthesize custom control logic and 
datapaths

• Explore candidate architectures and 
optimize

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 40

Design Flow for Coprocessor Synthesis



21

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 41

Example Algorithm

• Accelerate BCH3.c algorithm
– www.eccpage.com/bch3.c

• Triple-error-correction encoder/decoder
– correct transmission bit errors resulting from a 

“lossy” environment

– SONET, ATM

• Algorithm: approx. 600 lines of C
– Two primary functions: encode_bch, 

decode_bch

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 42

Analysis of Algorithm

• Four inner loops consume 85-95% of 
execution time
– DEC1, DEC2, ENC1, and ENC2
– less than 20 lines (≈ 3%) of code

• Example: DEC1 code:
for (j=0; j < length; j++)
if (recd[j] != 0) s[i] ^= alpha to[(i*j)%n];

– length varies from 64 to 1024 bits
– this loop is nested within another loop which 

executes 16 times

• Total executions: 1024 to 16384



22

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 43

Functional Blocks for Coprocessor

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 44

Coprocessor Design and Performance



23

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 45

DEC1 Algorithm Execution

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 46

Adoption of High-Level Synthesis

• Automated tools for high-level synthesis are 
not used widely
–Low-level structuring primitives (e.g., Behavioural 

Verilog still has modules)

–Scheduling performed statically

–Black-box approach (tools are not as smart as 
engineers yet)

–Artificial separation of control/data-flow (C is not a 
good language for hardware description)



24

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 47

Current Cellphone Architecture

Comms. 
Processing

Application 
Processing

WLAN RFWLAN RF WLAN RFWCDMA/GSM RF

Com
plex, H

ig
h 

Perfo
rm

ance

but m
ust

 n
ot d

iss
ip

ate
 

m
ore

 th
an 3

 w
atts

Today’s chip becomes a block 
in tomorrow’s chip

IP reuse is essential

Hardware/software migration

IP = 
Intellectual 
Property

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 48

An under appreciated fact

• If a functionality (e.g. H.264) is moved 
from a programmable device to a 
specialized hardware block, the 
power/energy savings are 100 to 1000 
fold

but our mind set
– Software is forgiving

– Hardware design is difficult, inflexible, brittle, 
error prone, ...

Power savings  more specialized hardware

Source: Arvind, MIT



25

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 49

Things to remember

• Design costs (hardware & software) dominate 

• Within these costs verification and validation 
costs dominate

• IP reuse is essential to prevent design-team 
sizes from exploding

design cost = number of engineers x time to design

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 50

New mind set:

Design affects everything!

• A good design methodology
– Can keep up with changing specs

– Permits architectural exploration

– Facilitates verification and debugging

– Eases changes for timing closure

– Eases changes for physical design

– Promotes reuse

Design for Correctness

 It is essential to

Source: Arvind, MIT



26

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 51

Term Rewriting for High Level Synthesis

• Research at MIT  (Arvind group)

• New programming language to facilitate 
high level synthesis
– Object oriented

– Rich types

– Higher-order functions

– Transformable

– Borrows from Haskell

• Commercial: Bluespec

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 52

Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Rewrite rules:
– GCD(x,y) ⇒ GCD(y,x)       if x > y, y  0

– GCD(x,y) ⇒ GCD(x,y-x)    if x – y, y  0

• Initial term: GCD(initX, initY)



27

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 53

TRS Used to Describe Hardware

• Terms represent the state: registers, FIFOs, 
memories

• Rewrite rules: conditions ⇒ action
– Represent the behavior in terms of atomic 

actions on the state 

• Language support to organize state and 
rules into modules

• Can provide view of Verilog or C modules

Synthesize the control logic (scheduling)
Not full HLS (allocation, binding manual)

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 54

New ways of expressing behavior to reduce 
design complexity 

• Decentralize complexity: Rule-based 
specifications (Guarded Atomic Actions)

– Lets you think one rule at a time

• Formalize composition: Modules with guarded 
interfaces

– Automatically manage and ensure the correctness 
of connectivity, i.e., correct-by-construction 
methodology

Bluespec

 Smaller, simpler, clearer, more correct code

Strong flavor of Unity

Source: Arvind, MIT



28

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 55

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

Reusing IP Blocks

Example: Commercially available 
FIFO IP block

These constraints are spread over many pages of 
the documentation...

No machine verific
ation of su

ch 

informal co
nstra

ints is
 feasible

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 56

Bluespec promotes composition
through guarded interfaces

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

en
q

de
q

fir
st

FIFO

theModuleA

theModuleB

theFifo.enq(value1);

theFifo.deq();
value2 = theFifo.first();

theFifo.enq(value3);

theFifo.deq();
value4 = theFifo.first();

theFifo

Enqueue
arbitration 

control

Dequeue
arbitration 

control

Self-documenting 
interfaces; 
Automatic generation 
of logic to eliminate 
conflicts in use.

Source: Arvind, MIT



29

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 57

Bluespec SystemVerilog (BSV)
• Power to express complex static structures and 

constraints
– Checked by the compiler

• “Micro-protocols” are managed by the compiler
– The necessary hardware for muxing and control is 

generated automatically and is correct by construction

• Easier to make changes while preserving 
correctness

• Also available: Bluespec in SystemC (ESEPro)

 Smaller, simpler, clearer, more correct code

 not just simulation, synthesis as well
Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 58

Bluespec:  State and Rules organized into 
modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition  action
Rules can manipulate state in other modules only via their 
interfaces.

interface

module

Source: Arvind, MIT



30

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 59

Programming with
rules: A simple example

Euclid’s algorithm for computing the 
Greatest Common Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 60

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));
x <= y;  y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

Internal
behavior

GCD in BSV

External
interface

State

typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap subSource: Arvind, MIT



31

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 61

rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int

y == 0

y == 0

implicit 
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

• The module can easily be made polymorphic
• Many different implementations can provide the same interface:

module mkGCD (I_GCD)

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 62

module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swapANDsub ((x > y) &&  (y != 0));
x <= y;  y <= x - y;

endrule
rule subtract ((x<=y) && (y!=0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD: 
Another implementation

Combine swap 
and subtract rule

Does it compute faster ?

Source: Arvind, MIT



32

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 63

Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluesim Cycle
Accurate

Blueview

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 64

Generated Verilog RTL: GCD

module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,
result,RDY_result);

input  CLK; input  RST_N;
// action method start

input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;

// value method result
output [31 : 0] result; output RDY_result;

// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] y;
wire [31 : 0] y$D_IN; wire y$EN;

...
// rule RL_subtract

assign WILL_FIRE_RL_subtract = x_SLE_y___d3 && !y_EQ_0___d10 ;
// rule RL_swap

assign WILL_FIRE_RL_swap = !x_SLE_y___d3 && !y_EQ_0___d10 ;
...

Source: Arvind, MIT



33

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 65

Generated Hardware Module

x_en y_en

x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

rdy = (y==0)

start_en start_en

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 66

GCD: Synthesis results

• Original (16 bits)
– Clock Period: 1.6 ns

– Area: 4240 m2

• Unrolled (16 bits)
– Clock Period: 1.65ns

– Area: 5944 m2

• Unrolled takes 31% fewer cycles on the testbench

Source: Arvind, MIT


