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High Level Synthesis

• Data Flow Graphs

• FSM with Data Path

• Allocation

• Scheduling

• Implementation

• Directions in Architectural Synthesis
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High Level Synthesis (HLS)
• Convert a high-level description of a design to a 

RTL netlist
– Input:

• High-level languages (e.g., C)
• Behavioral hardware description languages (e.g., VHDL)
• State diagrams / logic networks

– Tools:
• Parser
• Library of modules

– Constraints:
• Area constraints (e.g., # modules of a certain type)

• Delay constraints (e.g., set of operations should finish in 
clock cycles)

– Output:
• Operation scheduling (time) and binding (resource)
• Control generation and detailed interconnections
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Essential Issues

• Behavioral Specification Languages

• Target Architectures

• Intermediate Representation

• Operation Scheduling

• Allocation/Binding

• Control Generation
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Behavioral Specification Languages

• Add hardware-specific constructs  to 
existing languages
– SystemC

• Popular HDL
– Verilog, VHDL

• Synthesis-oriented HDL
– UDL/I
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Target Architectures

• Bus-based

• Multiplexer-based

• Register file

• Pipelined

• RISC, VLIW

• Interface Protocol
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Design Space Exploration

Arch I

Arch II

Arch III
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FSM with Data Path (FSMD)
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Intermediate Representation (CDFG)

* *
+

Control Flow Graph

Data Flow Graph



7

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 13

Allocation/Binding

Functional UnitsOperations

Storage
Variables
Signals

Bus/Wire/MuxData Transfers
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Controller Specification Generation

Scheduled
CDFG

Allocated
Datapath

Micro-Operations
for

Every Control Step
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Quality Measures for High-Level 
Synthesis

• Performance

• Area Cost

• Power Consumption

• Testability

• Reusability
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Hardware Variations

• Functional Units
– Pipelined, Multi-Cycle, Chained, Multi-Function

• Storage
– Register, RF, Multi-Ported, RAM, ROM, FIFO, 

Distributed

• Interconnect
– Bus, Segmented Bus, Mux, Protocol-Based
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Functional Unit Variations
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Storage/Interconnect Variations
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Architectural Pipelining

FSM
Data
Path
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High-Level Synthesis Compilation 
Flow

Lex

Parse
Compilation
front-end

Behavioral
Optimization

Intermediate
form

Arch synth
Logic synth

Lib Binding HLS backend

x = a + b  c + d

+
+



a b c d

+

+ 

a d b c

Source: R. Gupta
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Data flow graph
• Data flow graph (DFG) models data 

dependencies

• Does not require that operations be 
performed in a particular order

• Models operations in a basic block of a 
functional model—no conditionals

• Requires single-assignment form
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Data flow graph construction
original code:

x <= a + b;

y <= a * c;

z <= x + d;

x <= y - d;

x <= x + c;

single-assignment form:

x1 <= a + b;

y <= a * c;

z <= x1 + d;

x2 <= y - d;

x3 <= x2 + c;

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 24

Data flow graph construction, cont’d
Data flow forms directed acyclic graph (DAG):
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Goals of scheduling and allocation
• Preserve behavior—at end of execution, 

should have received all outputs, be in 
proper state (ignoring exact times of events)

• Utilize hardware efficiently

• Obtain acceptable performance
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Data flow to data path-controller
One feasible schedule for last DFG:
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Binding values to registers

registers fall on
clock cycle
boundaries
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Choosing function units

muxes allow
function units
to be shared
for several
operations
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Building the sequencer

Sequencer requires three states,
even with no conditionals
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Behavioral Optimization
• Techniques used in software compilation

– Expression tree height reduction
– Constant and variable propagation
– Common sub-expression elimination
– Dead-code elimination
– Operator strength reduction 

• Typical Hardware transformations
– Conditional expansion

• If (c) then x=A else x=B
 compute A and B in parallel, x=(C)?A:B

– Loop expansion
• Instead of three iterations of a loop, replicate the loop 

body three times

A
B x

c

Source: R. Gupta
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Architectural Synthesis
• Deals with “computational” behavioral descriptions

– Behavior as sequencing graph
(called dependency graph, or data flow graph DFG)

– Hardware resources as library elements
• Pipelined or non-pipelined
• Resource performance in terms of execution delay 

– Constraints on operation timing
– Constraints on hardware resource availability
– Storage as registers, data transfer using wires 

• Objective
– Generate a synchronous, single-phase clock circuit
– Might have multiple feasible solutions (explore tradeoff)
– Satisfy constraints, minimize objective:

• Maximize performance subject to area constraint
• Minimize area subject to performance constraints

Source: R. Gupta
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Synthesis in Temporal Domain
• Scheduling and binding can be done in 

different order or together
– Schedule is a mapping of operations to time 

slots (cycles)
– Scheduled sequencing graph is a labeled graph
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Operation Types
• For each operation, define its type.
• For each resource, define a resource type,

and a delay (in terms of # cycles)
• T is a relation that maps an operation to a 

resource type that can implement it
– T : V  {1, 2, ..., nres}.

• More general case:
– A resource type may implement more than one 

operation type (e.g., ALU)

• Resource binding:
– Map each operation to a resource with the same type
– Might have multiple options

Source: R. Gupta
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Schedule in Spatial Domain

• Resource sharing
– More than one 

operation bound to 
same resource

– Operations have to 
be serialized

– Can be 
represented using 
hyperedges 
(define vertex 
partition)
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Scheduling and Binding

 Resource dominated

 Control dominated

• Resource constraints:
– Number of resource instances of each type

{ak : k=1, 2, ..., nres}.
• Scheduling:

– Labeled vertices (v3)=1.
• Binding:

– Hyperedges (or vertex partitions) (v2)=adder1.
• Cost:

– Number of resources  area
– Registers, steering logic (Muxes, busses), wiring, 

control unit
• Delay:

– Start time of the “sink” node
– Might be affected by steering logic and schedule 

(control logic) – resource-dominated vs. ctrl-dominated

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 36

Architectural Optimization
• Optimization in view of design space flexibility
• A multi-criteria optimization problem:

– Determine schedule  and binding .
– Under area , latency  and cycle time  objectives

• Find non-dominated points in solution space
• Solution space tradeoff curves:

– Non-linear, discontinuous
– Area / latency / cycle time (more?)

• Evaluate (estimate) cost functions
• Unconstrained optimization problems for resource 

dominated circuits:
– Min area: solve for minimal binding
– Min latency: solve for minimum  scheduling
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Scheduling and Binding

• Cost  and  determined by both  and .
– Also affected by floorplan and detailed routing

•  affected by :
– Resources cannot be shared among concurrent ops

•  affected by :
– Resources cannot be shared among concurrent ops

– When register and steering logic delays added to 
execution delays, might violate cycle time.

• Order?
– Apply either one (scheduling, binding) first
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How Is the Datapath Implemented?

• Assuming the following schedule and 
binding

• Wires between
modules?

• Input selection?
• How does binding/

scheduling affect
congestion?

• How does binding/
scheduling affect
steering logic?
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Co-Processor Synthesis

• Bruce and Taylor, Chip Design, 2005

• Accelerators for speeding up software 
execution

• Exploit parallelism in the software

• Synthesize custom control logic and 
datapaths

• Explore candidate architectures and 
optimize
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Design Flow for Coprocessor Synthesis
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Example Algorithm

• Accelerate BCH3.c algorithm
– www.eccpage.com/bch3.c

• Triple-error-correction encoder/decoder
– correct transmission bit errors resulting from a 

“lossy” environment

– SONET, ATM

• Algorithm: approx. 600 lines of C
– Two primary functions: encode_bch, 

decode_bch
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Analysis of Algorithm

• Four inner loops consume 85-95% of 
execution time
– DEC1, DEC2, ENC1, and ENC2
– less than 20 lines (≈ 3%) of code

• Example: DEC1 code:
for (j=0; j < length; j++)
if (recd[j] != 0) s[i] ^= alpha to[(i*j)%n];

– length varies from 64 to 1024 bits
– this loop is nested within another loop which 

executes 16 times

• Total executions: 1024 to 16384
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Functional Blocks for Coprocessor
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Coprocessor Design and Performance



23

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 45

DEC1 Algorithm Execution
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Adoption of High-Level Synthesis

• Automated tools for high-level synthesis are 
not used widely
–Low-level structuring primitives (e.g., Behavioural 

Verilog still has modules)

–Scheduling performed statically

–Black-box approach (tools are not as smart as 
engineers yet)

–Artificial separation of control/data-flow (C is not a 
good language for hardware description)
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Current Cellphone Architecture
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Today’s chip becomes a block 
in tomorrow’s chip

IP reuse is essential

Hardware/software migration

IP = 
Intellectual 
Property

Source: Arvind, MIT
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An under appreciated fact

• If a functionality (e.g. H.264) is moved 
from a programmable device to a 
specialized hardware block, the 
power/energy savings are 100 to 1000 
fold

but our mind set
– Software is forgiving

– Hardware design is difficult, inflexible, brittle, 
error prone, ...

Power savings  more specialized hardware

Source: Arvind, MIT
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Things to remember

• Design costs (hardware & software) dominate 

• Within these costs verification and validation 
costs dominate

• IP reuse is essential to prevent design-team 
sizes from exploding

design cost = number of engineers x time to design

Source: Arvind, MIT
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New mind set:

Design affects everything!

• A good design methodology
– Can keep up with changing specs

– Permits architectural exploration

– Facilitates verification and debugging

– Eases changes for timing closure

– Eases changes for physical design

– Promotes reuse

Design for Correctness

 It is essential to

Source: Arvind, MIT
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Term Rewriting for High Level Synthesis

• Research at MIT  (Arvind group)

• New programming language to facilitate 
high level synthesis
– Object oriented

– Rich types

– Higher-order functions

– Transformable

– Borrows from Haskell

• Commercial: Bluespec
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Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Rewrite rules:
– GCD(x,y) ⇒ GCD(y,x)       if x > y, y  0

– GCD(x,y) ⇒ GCD(x,y-x)    if x – y, y  0

• Initial term: GCD(initX, initY)
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TRS Used to Describe Hardware

• Terms represent the state: registers, FIFOs, 
memories

• Rewrite rules: conditions ⇒ action
– Represent the behavior in terms of atomic 

actions on the state 

• Language support to organize state and 
rules into modules

• Can provide view of Verilog or C modules

Synthesize the control logic (scheduling)
Not full HLS (allocation, binding manual)
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New ways of expressing behavior to reduce 
design complexity 

• Decentralize complexity: Rule-based 
specifications (Guarded Atomic Actions)

– Lets you think one rule at a time

• Formalize composition: Modules with guarded 
interfaces

– Automatically manage and ensure the correctness 
of connectivity, i.e., correct-by-construction 
methodology

Bluespec

 Smaller, simpler, clearer, more correct code

Strong flavor of Unity

Source: Arvind, MIT
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data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

Reusing IP Blocks

Example: Commercially available 
FIFO IP block

These constraints are spread over many pages of 
the documentation...

No machine verific
ation of su

ch 

informal co
nstra

ints is
 feasible

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 56

Bluespec promotes composition
through guarded interfaces

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

en
q

de
q

fir
st

FIFO

theModuleA

theModuleB

theFifo.enq(value1);

theFifo.deq();
value2 = theFifo.first();

theFifo.enq(value3);

theFifo.deq();
value4 = theFifo.first();

theFifo

Enqueue
arbitration 

control

Dequeue
arbitration 

control

Self-documenting 
interfaces; 
Automatic generation 
of logic to eliminate 
conflicts in use.

Source: Arvind, MIT
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Bluespec SystemVerilog (BSV)
• Power to express complex static structures and 

constraints
– Checked by the compiler

• “Micro-protocols” are managed by the compiler
– The necessary hardware for muxing and control is 

generated automatically and is correct by construction

• Easier to make changes while preserving 
correctness

• Also available: Bluespec in SystemC (ESEPro)

 Smaller, simpler, clearer, more correct code

 not just simulation, synthesis as well
Source: Arvind, MIT
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Bluespec:  State and Rules organized into 
modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition  action
Rules can manipulate state in other modules only via their 
interfaces.

interface

module

Source: Arvind, MIT
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Programming with
rules: A simple example

Euclid’s algorithm for computing the 
Greatest Common Divisor (GCD):

15 6
9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtractanswer:Source: Arvind, MIT
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));
x <= y;  y <= x;

endrule
rule subtract ((x <= y) && (y != 0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

Internal
behavior

GCD in BSV

External
interface

State

typedef int Int#(32)

Assumes x /= 0 and y /= 0

x y

swap subSource: Arvind, MIT
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rdy
enab

int

int
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

int
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y == 0

implicit 
conditions

interface I_GCD;
method Action start (int a, int b);
method int result();

endinterface

GCD Hardware Module
t

#(type t)

t

t

t t
t

In a GCD call t
could be
Int#(32),
UInt#(16),
Int#(13), ...

• The module can easily be made polymorphic
• Many different implementations can provide the same interface:

module mkGCD (I_GCD)

Source: Arvind, MIT
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module mkGCD (I_GCD);
Reg#(int) x <- mkRegU;
Reg#(int) y <- mkReg(0);

rule swapANDsub ((x > y) &&  (y != 0));
x <= y;  y <= x - y;

endrule
rule subtract ((x<=y) && (y!=0));

y <= y – x;
endrule

method Action start(int a, int b) if (y==0);
x <= a;  y <= b;

endmethod
method int result() if (y==0);

return x;
endmethod

endmodule

GCD: 
Another implementation

Combine swap 
and subtract rule

Does it compute faster ?

Source: Arvind, MIT
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Bluespec Tool flow
Bluespec SystemVerilog source

Verilog 95 RTL

Verilog sim

VCD output

Debussy
Visualization

Bluespec Compiler

files

Bluespec tools

3rd party tools

Legend

RTL synthesis

gates

C

Bluesim Cycle
Accurate

Blueview

Source: Arvind, MIT
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Generated Verilog RTL: GCD

module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,
result,RDY_result);

input  CLK; input  RST_N;
// action method start

input [31 : 0] start_a; input [31 : 0] start_b; input EN_start;
output RDY_start;

// value method result
output [31 : 0] result; output RDY_result;

// register x and y
reg [31 : 0] x;
wire [31 : 0] x$D_IN; wire x$EN;
reg [31 : 0] y;
wire [31 : 0] y$D_IN; wire y$EN;

...
// rule RL_subtract

assign WILL_FIRE_RL_subtract = x_SLE_y___d3 && !y_EQ_0___d10 ;
// rule RL_swap

assign WILL_FIRE_RL_swap = !x_SLE_y___d3 && !y_EQ_0___d10 ;
...

Source: Arvind, MIT
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Generated Hardware Module

x_en y_en

x_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

x y

> !(=0)

swap? subtract?

sub

x
y

en
rdy

x
rdy

st
ar

t
re

su
lt

rdy = (y==0)

start_en start_en

Source: Arvind, MIT

EE 382V: SoC Design, Fall 2009 J. A. Abraham HLS 66

GCD: Synthesis results

• Original (16 bits)
– Clock Period: 1.6 ns

– Area: 4240 m2

• Unrolled (16 bits)
– Clock Period: 1.65ns

– Area: 5944 m2

• Unrolled takes 31% fewer cycles on the testbench

Source: Arvind, MIT


